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Abstract—Due to the increasing privacy demand in data
processing, Fully Homomorphic Encryption (FHE) has recently
received growing attention for its ability to perform calculations
over encrypted data. Since the data can be processed in encrypted
form and the output remains encrypted, only an authorized
user or a user who holds the key can decrypt the data and
understand its meaning. Hence, it is possible to securely outsource
data processing to untrustworthy but powerful public computing
resources on the edge. However, due to the high computational
complexity, FHE-based data processing experiences scalability
related concerns. It is currently unclear whether FHE can be used
to solve large-scale problems. In this paper, we propose a novel
general distributed FHE-based data processing approach as a
concrete step towards solving the scalability challenge. The main
idea behind our approach is to use slightly more communication
overhead for a shorter computing circuit in FHE, hence, reducing
the overall complexity. We verify our new model’s efficiency
and effectiveness by comparing the distributed approach with
the central approach over various FHE schemes (CKKS, BGV,
and BFV). This is performed using one of the more popular
libraries of FHE “Microsoft SEAL”, by performing specific
mathematical operations and observing the time consumed. The
empirical results demonstrate that the proposed approach results
in a significant reduction in time, up to 54% compared to the
traditional central approach.

Index Terms—Fully Homomorphic Encryption, Distributed
Data Processing, Microsoft SEAL, Security, Edge Computing

I. INTRODUCTION

Over the past decade, various high-tech industries have
seen a proliferation of groundbreaking innovations, which
has been accompanied by an avalanche of large amounts of
data in fields such as healthcare, finance, and manufacturing.
In industry, data is no longer hosted on a single server or
cluster, and additional computational resources are required
to process these data. Cloud and edge computing techniques
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have emerged as effective big data solutions. However, stor-
ing and processing sensitive user data on publicly-accessible
cloud servers raises concerns about data security and privacy.
Traditional encryption solutions are incapable of resolving the
conflict between processing large amounts of data in computa-
tionally powerful but not completely trustworthy public cloud
computing. Homomorphic encryption with its capability to do
computations over the encrypted data can offer the answer
for this conflict [1][2]. Before sending confidential data to
the cloud for processing, this data can be encrypted using
FHE on the client side. In this manner, confidential data can
be processed using the cloud’s vast computing capabilities
without disclosing any information about the data because the
remote server only sees ciphertexts and never has access to
the secret key, users can be confident that it learns nothing
about their data. However, due to the high computational
complexity and long processing times, FHE-based data pro-
cessing is still not widely adopted, especially in scenarios with
limited computational resources and strict time constraints.
Distributed Homomorphic Encryption, which focuses on dis-
tributing computations across numerous instances, could be a
feasible option. In this paper, we examine the performance
of the CKKS, BFV, and BGV schemes utilizing one of the
best-known libraries, ”Microsoft SEAL” [3] by applying the
arithmetic operations addition and multiplication first in a
central approach, in which all operations are performed on
just one instance, and then in a distributed approach, in which
the operations are performed on multiple computing instances.
We observed the consumed time for all schemes in both
approaches, and the results demonstrate that the distributed
approach can yield extremely promising results in terms of
significant improvement in the time required to obtain the
same results. Finally, note that the distributed approach, in
addition to reducing processing time, eliminates meta-level
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inferences about the nature of the computations, which could
be an additional privacy benefit. The major contributions of
this paper are presented as:

• We propose a new distributed FHE-based data processing
approach to address the scalability challenges encoun-
tered by FHE-based data processing due to its high com-
putational complexity. Our approach utilizes distributed
computing techniques to divide the computation workload
among multiple computing instances, thus reducing the
overall computational burden on a single instance.

• We evaluate the performance of our proposed approach
by comparing three commonly used FHE schemes
(CKKS, BFV, and BGV) using Microsoft SEAL library
and arithmetic operations on vectors up to216 in central-
ized and distributed approaches. Our results show that
the distributed approach significantly reduces processing
time due to increased computational power and parallel
processing.

• Additionally, our distributed approach eliminates the po-
tential for meta-level inferences regarding the compu-
tations, leading to increased privacy. This is achieved
through the distribution of computations across multiple
nodes, rendering it challenging for any single entity to
comprehend the nature of the computation and access
sensitive information.

