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Abstract

In this paper, we propose a theoretical scheme for shape-programming of
thin hyperelastic shells through differential growth, which aims to determine
the growth tensor (or growth functions) that can produce the deformation
of a shell to the desired shape. First, a consistent finite-strain shell theory is
introduced. The shell equation system is established from the 3D governing
system through a series expansion and truncation approach. Based on the
shell theory, the problem of shape-programming is studied under the stress-
free assumption. For a special case in which the parametric coordinate curves
generate a net of curvature lines on the target surface, the sufficient condition
to ensure the vanishing of the stress components is analyzed, from which
the explicit expression of the growth tensor can be derived. In the general
case, we conduct the variable changes and derive the total growth tensor by
considering a two-step deformation of the shell. Based on these results, a
general theoretical scheme for shape-programming of thin hyperelastic shells
through differential growth is proposed. Several nature-inspired examples are
studied to demonstrate the feasibility and efficiency of the proposed scheme.
The predicted growth tensors in these examples have also been adopted in
the numerical simulations to verify their correctness and accuracy. It is found
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that the target shapes of the shell samples can be recovered completely in
the numerical simulations. The scheme for shape-programming proposed in
the current work is helpful in designing and manufacturing intelligent soft
devices.

Keywords: Hyperelastic shell, Differential growth, Shape-programming,
Theoretical scheme, Numerical simulations

1. Introduction

Growth of soft biological tissues and swelling (or expansion) of soft poly-
meric gels are commonly observed in nature (Ambrosi et al., 2011; Liu et al.,
2015). Due to the inhomogeneity or incompatibility of the growth fields, soft
material samples usually exhibit diverse geometrical shape changes and sur-
face pattern evolutions during the growing processes, which is referred to as
the ‘differential growth’ and has attracted extensive research interest in re-
cent years (Goriely and Ben Amar, 2005; Li et al., 2012; Kempaiah and Nie,
2014; Huang et al., 2018). To fulfill the requirements of engineering applica-
tions, it is usually desired that the configurations of soft material samples are
controllable during the growing processes, such that certain kinds of func-
tions are realized. This task can be accomplished through elaborate design
of compositions or architectures in the soft material samples. The technique
is known as ‘shape-programming’ (Liu et al., 2016; van Manen et al., 2018),
which has been utilized for manufacturing various intelligent soft devices, e.g.,
biomimetic 4D printing of flowers (Gladman et al., 2016), pressure-actuated
deforming plate (Siéfert et al., 2019), pasta with transient morphing effect
(Tao et al., 2021), and polymorphic metal-elastomer composite (Hwang et al.,
2022).

From the viewpoint of solid mechanics, soft materials can be treated as
certain kinds of hyperelastic materials. The growth field in a soft material
sample is usually modeled by incorporating a growth tensor. Due to the
residual stresses triggered by the incompatibility of the growth field, as well
as the external loads and boundary restrictions, the sample also undergoes
elastic deformations. Thus, the total deformation gradient tensor should be
decomposed into an elastic strain tensor and a growth tensor (Kondaurov and
Nikitin, 1987; Rodriguez et al., 1994; Ben Amar and Goriely, 2005). As the
elastic deformations of soft materials are generally isochoric, the constraint
equation of elastic incompressibility should also be adopted (Wex et al., 2015;
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Kadapa et al., 2021). Based on these constitutive and kinematic assumptions,
the growth behaviors of soft material samples can be studied by solving the
system of mechanical field equations. Because of the inherent nonlinearities
in the large growth-induced deformations, mechanical instabilities can also
be triggered in the soft material samples (Ben Amar and Goriely, 2005; Li
et al., 2011; Goriely, 2017; Pezzulla et al., 2018; Xu et al., 2020).

Despite the numerous studies on the growth behaviors of soft material
samples, the majority of the modeling works focus on the direct problem,
i.e., determining the deformations of soft material samples when the growth
fields are specified. However, to achieve the goal of shape-programming for
engineering applications, one needs to study the inverse problem. That is,
how to distribute the growth fields in the soft material samples such that
any given 3D target shape can be achieved through differential growth? Re-
garding this inverse problem, some previous research works have also been
reported in the literature (cf. Dias et al., 2011; Jones and Mahadevan, 2015;
Acharya, 2019; Wang et al., 2019a; Nojoomi et al., 2021; Li et al., 2022;
Wang et al., 2022). In these works, the initial configurations of soft material
samples usually have a thin plate form. Although the shell form is more
common in nature and engineering fields, it is seldom chosen as the initial
configuration of the soft material samples due to the difficulties associated
with modelling shell structures.