Overall, our proposed distributed FHE-based data processing
approach offers a promising solution to the scalability chal-
lenges of FHE-based data processing. We believe that this
approach can pave the way for the wider adoption of FHE-
based data processing in various applications, such as cloud
computing, big data analytics, and machine learning. The
remaining part of this paper is organized as follows: In Sec-
tion 2, we introduce the related work; In Section 3, we present
the flow and functionality of the centralized and distributed
approach; Section 4 specifies the libraries and FHE schemes
employed, as well as the composition of the evaluation times;
In Section 5, the various schemes are contrasted initially,
and then the distinctions between centralized and distributed
approaches are highlighted; In Section 6, we conclude this
paper and in Section 7 we discuss the future work.

II. RELATED WORK

The last decade has witnessed a proliferation of research
studies focused on various applications of FHE technology.
This innovative encryption technique provides an attractive
solution for processing sensitive user data in the public do-
main, as it enables computations on encrypted data without
compromising its confidentiality or breaching the privacy of
the users. However, FHE’s high computational complexity
and the significant time required for data encryption limit its
use in time-sensitive applications and prompted researchers
to explore alternative strategies to enhance its performance.
One promising solution to improve the efficiency of FHE is
to use hardware accelerators such as graphics processing units
(GPUs) and field programmable gate arrays (FPGAs) in the
implementation of homomorphic encryption schemes. These

specialized hardware platforms have the ability to perform
complex calculations in parallel, significantly reducing the
time required to encrypt data and perform computations on
encrypted data. Researchers have been exploring the use of
these hardware accelerators in combination with FHE algo-
rithms to achieve improved performance. The authors of [4]
presented one of the earliest works on GPU implementation of
an FHE scheme. The study utilized the Fast Fourier Transform
(FFT) algorithm to develop a small parameter size version of
the lattice-based FHE system by Gentry and Halevi [5] on an
NVIDIA C2050 GPU. The authors reported substantial speed-
ups, with encryption, decryption, and recryption operations ob-
taining factors of 7.68, 7.4, and 6.59, respectively. The GPU’s
parallelization capabilities were leveraged to enhance the FHE
performance, with the FFT technique employed to address the
system’s bottleneck, which is the computation of large modular
multiplications. Despite these performance improvements, the
authors noted that the implemented FHE scheme is still im-
practical due to the high latency encountered during encryption
and recryption operations. The authors of [6] introduced two
techniques for performing statistical analysis with FHE on
hardware with limited computational power, such as IoT
devices. Given the high computational requirements of FHE,
it can pose a significant challenge for IoT devices with lim-
ited processing power. The first technique, called SHE+FHE,
involves encrypting plaintext using Somewhat Homomorphic
Encryption (SHE) on the IoT device side, which is less
computationally intensive than FHE. The SHE ciphertext is
then transformed into FHE ciphertext on the cloud service side,
where the computational requirements are less of a concern.
The second technique, called SHE+TRIVIUM+FHE, uses the
TRIVIUM secret key cryptosystem to encrypt the plaintext and
the SHE public key cryptography to encrypt the TRIVIUM
key. According to the results of their experiment, the authors
confirmed that this technique can significantly reduce the load
on IoT devices. The work presented in [7] introduces a new
distributed homomorphic image encryption approach. In the
encryption phase, the original RGB image is divided into its
R, G, and B-channel components. For each channel image,
the pixel intensity values are then decomposed into multiple
sub-values, resulting in the creation of several component
channel images. To secure these component channel images,
each is encrypted using the same encryption key and, if
needed, compressed before being transmitted or stored. On the
decryption side, the encrypted component channel images are
decompressed if necessary and decrypted using the same key
used during the encryption phase. This process creates the R,
G, and B-channel recovered images, which are then combined
to form the recovered RGB image. According to the authors,
the proposed homomorphic image encryption scheme is robust
and can effectively withstand various security threats while
also providing enhanced protection for encrypted images. In
[8], a comprehensive comparison of the performance of two
FHE schemes, the BFV and CKKS, was conducted using one
of the widely used FHE libraries, Microsoft SEAL. This study
aimed to evaluate the performance of these schemes in terms



of the time required to complete specific arithmetic opera-
tions. The authors performed a thorough analysis of the time
consumed by each scheme while performing these operations
and compared the results to determine which scheme was
more efficient. This study provide valuable insights into the
performance of FHE schemes and can inform the selection and
implementation of FHE in real-world applications. The study’s
methodology and results can serve as a useful reference for
future research in this field. The authors in [9] address the issue
of the high computational overhead of FHE by presenting a
novel solution, F1, an FHE programmable accelerator. This
accelerator is designed to execute full FHE programs. The
authors argue that the unique design methodology of F1 is
what sets it apart from other FHE acceleration solutions. The
accelerator utilizes high-throughput functional units that speed
up basic computations, which are common to higher-level
operations. In addition, the co-design of the compiler and
hardware reduces data movement, which has been identified
as a key bottleneck in traditional FHE acceleration solutions.
This combination of efficient functional units and optimized
data movement results in faster and more efficient execution
of FHE programs. The authors in [10] presented two novel
hardware architectures aimed at significantly accelerating the
BFV homomorphic encryption scheme’s encryption and de-
cryption operations. By utilizing high-performance polyno-
mial multipliers, the authors were able to achieve remarkable
speed-ups in the BFV encryption and decryption operations.
The authors adopted a hardware/software co-design approach,
where the encryption and decryption operations were offloaded
to an FPGA and the remaining operations were executed in
software running on a desktop computer. As per the results
reported by the authors, their hardware/software co-design
approach led to substantial improvements in the encryption
and decryption time compared to their pure software solutions.
Specifically, the encryption time was reduced by a factor
of approximately 12 and the decryption time was reduced
by a factor of approximately 7. These results demonstrate
the potential of hardware-accelerated homomorphic encryption
schemes to greatly improve the performance of encryption and
decryption operations. Extensive efforts have been made to
enhance the performance of FHE schemes. Researchers in the
field have proposed several hardware architectures, such as
those presented in [11] and [12], to improve the efficiency
and speed of FHE operations. In addition, the utilization of
Graphics Processing Unit (GPU) accelerators, as shown in
[13], [14], and [15], has proven to be an effective method for
improving the performance of FHE. These works demonstrate
the growing interest and investment in the development of
more efficient and secure FHE solutions. The hardware ar-
chitectures and GPU accelerators aim to address the major
limitations of FHE schemes, such as high computational
complexity and long processing times. These improvements
not only lead to a faster and more efficient encryption and
decryption process but also enable the widespread adoption
of FHE in various fields, such as finance, healthcare, and
manufacturing, where sensitive data needs to be processed

and stored securely. As the amount of data being generated
continues to grow, it is crucial to develop new and improved
methods for secure and efficient processing, making these
works crucial contributions to the field.

III. THE PROPOSED APPROACH

In this section, we present the two approaches employed
in this study. In the centralized approach, all homomorphic
encrypted data are processed by a single resource, such as
a central server. This approach simplifies the computation
process, as all data is in one location. However, it also creates
a single point of failure, meaning that if the central resource
becomes unavailable, the entire system fails. In addition, the
central resource must have sufficient computing power to
handle all of the computations, which can be a challenge for
large-scale data processing. In the distributed approach, on the
other hand, computations are performed by multiple resources
in parallel, with each resource processing a portion of the
data. The encrypted data is divided into smaller chunks, each
of which is sent to a different resource for processing. After
the computations are complete, the results are then merged
back together to form the final output. This approach has
several advantages over the centralized approach. Firstly, it
allows for a more scalable solution, as the processing load
can be distributed across multiple resources. This reduces the
risk of a single resource becoming a bottleneck and improves
overall processing times. Secondly, it provides greater fault
tolerance, as the system can continue to function even if one
or more resources fail. In conclusion, both the centralized and
distributed approaches have their strengths and weaknesses,
and the choice between the two depends on the specific
requirements of each application.

A. Centralized

The centralized approach in Fig. 1 is designed to provide
secure and efficient computation on sensitive data. In this
approach, two messages, M1 and M2, are initially gener-
ated, where each message M = {i1, i2, ..., in} is a list of
integers with values ranging from 1 to 1000. The length of
the message n is determined by the test session and can
range from 27, ..., 216. To ensure the confidentiality of the
data, the client encrypts both messages with a homomorphic
procedure, producing encrypted messages E1 and E2. The
encrypted messages and the necessary relinearization key are
then transmitted to the server for computation. On the server
side, the addition of E1 + E2 is performed to obtain a
new message, E3. The computation is then completed by
multiplying each element in E3 by 0.5, resulting in the final
message, E4. The client alone holds the key to decrypt the
message, which is sent back to the client after the calculations
are completed.