To achieve the goal of shape-programming, a prerequisite is to predict
the relations between the growth fields and the morphologies of soft mate-
rial samples. It is thus of significance to establish an efficient and accurate
mathematical model by taking configurations of samples, material properties,
boundary conditions and other factors into account. In terms of shell theo-
ries for growth deformations, the Kirchhoff shell theory has been adopted to
describe mechanical behavior in growing soft membranes (Vetter et al., 2013;
Rausch and Kuhl, 2014), which relies on ad hoc assumptions of the stress
components and deformation gradient. Another shell theory is proposed
based on the non-Euclidean geometry, where the deformation of samples is
determined by the intrinsic geometric properties attached to surfaces, such
as the first and second fundamental forms, and the applied growth fields
(Souhayl Sadik et al., 2016; Pezzulla et al., 2018). In Song and Dai (2016),
a consistent finite-strain shell theory has been proposed within the frame-
work of nonlinear elasticity, where the shell equation is derived from the 3D
formulation through a series-expansion and truncation approach. To apply
this theory for growth-induced deformations, Yu et al. (2022) incorporated

4



the growth effect through the decomposition of the deformation gradient and
derived the shell equation system for soft shell samples.

In the current paper, we aim to propose a general theoretical scheme for
shape-programming of thin hyperelastic shells through differential growth.
Following the shell theory proposed in Yu et al. (2022), the shell equation
system is established from the 3D governing system, where a series expan-
sion and truncation approach is adopted. To fulfill the purpose of shape-
programming, the shell equation system is tackled by assuming that all the
stress components vanish. Under this stress-free assumption, we first consider
a special case in which the parametric coordinate curves generate a net of
curvature lines on the target surface. By analyzing the sufficient condition to
ensure the vanishing of the stress components, the explicit expression of the
growth tensor is derived (i.e., the inverse problem is solved), which depends
on the intrinsic geometric properties of the target surface. In the general
case that the parametric coordinate curves cannot generate a net of curva-
ture lines on the target surface, we conduct the variable changes and derive
the total growth tensor by considering a two-step deformation of the shell
sample. Based on these results, a theoretical scheme for shape-programming
of thin hyperelastic shells through differential growth is formulated. The fea-
sibility and efficiency of this scheme are demonstrated by studying several
typical examples.

This paper is organized as follows. In section 2, the finite-strain shell
theory for modeling the growth behaviors of thin hyperelastic shells is intro-
duced. In section 3, the problem of shape programming is solved and the
theoretical scheme is proposed. In section 4, some typical examples are stud-
ied to show the efficiency of the theoretical scheme. Finally, some conclusions
are drawn. In the following notations, the Greek letters (α, β, γ...) run from
1 to 2, and the Latin letters (i, j, k...) run from 1 to 3. The repeated summa-
tion convention is employed and a comma preceding indices (·), represents
the differentiation.

2. The finite-strain shell theory

In this section, we first formulate the 3D governing system for modeling
the growth behavior of a thin hyperelastic shell. Then, through a series-
expansion and truncation approach, the finite-strain shell equation system of
growth will be established.
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2.1. Kinematics and the 3D governing system

We consider a thin homogeneous hyperelastic shell locating in the three-
dimensional (3D) Euclidean spaceR3. Within an orthonormal frame {O; e1, e2, e3},
the reference configuration of the shell occupies the region Kr = Sr × [0, 2h],
where the thickness parameter h is much smaller than the dimensions of the
base (bottom) surface Sr and its local radius of curvature. The position
vector of a material point in the reference configuration Kr is denoted by
X = X iei (cf. Fig. 1(a)). The geometric description of a shell has been
systematically reported in the literature (cf. Ciarlet, 2005; Steigmann, 2012;
Song and Dai, 2016), which is simply introduced below.

First, a curvilinear coordinate system {θα}α=1,2 is utilized to parametrize
the base surface Sr of the shell in the reference configuration, which yields
the parametric equation as

s(θα) =
{
X1(θα), X2(θα), X3(θα)

}
, (θα)α=1,2 ∈ Ωr. (1)

This parametric equation represents a continuous map from the region Ωr ⊂
R2 to the surface Sr ⊂ R3. At a generic point on Sr, the tangent vectors
along the coordinate curves are given by gα = s,α = ∂s/∂θα, which span the
tangent plane to the surface Sr at that point. The two vectors {gα}α=1,2

are also referred to as the covariant basis of the tangent plane. Another two
vectors {gα}α=1,2 on the tangent plane can be determined unambiguously
through the relations gα · gβ = δβα, which form the contravariant basis of
the tangent plane. Then, the unit normal vector of the surface Sr should be
defined by n = (g1∧g2)/ |g1 ∧ g2| (cf. Fig. 1(b)). By denoting g3 = g3 = n,
{gi}i=1,2,3 and {gi}i=1,2,3 constitute two sets of right-handed orthogonal bases
on the base surface Sr. The first and second fundamental forms of the surface
Sr can be written into

Ir = gαβdθ
αdθβ, IIr = bαβdθ

αdθβ, (2)

where gαβ = gα · gβ and bαβ = s,αβ · n are the fundamental quantities.
Conventionally, the fundamental quantities are also denoted by

Er = g11, Fr = g12 = g21, Gr = g22,

Lr = b11, Mr = b12 = b21, Nr = b22.
(3)