B. Distributed

The distributed approach, as depicted in Fig. 2, is the
main focus of this paper. In this approach, two messages M1
and M2 are generated in the first step, which are similar in



Fig. 1: Centralized model

content and structure to the centralized approach. However,
the difference lies in the number of workers that are available
for processing the messages. The number of workers can be
specified as a set {Worker1,Worker2, ...,Workerk}. Based
on the selected number of workers, the messages M1 and
M2 are divided into partial messages M11,M12, ...,M1k
and M21,M22, ...,M2k, respectively, to ensure that each
worker receives a portion of both messages. These partial
messages are then encrypted using a homomorphic procedure,
resulting in E11, E12, ..., E1k and E21, E22, ..., E2k, which
are distributed to the corresponding workers. The workers
perform the same operations as in the centralized approach,
i.e., addition and multiplication, but on partial messages, and
return partial results E31, E32, ..., E3k. The partial results
are sent back to the client, where they are decrypted and
recomposed into an overall result M3 = M31‖M32‖...‖M3k.
This distributed approach offers several advantages over the
centralized approach. One advantage is that it allows for par-
allel processing of messages, which leads to a faster processing
time. This is especially beneficial in large-scale computa-
tions, where the processing time can be significantly reduced.
Another advantage is that it provides increased security, as
the messages are encrypted and distributed among multiple
workers, making it more difficult for unauthorized access.
Additionally, this approach also provides increased scalability,
as the number of workers can be easily increased or decreased
depending on the processing needs.

Fig. 2: Distributed model

IV. EVALUATION

In this section, we present the results of our scientific study.
A detailed description of the libraries utilized, along with the
evaluated schemes, and the time stamps applied are provided
to ensure a comprehensive understanding of the outcomes and
to facilitate the replication of the experimental setup.

A. Utilized Libraries

This study utilized two libraries, openMPI and SEAL, for
performing distributed homomorphic computations.
OpenMPI: OpenMPI is a communication framework for
multiple processes, including those across different hosts or
virtual machines [16]. Computations are divided into multiple
processes, prioritized by rank, and processed by different
machines. In this study, openMPI was used to implement the
distributed approach for homomorphic encryption.
SEAL: SEAL [17] is an open-source library developed by
the Cryptography Research Group at Microsoft Research,
which supports homomorphic computations through various
schemes. A wrapper was used to enable Python support
in this study, as SEAL was originally designed for C++
platforms. To test a larger range of values, the predetermined
safety constraints for SEAL, which enforce security standards
proposed by [18], were deactivated in the test runs, as they
only permit certain lengths.

B. Evaluated Schemes

Three schemes were implemented and evaluated in this
study, all of which are based on the same operating principle.
The process begins with encoding the message, followed by
encryption. Then, arithmetic operations are performed on the
encrypted data. The data is then decrypted, decoded, and
the final result is obtained. A timeline of the homomorphic
operations is depicted in Fig. 3.
BGV/BFV: The Brakerski-Gentry-Vaikuntanathan (BGV)
schema from 2011 and the Brakerski/Fan-Vercauteren
(BFV) schema from 2012 belong to the second generation
of encryption schemes, capable of computing messages
consisting of integers [19][20]. Despite their structural
similarities, the two schemes differ in their parameters.
The BFV scheme is unique in that its ciphertext modulus
remains constant throughout the evaluation, making it scaling
independent. Meanwhile, the BGV scheme uses multiple
smaller modulo to better control the noise generated during
computations through modulo switching. Despite being part
of the older generation of schemes, both BGV and BFV offer
higher computational speed compared to newer schemes.
However, they are limited to processing integer values only.

CKKS: The Cheon, Kim, Kim, and Song (CKKS) scheme
[21][22][23], is more versatile compared to the previously
presented BGF and BFV schemes. Unlike the latter, CKKS
supports multiplicative inverses and thereby enables the
implementation of divisions. Furthermore, it enables the
computation of complex numbers by encoding messages
into real and imaginary values, which are then represented



as polynomials. The calculations are performed on these
polynomials, resulting in an approximation of the outcome
after decoding. However, this approach is more time-
consuming than the BGF and BFV schemes.