As shown in Fig.1(a), the position vector X of a material point in the
reference configuration Kr of the shell can be decomposed into

X = s(θα) + Zn(θα), 0 ≤ Z ≤ 2h, (4)
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Figure 1: Position vector in the reference configuration Kr: (a) reference configuration
of the shell and decomposition of the position vector X; (b) the curvilinear coordinate
system and the local covariant basis on the base surface Sr of the shell.

where Z is the coordinate of the point along the normal direction n. Accord-
ingly, the differential of X yields that

dX = ds+ Zdn+ ndZ = gαdθ
α + Zn,αdθ

α + ndZ. (5)

From the Weingarten equation(Chen, 2017), we have

dn = n,αdθ
α = (n,α ⊗ gα)gβdθ

β = −Kds, (6)

where K = −n,α ⊗ gα is the curvature tensor. The mean and Gaussian
curvatures of the surface Sr are given by

H =
1

2
tr (K) , K = Det (K) . (7)

By substituting (6) into (5), we obtain

dX = Uds+ ndZ = ĝαdθ
α + ndZ, (8)

where U = gα⊗gα−ZK and ĝα = Ugα. We further denote ĝα = U−Tgα, then
{ĝα}α=1,2 and {ĝα}α=1,2 form the covariant and contravariant base vectors at
an arbitrary point in the shell, which are also orthogonal to n. Notice that
the thickness of the shell is much smaller than the radius of curvature of Sr;
thus, U should be an invertible tensor. From (8), the area element on the
base surface and the volume element in the shell can be written into

dA = |g1 ∧ g2| dθ1dθ2 =
√
g11g22 − g212 dθ1dθ2,

dV = Det(U)dAdZ =
(
1− 2HZ +KZ2

)
dAdZ.

(9)
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Regarding area element on the lateral surface da, the local differential follows
(8) that

Nda = (Uτ )× n dsdZ, (10)

where N is the outward normal unit vector of the lateral surface, and τ is
the unit tangent vector along the edge curve ∂Sr of the base surface, and s is
the arc-length variable on the edge curve ∂Sr of the base surface. The norm
of vector (Uτ )× n is denoted by

√
gτ such that da =

√
gτdsdZ.

Due to the growth effect and the external loads, the configuration of the
shell will deform from Kr to the current configuration Kt in R3. Within the
orthonormal frame {O; e1, e2, e3}, the position vector of a material point in
Kt is denoted by x(θα, Z) = xi(θα, Z)ei. The deformation gradient tensor F
can then be calculated through

F = x,α ⊗ ĝα +
∂x

∂Z
⊗ n = (∇x)U−1 +

∂x

∂Z
⊗ n, (11)

where ∇ is the in-plane 2-D gradient on the base surface Sr (∇x = x,α⊗gα).
Following the basic assumption of growth mechanics (Kondaurov and

Nikitin, 1987; Rodriguez et al., 1994; Ben Amar and Goriely, 2005; Groh,
2022; Dortdivanlioglu et al., 2017; Mehta et al., 2021), the deformation gra-
dient tensor F is decomposed into

F = AG, (12)

where A is the elastic strain tensor and G is the growth tensor. It is known
that the rate of growth is relatively slow compared with the elastic response
of the material, thus the distribution of the growth tensor G in the shell is
assumed to be given and does not change.

As the elastic deformations of soft materials (e.g., soft biological tissues,
polymeric gels) are generally isochoric, we adopt the following constraint
equation

R(F,G) = JGR0(A) = JG (Det(A)− 1) = 0, (13)

where JG = Det(G). Furthermore, we suppose the material has an elastic
strain-energy function

ϕ(F,G) = JGϕ0(A) = JGϕ0(FG−1). (14)

Then, the nominal stress tensor S can be calculated through the constitutive
equation

S =
∂ϕ

∂F
− p

∂R

∂F
= JGG−1

(
∂ϕ0(A)
∂A

− p
∂R0(A)
∂A

)
, (15)
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where p(θα, Z) is the Lagrange multiplier associated with the constraint (13).
During the growing process, the hyperelastic shell satisfies the following

mechanical equilibrium equation

Div S = (S,α)
T ĝα +

(
∂S
∂Z

)T

n = 0, in Sr × [0, 2h]. (16)

We suppose that the bottom and top surfaces of the shell are subjected to
the applied traction q±, which yields the boundary conditions

STn|Z=0 = −q−, STn|Z=2h = q+, on Sr. (17)

On the lateral surface ∂Sr × [0, 2h] of the shell, we suppose the applied
traction is q(s, Z), where s is the arc-length variable of boundary curve ∂Sr.
So, we also have the boundary condition

STN = q(s, Z) on ∂Sr × [0, 2h]. (18)

Eqs. (13) and (16) together with the boundary conditions (17) and (18)
constitute the 3D governing system of the shell model, which contains the
unknowns {x, p}.