C. Composition Timestamp

This section presents the time records for the two ap-
proaches to provide a deeper understanding of their behavior.
For this, we grouped the times into different processing steps
(see Fig. 3). The initial steps involve generating the keys,
encoding the data, and encrypting it. Based on the scheme,
the key generation process creates keys of equal length as
the polynomial to be encrypted. Keys are also generated
for other scheme-specific functions, such as relinearization,
which is required after multiplication. Since the values to be
evaluated are supplied as vectors, they must first be converted
to polynomials; this process is known as encoding. The two
mathematical operations of addition and multiplication are
represented in the following steps. Finally, in the remaining
steps, the data is decrypted and decoded using the same
method used in encoding.

Fig. 3: Composition of different used times

V. EXPERIMENTAL WORK AND RESULTS

In this study, the mathematical operations of adding and
multiplying two vectors of varying sizes were performed
homomorphically. A range of vector sizes 2n were selected,
along with appropriate encryption parameters for each scheme,
for the experiment. The processing time for all schemes was
compared in both centralized and distributed approaches, using
the average of 50 test runs for each distinct message length
(vector size). The results are presented in tables with a similar
format and consistent acronyms. The time consumed for key
generation (Key Gen.), encryption (Encr.), which includes
encoding time, communication (Com.), arithmetic operations
(Arith.), decryption (Decr.), and the total time (Total) are
displayed. Additionally, for easy comparison, an improvement
column (Impr.) was included to show the percentage improve-
ment gained by the distributed approach compared to the
centralized approach in terms of total time.

A. Scheme comparison

The objective of this study is not to compare the different
schemes. However, for the purpose of demonstrating the
variation in the time required for homomorphic computations
across different schemes, a comparison was conducted. The
results, presented in Table I, depict the comparison between
BFV, BGV, CKKS in the centralized approach. The experiment

was conducted using 50 test runs with a vector size of 216

(selected to be in the higher range for a better comparison of
the time values).

Scheme Key Gen. Encr. Com. Add. Mult. Decr. Total
BFV 331.41 155.48 1251.63 1.67 186.78 17.23 1944.19
BGV 333.35 157.33 1218.63 1.62 84.95 16.47 1812.34
CKKS 630.86 437.47 2484.71 3.27 99.16 34.54 3690.00

TABLE I: Processing time in (ms) of messages with vector
size of 216 using the different schemes on a single resource

The results indicate that BGV was the fastest in terms of total
time, attributed to its efficient multiplication time. The other
times of BGV are comparable to those of BFV. On the other
hand, CKKS required the longest time, with a higher overhead
in key generation and encryption leading to the longest time
loss. In conclusion, our experimental setup demonstrates that
BFV is 6.78% slower and CKKS is 103.60% slower than BGV
for equivalent arithmetic operations.

B. Centralized vs. Distributed Approach Comparison

The results of the computation times for the arithmetic
operations, key generation, encoding, decoding, encryption,
and total time for the BFV scheme are presented in Table II.
The data is divided into three categories: centralized approach,
distributed approach with four instances, and distributed ap-
proach with eight instances. This categorization is done to
highlight the impact of increasing the number of computational
resources on the scheme’s performance. The results indicate
that the computation times increase as the vector size grows
in all approaches. However, the distributed approach demon-
strates lower computation times compared to the centralized
approach, leading to a reduction in the total time. The BFV
scheme achieved a maximum improvement of 54% in terms
of total time, based on the vector size, and the improvement
increases to 68% when the communication time between the
computational resources is not considered.
Table III presents the computation times for all operations
in the BGV scheme, similar to the previous table. The per-
formance of the BGV scheme is comparable to that of the
BFV scheme, given the size of the vector and the number
of computational resources utilized. With the BGV scheme,
an improvement in total computation time was observed,
up to 51% for larger vector sizes, and up to 65% without
communication time.
Finally, Table IV displays the computation times for all
operations in the CKKS scheme. The scheme exhibits similar
performance to other schemes. For the CKKS scheme, an
improvement in total time by up to 48% was observed for
larger vector sizes, and up to 58% without communication
time.
The figures below depict the variations among the tested
approaches. The left figure displays the processing time in
milliseconds (y-axis) of the three approaches, centralized (rep-
resented in blue), distributed with four workers (represented
in orange), and distributed with eight workers (represented in



Vector Key Encr. Com. Arith. Dec. Total Impr.(%)
Size Gen.

Centralized
27 3.13 0.57 7.73 0.35 0.07 11.86 -
28 3.78 0.85 10.23 0.63 0.09 15.58 -
29 4.97 1.35 15.01 1.22 0.15 22.69 -
210 7.68 2.38 24.63 2.46 0.26 37.41 -
211 13.24 4.57 43.24 5.05 0.50 66.60 -
212 23.80 8.90 90.01 10.13 0.95 133.79 -
213 44.23 17.36 194.02 21.03 1.91 278.56 -
214 87.28 35.42 309.65 44.2 3.85 480.41 -
215 169.05 73.57 584.52 90.82 8.15 926.11 -
216 331.41 155.48 1251.63 188.45 17.23 1944.19 -

Distributed with 4 Workers
27 3.00 1.44 9.71 0.13 0.15 14.44 -22
28 2.78 1.59 11.54 0.19 0.18 16.28 -4
29 3.14 2.00 14.35 0.36 0.22 20.07 12
210 3.88 3.17 20.17 0.65 0.32 28.20 25
211 4.99 5.01 29.82 1.29 0.52 41.63 37
212 7.82 9.11 55.91 2.68 0.94 76.46 43
213 12.97 17.48 95.71 5.13 1.84 133.13 52
214 23.68 34.18 193.48 10.17 3.59 265.10 45
215 45.99 68.36 377.39 21.35 7.30 520.38 44
216 88.82 136.85 712.99 43.93 15.05 997.65 49

Distributed with 8 Workers
27 2.93 2.59 12.2 0.09 0.26 18.07 -52
28 2.96 2.72 14.4 0.13 0.27 20.48 -31
29 2.91 3.22 18.58 0.20 0.33 25.25 -11
210 3.13 3.98 22.79 0.36 0.42 30.68 18
211 3.93 6.33 33.3 0.65 0.65 44.85 33
212 5.30 10.64 52.73 1.33 1.07 71.05 47
213 7.76 18.01 96.99 2.67 1.91 127.34 54
214 13.31 35.83 169.49 5.28 3.69 227.6 53
215 23.37 69.65 373.29 10.66 7.56 484.53 48
216 46.11 139.43 742.58 22.43 15.58 966.12 50

TABLE II: Comparison of processing times in (ms) between
centralized and distributed approach with BFV scheme

gray), as a function of the vector size of the messages (x-axis).
The right figure illustrates the improvement of the distributed
approaches (y-axis) compared to the centralized approach in
terms of percentage.
The results of the BVF scheme are presented in Fig. 4. The
findings indicate that switching to a distributed approach with
four workers is beneficial in terms of processing time when
the message length reaches 512, with a reduction in processing
time from 22.69ms to 20.07ms (12% improvement). Further,
a distributed approach with eight workers is faster than the
centralized approach for messages of length 1024 and above,
with a processing time of 37.41ms compared to 30.68ms (18%
improvement). For messages of length 4096 and above, it is
also recommended to use eight workers instead of four, as the
increased overhead due to the eight workers is outweighed by
the larger message size. In general, the results suggest that
up to a message size of 2048, the different approaches are
relatively comparable, but as the message size increases, the
disparities between them become more pronounced.
The results obtained from the BGV scheme, depicted in Fig.

Vector Key Encr. Com. Arith. Dec. Total Impr.(%)
Size Gen.

Centralized
27 3.15 0.57 7.77 0.17 0.07 11.73 -
28 3.79 0.87 10.20 0.28 0.09 15.23 -
29 5.10 1.38 15.04 0.54 0.14 22.20 -
210 7.69 2.41 24.48 1.07 0.24 35.88 -
211 13.11 4.64 43.13 2.18 0.47 63.52 -
212 24.03 9.14 88.16 4.46 0.91 126.7 -
213 44.99 18.18 186.25 9.38 1.82 260.62 -
214 87.57 36.14 314.24 20.00 3.67 461.62 -
215 170.67 74.12 592.95 41.33 7.66 886.74 -
216 333.35 157.33 1218.63 86.56 16.47 1812.34 -