2.2. Shell equation system
Starting from the 3D governing system of the shell model, the shell equa-

tion system can be derived through a series-expansion and a truncation ap-
proach. This approach has been proposed in Dai and Song (2014); Song and
Dai (2016); Wang et al. (2016) for developing the consistent finite-strain plate
and shell theories without the growth effect. In Wang et al. (2018); Yu et al.
(2022), the finite-strain plate and shell theories of growth have also been es-
tablished through this approach. For the sake of completeness of the current
paper, the key steps of this approach to derive the shell equation system are
introduced below (see Yu et al. (2022) for a comprehensive introduction). It
should be noted that the derived shell equation system can attain the ac-
curacy of O(h2). However, to fulfill the requirements of shape-programming
in the following sections, we only need to present the shell equation to the
asymptotic order of O(h).

To eliminate the thickness variable Z from the 3D governing system, we
first conduct the series expansions of the unknowns as follows

x(θα, Z) =
2∑

n=0

x(n)

n!
Zn +O

(
Z3
)
, p(θα, Z) =

2∑
n=0

p(n)

n!
Zn +O

(
Z3
)
,

(19)
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where (·)(n) = ∂n(·)/ ∂Zn|Z=0. According to (19), the deformation gradient
tensor F, the elastic strain tensor A and the nominal stress tensor S can also
be expanded as

F = F(0) + ZF(1) +O(Z2),

A = A(0) + ZA(1) +O(Z2),

S = S(0) + ZS(1) +O(Z2).

(20)

Furthermore, we denote

G = G(0) + ZG(1) +O(Z2),

G−1 = Ḡ(0) + ZḠ(1) +O(Z2),

JGG−1 = Ĝ(0) + ZĜ(1) +O(Z2).

(21)

Once the growth tensor G is given, Ḡ(n) and Ĝ(n) (n = 0, 1) can be calculated
directly.

By using the kinematic relations (11) and (12), the concrete expressions
of F(n) and A(n) (n = 0, 1) in terms of x(n) (n = 0, 1, 2) can be derived.
Further from the constitutive equation (15), we obtain

S(0) = Ĝ(0)
(
A(0) − p(0)R(0)

)
,

S(1) = Ĝ(0)
(
A(1) : A(1) − p(0)R(1) : A(1) − p(1)R(0)

)
+ Ĝ(1)

(
A(0) − p(0)R(0)

)
,

(22)
where A(n) = ∂n+1ϕ0/∂An+1|A=A(0) and R(n) = ∂n+1R0/∂An+1|A=A(0) (n =
0, 1).

We substitute (19) and (20) into the constraint equation (13) and the
mechanical equilibrium equation (16). The coefficients of Zn (n = 0, 1) in
these equations should be zero, which yield that

Det
(
A(0)

)
− 1 = 0, R(0) : A(1) = 0, (23)

and
∇ · S(0) +

(
S(1)
)T

n = 0,

∇ · S(1) +
(
S(2)
)T

n+KTgα · S(0)
,α = 0.

(24)

Further substituting (19) and (20) into the boundary conditions (17), another
two equations can be obtained(

S(0)
)T

n = −q−,(
S(0) + 2hS(1) + 2h2S(2)

)T
n = q+.

(25)
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Eqs. (23)2 and (24)1 constitute a linear system for x(2) and p(1). By solving
these two equations, we obtain (Yu et al., 2022)

x(2) = D−1
(
p(1)y − f

)
, p(1) =

y · D−1f − T

y · D−1y
, (26)

where

(D)ij =Det(G(0))
(
A(1) − p(0)R(1)

)
kilj

((
Ḡ(0)

)T
n
)
k

((
Ḡ(0)

)T
n
)
l
,

y =R(0)T Ĝ(0)Tn,

f =
[ (

A(1) − p(0)R(1)
)
:
[
F(0)Ḡ(1) +

(
x(1) ⊗∇+ x(0) ⊗K

)
Ḡ(0)

] ]T
Ĝ(0)Tn

+
(
A(0) − p(0)R(0)

)T Ĝ(1)Tn+∇ · S(0),

T =Det(G(0))R(0) :
[(
x(1) ⊗∇+ x(0) ⊗∇K

)
Ḡ(0) + F(0)Ḡ(1)

]
.

The expressions of x(1) and p(0) in terms of x(0) can be obtained by solving
the equations (23)1 and (25)1. However, as these two equations are non-
linear, the explicit expressions of x(1) and p(0) can only be presented when a
concrete form of the strain-energy function ϕ0(A) is given.