Distributed with 4 Workers
27 2.98 1.45 9.18 0.07 0.15 13.83 -18
28 2.77 1.60 11.13 0.10 0.17 15.77 -4
29 3.10 1.99 13.73 0.17 0.21 19.20 14
210 3.81 3.11 18.89 0.32 0.30 26.43 26
211 5.03 5.08 29.34 0.57 0.50 40.52 36
212 7.78 9.21 52.73 1.07 0.90 71.70 43
213 12.82 17.37 92.72 2.22 1.73 126.86 51
214 23.77 34.50 192.10 4.48 3.42 258.27 44
215 45.24 68.69 380.40 9.48 6.93 510.73 42
216 89.34 139.72 742.75 19.95 14.34 1006.11 44

Distributed with 8 Workers
27 2.91 2.62 12.32 0.05 0.25 18.14 -55
28 2.96 2.75 14.24 0.07 0.27 20.29 -33
29 2.81 3.14 17.79 0.10 0.31 24.15 -9
210 3.26 4.21 23.49 0.17 0.42 31.55 12
211 3.90 6.33 33.90 0.32 0.62 45.07 29
212 5.08 10.14 51.66 0.60 0.98 68.46 46
213 7.75 18.25 98.22 1.19 1.77 127.19 51
214 13.23 35.68 170.74 2.37 3.50 225.53 51
215 23.30 69.48 392.43 4.72 6.83 496.76 44
216 45.54 136.52 729.15 9.95 13.75 934.92 48

TABLE III: Comparison of processing times in (ms) between
centralized and distributed approach with BGV scheme

5, are comparable to those obtained from the BFV scheme.
In terms of processing times, the distributed approach with
four workers performs better at a message size of 512, with a
processing time of 19.20ms compared to 22.20ms (represent-
ing a 14% improvement). Conversely, the distributed approach
using eight workers in BGV generally yields similar results
compared to the distributed approach with eight workers in
BFV. As a result, the curve of the results achieved with BGV
is very similar to those of BFV.
The results in Fig.6 demonstrate that the CKKS scheme
leads to longer message processing times compared to BGV
and BFV. However, it demonstrates the advantage of a dis-
tributed approach at a smaller message size. The distributed
approach with four workers improves processing time by
9% (19.27ms vs. 21.19ms) at a message size of 256. The
distributed approach with eight workers outperforms the cen-
tralized approach starting at 512 message size, yielding a
23% improvement (31.30ms vs. 34.77ms). Eight workers can
already attain better results than four workers at a message
size of 2048 (3% improvement, 70.24ms vs. 72.23ms). The



Vector Key Encr. Com. Arith. Dec. Total Impr.(%)
Size Gen.

Centralized
27 3.61 0.97 10.10 0.18 0.09 14.95 -
28 4.66 1.63 14.43 0.33 0.15 21.19 -
29 7.14 2.91 23.82 0.63 0.27 34.77 -
210 12.04 5.73 41.78 1.27 0.53 61.36 -
211 22.01 11.53 82.31 2.56 0.98 119.39 -
212 42.51 23.37 167.44 5.28 1.96 240.56 -
213 80.37 46.85 306.22 11.26 3.96 448.65 -
214 155.99 98.53 569.52 23.21 8.08 855.32 -
215 305.64 207.46 1211.48 48.34 16.76 1789.67 -
216 630.86 437.47 2484.71 102.43 34.54 3690.00 -

Distributed with 4 Workers
27 2.71 1.75 10.29 0.07 0.17 14.99 0
28 3.00 2.22 13.70 0.11 0.22 19.27 9
29 3.62 3.58 19.02 0.20 0.33 26.74 23
210 4.69 6.14 28.40 0.34 0.54 40.12 35
211 7.31 11.42 51.83 0.66 1.00 72.23 40
212 12.32 22.34 91.22 1.27 1.87 129.02 46
213 21.64 43.29 196.51 2.55 3.69 267.68 40
214 41.79 88.30 370.48 5.35 7.43 513.34 40
215 81.23 181.18 750.58 11.17 15.18 1039.34 42
216 157.05 376.06 1419.04 23.26 31.37 2006.78 46

Distributed with 8 Workers
27 2.94 3.00 14.35 0.05 0.29 20.63 -38
28 2.72 3.43 18.44 0.07 0.33 24.99 -18
29 3.09 4.65 23.03 0.11 0.43 31.30 10
210 3.76 7.44 33.21 0.22 0.66 45.30 26
211 4.84 12.51 51.40 0.39 1.10 70.24 41
212 7.30 22.58 98.15 0.70 1.99 130.71 46
213 12.43 45.66 170.76 1.38 3.95 234.19 48
214 21.92 88.40 392.42 2.80 7.70 513.25 40
215 42.11 184.91 737.99 5.58 15.65 986.23 45
216 83.99 373.96 1423.49 11.37 33.27 1926.07 48

TABLE IV: Comparison of processing times in (ms) between
centralized and distributed approach with CKKS scheme

improvement pattern is consistent with previous schemes, but
occurs at an earlier stage.

VI. CONCLUSION

In this study, we propose a novel distributed FHE approach
to process sensitive and confidential data while maintaining the
security and privacy of the information. The use of FHE allows
for computations to be performed on encrypted data without
the need for decryption, thus preserving the privacy and secu-
rity of the data. To evaluate the performance of our proposed
approach, we set up a test environment using multiple virtual
instances hosted on an external server. We utilized one of
the most widely adopted FHE frameworks, which includes
the CKKS, BGV, and BFV schemes, to perform various
arithmetic operations on datasets of varying sizes up to 216.
We conducted 50 test runs for each combination of the three
FHE schemes and various data sizes, comparing the results of
the centralized and distributed approaches. The results of our
experiments were extremely encouraging, with up to 54% time
savings in the distributed approach compared to the centralized

(a) Comparison of the processing times

(b) Improvement of the distributed approach over the centralized approach

Fig. 4: Comparison of centralized and distributed approaches
at different vector sizes with BVF scheme.

approach. This suggests that our proposed distributed FHE
approach is a promising solution for handling large volumes
of confidential data in untrustworthy public environments
without compromising security and privacy. Furthermore, we
also analyzed the scalability of our proposed approach by
increasing the number of virtual instances and the size of the
datasets. The results showed that the distributed FHE approach
is highly scalable and can handle large amounts of data
without compromising security and privacy. In conclusion, our
proposed distributed FHE approach is a promising solution for
handling high volumes of confidential data in untrustworthy
public environments without violating security and privacy.
The approach is highly scalable and can be implemented in
various scenarios where data privacy and security are of utmost
importance. We believe that this approach can have signifi-
cant implications for various industries, including healthcare,
finance, and government, where sensitive and confidential data
need to be processed and analyzed without compromising
security and privacy.

VII. FUTURE WORK

The present study aims to evaluate the performance
of three different FHE schemes, namely the Braverman-
Fan-Vercauteren (BFV), the Brakerski-Gentry-Vaikuntanathan



(a) Comparison of the processing times

(b) Improvement of the distributed approach over the centralized approach

Fig. 5: Comparison of centralized and distributed approaches
at different vector sizes with BGV scheme.

(BGV), and the Cheon-Kim-Kim-Song (CKKS) schemes, us-
ing the Microsoft SEAL library. The primary objective of this
study is to compare the performance of these FHE schemes
when performing arithmetic operations on data vectors of
varying sizes, up to 216, using both centralized and distributed
approaches. In the centralized approach, the arithmetic oper-
ations were performed on a single computational resource. In
contrast, the distributed approach involved the use of multiple
computational resources, and we also examined the impact
of varying the number of resources on the performance of
the FHE schemes. To measure the performance of the FHE
schemes, we documented and compared the consumed time
in both approaches. To further validate our results, we are
currently developing a hardware test environment consisting
of several Raspberry Pi and NVIDIA Jetson Nano devices
[24]. This testbed will represent the various computational
resources and will enable us to adapt and rerun our tests.
The results of these tests will be made available in the near
future. Furthermore, we are focusing on integrating the dis-
tributed approach into a framework we developed for machine
learning-based resource allocation. In this framework, partial
data is distributed to the edge’s best resources through a
neural network, ensuring that they are used to their fullest
potential and minimizing communication times. This approach

(a) Comparison of the processing times

(b) Improvement of the distributed approach over the centralized approach

Fig. 6: Comparison of centralized and distributed approaches
at different vector sizes with CKKS scheme.

aims to optimize the performance of the FHE schemes by
ensuring that the computational resources are used efficiently
and effectively. Overall, the goal of this study is to provide a
comprehensive evaluation of the performance of different FHE
schemes in distributed environments, with a focus on edge
computing. We hope that the results of this study will provide
valuable insights for researchers and practitioners working in
the field of FHE, and will help to guide the development of
more efficient and secure FHE systems for edge computing
applications.
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