To incorporate the effect of curvature of the shell, the factor Det(U)|Z=2h =
1 − 4hH + 4h2K is multiplied onto (25)2 (Song and Dai, 2016). In the re-
mainder of this paper, we assume H ≤ O(1) and K ≤ O(1), to ensure
1 > |4hH| > |4h2K| such that the terms consisting h2H and h2K can be
dropped reasonably when the required order of equation is set as O(h). By
subtracting (25)1 from (25)2 and dividing it by 2h, the following equation is
obtained (where the terms of order higher than O(h) have been dropped)

(1− 4hH)
(
S(1)
)T

n+ h
(
S(2)
)T

n =
(1− 4hH)q+ + q−

2h
, on Sr. (27)

By virtue of the relations given in (24), (27) can be rewritten into 2D vector
shell equation

(1− 4hH)∇·S(0)+h
(
∇ · S(1) +KTgα · S(0)

,α

)
= −(1− 4hH)q+ + q−

2h
, on Sr.

(28)
which contains the unknown x(0)(θα). In fact, x(0)(θα) provides the para-
metric equation for the base surface S in the current configuration of the
shell.
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To establish a complete shell equation system, the boundary conditions
on the edge ∂Sr should also be proposed. Based on the boundary condition
(18) in the 3D governing system, the following edge boundary conditions can
be proposed

(
S(0) + hS(1)

)T
N =

∫ 2h

0

q(s, Z)dZ/(2h) = q̄,∫
∂Sr

∫ 2h

0

(
STN

)
∧ (x(s, Z)− x(s, h))

√
gτdZds

=

∫
∂Sr

∫ 2h

0

q(s, Z) ∧ (x(s, Z)− x(s, h))
√
gτdZds = m̄,

(29)

where q̄ and m̄ are the average traction and the bending moment (about the
middle surface Z = h) applied on the lateral surface of the shell. Eqs. (28)
and (29) constitute the shell equation system.

3. Shape-programming of the thin hyperelastic shell

The shell equation system (28)-(29) can be applied to study the growth-
induced deformations of the thin hyperelastic shell. For any given growth
tensor G and boundary conditions, once the shell equation system is solved,
the obtained solution x(0)(θα) represents the base surface S of the shell in
the current configuration Kt.

The objective of the current work is to solve an inverse problem. That is,
to ensure the shape of the base surface changes from Sr to a certain target
shape S, how to arrange the growth tensor (or growth functions) in the shell?
This problem is referred to as ‘shape-programming’ of thin hyperelastic shells
(Liu et al., 2016). For simplicity, we only consider the case that the surfaces
of the shell are traction-free, i.e., q± = q(s, Z) = 0 in (28) and (29).

It should be pointed out that we do not aim to control the whole 3D con-
figuration of the shell. As the shell equation system (28)-(29) is established
on the base surface (Z = 0) of the shell, we also focus on the base surface
in solving the problem of shape-programming. The initial and current con-
figurations of the base surface have the following parametric equations (as
shown in Fig.2):

Sr : s(θ
α) =

{
X1(θα), X2(θα), X3(θα)

}
, (θα) ∈ Ωr, (30)
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Figure 2: Illustration of the growth process and the mapping from parametric plane: (a)
the variables region Ωr on the parametric plane θ1θ2; (b) initial base surface Sr; (c) target
base surface S.
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and
S : x(0)(θα) =

{
x1(θα), x2(θα), x3(θα)

}
, (θα) ∈ Ωr. (31)

Eqs. (30) and (31) can be viewed as two continuous mappings from the 2D
region Ωr to Sr and S, respectively. By fixing one of the variables θ1 or
θ2, variation of the the other variable can generate the coordinate curves
on the surfaces. All of these curves constitute the parametric curves net on
Sr and S. It has been introduced that on the initial configuration Sr, the
tangent vectors along the coordinate curves are s,α = gα = ∂s/∂θα and unit
normal vector is n = (g1 ∧ g2)/ |g1 ∧ g2|. Similarly, on base surface S in
the current configuration, the tangent vectors along the coordinate curves
are x

(0)
,α = ∂x(0)/∂θα, and the unit normal vector is denoted by nt = (x

(0)
,1 ∧

x
(0)
,2 )/

∣∣∣x(0)
,1 ∧ x

(0)
,2

∣∣∣ (cf. Fig. 2). If Sr and S are regular surfaces, we always

have g1 ∧ g2 ̸= 0 and x
(0)
,1 ∧ x

(0)
,2 ̸= 0. Thus, the normal vector fields are

well-defined on Sr and S.
To facilitate the following derivations, we assume that the parametric

curves net generated by {θα} is an orthogonal net of curvature lines on Sr.
This assumption means that the tangent vectors g1 and g2 are perpendicular
to each other (i.e., g1 · g2 = 0) and they direct along the two principal
directions at any point on Sr. It is known that on a regular surface, such an
orthogonal net always exists in the neighbour region of a non-umbilic point
(Chen, 2017; Toponogov, 2006). Due to this assumption, some geometrical
quantities defined in section 2.1 can be simplified into

Fr = g12 = g21 = 0, Mr = b12 = b21 = 0,

K = −nα ⊗ gα = κ1g1 ⊗ g1 + κ2g2 ⊗ g2,

H =
1

2
(κ1 + κ2), K = κ1κ2,

U = I2 − ZK = (1− κ1Z)g1 ⊗ g1 + (1− κ2Z)g2 ⊗ g2,

(32)

where κ1 and κ2 are called the principal curvatures.
With the above preparations, we begin to solve the problem of shape-

programming of the thin hyperelastic shell. The major task is to reveal the
relations between the growth tensor (or growth functions) and the geomet-
rical properties of the target surface S. Generally, the solution of shape-
programming through differential growth may not be unique, i.e., the same
target shape of the shell may be generated from different growth fields (Wang
et al., 2019b). In this section, we focus on the case that the shell attains the
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stress-free state in the current configuration Kt, i.e., all the components in
S(0) and S(1) are zero. It is clear that in the stress-free condition, the shell
equation system (28) and (29) is satisfied automatically.

3.1. Growth tensor in a special case

To analyze the relations between the growth tensor (or growth functions)
and the geometrical properties of the target surface S, we first assume that
the coordinate curves of {θα} also generate a net of curvature lines on the
base surface S in the current configuration. In this special case, the following
specific form of the growth tensor will be adopted

G = G(0) + ZG(1),

G(0) =
λ
(0)
1√
Er

g1 ⊗ g1 +
λ
(0)
2√
Gr

g2 ⊗ g2 + n⊗ n,

G(1) =
λ
(1)
1√
Er

g1 ⊗ g1 +
λ
(1)
2√
Gr

g2 ⊗ g2,

(33)

where λ
(0)
1 , λ

(0)
2 , λ

(1)
1 and λ

(1)
2 are the growth functions to be determined. By

substituting (32) and (33) into the kinematic relations (11) and (12), the
following expression of the elastic strain tensor A = FG−1 can be obtained

A =

√
Er

(1− κ1Z)(λ
(0)
1 + Zλ

(1)
1 )

x,1 ⊗ g1 +

√
Gr

(1− κ2Z)(λ
(0)
2 + Zλ

(1)
2 )

x,2 ⊗ g2 +
∂x

∂Z
⊗ n,

(34)
The right Cauchy-Green strain tensor C = ATA is then given by

C =
x,1 · x,1

(1− κ1Z)2(λ
(0)
1 + Zλ

(1)
1 )2

ĝ1 ⊗ ĝ1 +
x,2 · x,2

(1− κ2Z)2(λ
(0)
2 + Zλ

(1)
2 )2

ĝ2 ⊗ ĝ2

+
x,1 · x,2

(1− κ1Z)(1− κ2Z)(λ
(0)
1 + Zλ

(1)
1 )(λ

(0)
2 + Zλ

(1)
2 )

(
ĝ1 ⊗ ĝ2 + ĝ2 ⊗ ĝ1

)
+

x,1 · x,Z

(1− κ1Z)(λ
(0)
1 + Zλ

(1)
1 )

(
n⊗ ĝ1 + ĝ1 ⊗ n

)
+

x,2 · x,Z

(1− κ2Z)(λ
(0)
2 + Zλ

(1)
2 )

(
n⊗ ĝ2 + ĝ2 ⊗ n

)
+ (x,Z · x,Z)n⊗ n,

(35)
where ĝ1 =

√
Erg

1 and ĝ2 =
√
Grg

2 are two unit vectors. By substituting
(19)1 into (35) and conducting the series expansion of C with respect to Z,
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we have the following coefficients of Z0 and Z1

C(0) =
x
(0)
,1 · x(0)

,1

λ
(0)
1

2 ĝ1 ⊗ ĝ1 +
x
(0)
,2 · x(0)

,2

λ
(0)
2

2 ĝ2 ⊗ ĝ2 +
(
x(1) · x(1)

)
n⊗ n

+
x
(0)
,1 · x(1)

λ
(0)
1

(
ĝ1 ⊗ n+ n⊗ ĝ1

)
+

x
(0)
,2 · x(1)

λ
(0)
2

(
ĝ2 ⊗ n+ n⊗ ĝ2

)
,

(36)

C(1) =
2

λ
(0)
1

2

[
x
(0)
,1 · x(1)

,1 +

(
κ1 −

λ
(1)
1

λ
(0)
1

)
x
(0)
,1 · x(0)

,1

]
ĝ1 ⊗ ĝ1

+
2

λ
(0)
2

2

[
x
(0)
,2 · x(1)

,2 +

(
κ2 −

λ
(1)
2

λ
(0)
2

)
x
(0)
,2 · x(0)

,2

]
ĝ2 ⊗ ĝ2 +

(
2x(1) · x(2)

)
n⊗ n

+
x
(0)
,2 · x(1)

,1 + x
(0)
,1 · x(1)

,2

λ
(0)
1 λ

(0)
2

(
ĝ1 ⊗ ĝ2 + ĝ2 ⊗ ĝ1

)
+

[
x
(1)
,1 · x(1) + x

(0)
,1 · x(2)

λ
(0)
1

+
x
(0)
,1 · x(1)

λ
(0)
1

(
κ1 −

λ
(1)
1

λ
(0)
1

)](
ĝ1 ⊗ n+ n⊗ ĝ1

)
+

[
x
(1)
,2 · x(1) + x

(0)
,2 · x(2)

λ
(0)
2

+
x
(0)
,2 · x(1)

λ
(0)
2

(
κ2 −

λ
(1)
2

λ
(0)
2

)](
ĝ2 ⊗ n+ n⊗ ĝ2

)
,

(37)
For isotropic incompressible hyperelastic material, it is known that the elastic
strain-energy function only depends on the two invariants I1 and I2 of C, i.e.,
ϕ0(A) = ϕ0(I1, I2). Based on this constitutive form of ϕ0, the nominal stress
tensor S given in (15) can be rewritten into

S = JGG−1

[
∂ϕ0

∂I1

∂I1
∂A

+
∂ϕ0

∂I2

∂I2
∂A

− pA−1

]
= JGG−1

[
2
∂ϕ0

∂I1
AT + 2

∂ϕ0

∂I2
(I1I− C)AT − pA−1

]
,

(38)

where the relations ∂I1/∂A = 2AT and ∂I2/∂A = 2(I1I − C)AT have been
used. We denote

A−1 = Ā(0) + ZĀ(1) +O(Z2),

C = C(0) + ZC(1) +O(Z2), I1 = I
(0)
1 + ZI

(1)
1 +O(Z2),

∂ϕ0

∂I1
= d

(0)
1 + Zd

(1)
1 +O(Z2),

∂ϕ0

∂I2
= d

(0)
2 + Zd

(1)
2 +O(Z2),

(39)
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Then, the following expressions of S(0) and S(1) can be derived from (38)

S(0) = Ĝ(0)
{
2
[
d
(0)
1 + d

(0)
2

(
I
(0)
1 I− C(0)

)] (
A(0)

)T − p(0)Ā(0)
}
,

S(1) = Ĝ(0)
{
2
[
d
(0)
1 + d

(0)
2

(
I
(0)
1 I− C(0)

)] (
A(1)

)T}
+ Ĝ(0)

{
2
[
d
(1)
1 + d

(1)
2

(
I
(0)
1 I− C(0)

)
+ d

(0)
2

(
I
(1)
1 I− C(1)

)] (
A(0)

)T}
+ Ĝ(0)

(
−p(0)Ā(1) − p(1)Ā(0)

)
.

(40)
To ensure S(0) and S(1) to be zero tensors, one sufficient condition is that

C(0) = I, C(1) = 0, p(0) = 2
(
d
(0)
1 + 2d

(0)
2

)
, p(1) = 2

(
d
(1)
1 + 2d

(1)
2

)
.

(41)

From (41)1 and (41)2, the growth functions {λ(0)
α } and {λ(1)

α } can be easily
determined. In fact, by substituting (36) into (41)1, we obtain

λ
(0)
1 =

√
E, λ

(0)
2 =

√
G, (42)

where E = x
(0)
,1 · x(0)

,1 and G = x
(0)
,2 · x(0)

,2 are two of the first fundamental
quantities of surface S. As we assume the coordinate curves of {θα} generate

a net of curvature lines on S, another first fundamental quantity F = x
(0)
,1 ·

x
(0)
,2 = 0. Further from the relation (41)1, we have

x
(0)
,1 · x(1) = 0, x

(0)
,2 · x(1) = 0, x(1) · x(1) = 1,

⇒ x(1) =
x
(0)
,1 ∧ x

(0)
,2∣∣∣x(0)

,1 ∧ x
(0)
,2

∣∣∣ = nt.
(43)

By substituting (42) and (43) into (37), then from (41)2, we obtain

λ
(1)
1 =

(
κ1 −

L

E

)√
E, λ

(1)
2 =

(
κ2 −

N

G

)√
G, (44)

where L = −x
(0)
,1 ·nt,1 and N = −x

(0)
,2 ·nt,2 are two of the second fundamental

quantities of surface S. Another second fundamental quantity M = −x
(0)
,1 ·

nt,2 = −x
(0)
,2 ·nt,1 = 0 due to the net of curvature lines on S. To ensure all the
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components of C(1) to be zero, we also need to set x(2) = 0. By substituting
(42) and (44) into (33), we obtain

G =

[
1 + Z

(
κ1 −

L

E

)]√
E

Er

g1 ⊗ g1

+

[
1 + Z

(
κ2 −

N

G

)]√
G

Gr

g2 ⊗ g2 + n⊗ n,

(45)

which is just the growth tensor that can result in the shape change of the
base surface of the shell from Sr to St in the special case (i.e., the coordinate
curves of {θα} generate a net of curvature lines on S).

The growth functions λ
(0)
1 and λ

(0)
2 given in (42) have the same expres-

sions as those obtained from the plate model (where the incompressible Neo-

Hookean material is taken into account) (Wang et al., 2022). In fact, λ
(0)
1

and λ
(0)
2 just represent the extension or shrinkage of the material along the

coordinate curves of {θα} on Sr. The growth functions λ
(1)
1 and λ

(1)
2 given in

(44) involve the principal curvatures κ1 and κ2 of Sr, which are different from
the results of the plate model (Wang et al., 2022). It should be noted that the
growth functions given in (42) and (44) are independent of the strain-energy
function ϕ0, which should be valid for different kinds of hyperelastic shells.
If the shell is made of incompressible Neo-Hookean material, the results (42)
and (44) can be derived through another approach, which is introduced in
Appendix A.

3.2. Growth tensor in general cases

The formulas (42) and (44) are derived based on the assumption that the
coordinate curves of variables {θα} constitute an orthogonal net of curvature
lines in the current configuration of the base surface S. Generally, this as-
sumption cannot be satisfied by the parametric equation x(0)(θα). To tackle
the problem in general cases, some further manipulations are required.

First, to generate a net of curvature lines on the surface S, we consider
the following change of variables

θ1 = θ1
(
η1, η2

)
, θ2 = θ2

(
η1, η2

)
, (46)

where θ1 (η1, η2) and θ2 (η1, η2) are supposed to be sufficient smooth and the
Jacobi determinant ∂(θ1, θ2)/∂(η1, η2) > 0. The transformation (46) defines
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Figure 3: Bijection between the region Ωr and Ω∗
r , and the decomposition of the growth

process: (a) the original region Ωr on the parametric plane θ1θ2; (b) the new region Ω∗
r

on the parametric plane η1η2; (c) the base surface Sr in the referential configuration Kr;
(d) the base surface Si on the intermediate configuration Ki; (e) the target base surface
S in the current configuration Kt.
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a bijection between the planar parametric region Ωr in the θ1θ2-plane and
the planar parametric region Ω∗

r in the η1η2-plane (cf. Fig. 3).
Through the change of variables, the surface S has a new parametric

equation x∗(η1, η2) = x(0) (θ1 (η1, η2) , θ2 (η1, η2)). The first-order derivatives
of x∗(η1, η2) are given by

x∗
,η1 = x∗

,θ1
∂θ1

∂η1
+ x∗

,θ2
∂θ2

∂η1
= A1

(
x∗
,θ1 cos ξ1 + x∗

,θ2 sin ξ1
)
,

x∗
,η2 = x∗

,θ1
∂θ1

∂η2
+ x∗

,θ2
∂θ2

∂η2
= A2

(
x∗
,θ1 cos ξ2 + x∗

,θ2 sin ξ2
)
,

(47)

where

A1 =

√(
∂θ1

∂η1

)2

+

(
∂θ2

∂η1

)2

, cos ξ1 =
1

A1

∂θ1

∂η1
, sin ξ1 =

1

A1

∂θ2

∂η1
,

A2 =

√(
∂θ1

∂η2

)2

+

(
∂θ2

∂η2

)2

, cos ξ2 =
1

A2

∂θ1

∂η2
, sin ξ2 =

1

A2

∂θ2

∂η2
.

(48)

To ensure that the new coordinate curves (i.e., the η1- and η2-curves on
S) constitute an orthogonal net of curvature lines, x∗,η1 and x∗,η2 should be
aligned with the principal directions at any point on S, which requires that
the following equation is satisfied (Chen, 2017; Toponogov, 2006)

(LF −ME) cos2 ξ + (LG−NE) cos ξ sin ξ + (MG−NF ) sin2 ξ = 0, (49)

where {E,F,G} and {L,M,N} are the first and second fundamental quanti-
ties of the surface S calculated from the original parametric equation x(0)(θα).
On the other hand, as the Jacobi determinant ∂(θ1, θ2)/∂(η1, η2) > 0, we have
the inverse Jacobi matrix(

∂η1

∂θ1
∂η2

∂θ1
∂η1

∂θ2
∂η2

∂θ2

)
=

(
∂θ1

∂η1
∂θ1

∂η2

∂θ2

∂η1
∂θ2

∂η2

)−1

. (50)

By virtue of (50), the differential forms dη1 and dη2 can be written into

dη1 =
∂η1

∂θ1
dθ1 +

∂η1

∂θ2
dθ2 = A∗

1

(
sin ξ2dθ

1 − cos ξ2dθ
2
)
,

dη2 =
∂η2

∂θ1
dθ1 +

∂η2

∂θ2
dθ2 = A∗

2

(
cos ξ1dθ

2 − sin ξ1dθ
1
)
,

(51)
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where

A∗
1 =

1

A1 (cos ξ1 sin ξ2 − sin ξ1 cos ξ2)
, A∗

2 =
1

A2 (cos ξ1 sin ξ2 − sin ξ1 cos ξ2)
.

(52)
To obtain the explicit expressions of the transformation between {θ1, θ2} and
{η1, η2}, one needs to find the integrating factors A∗

1 and A∗
2 such that the

differential forms dη1 and dη2 given in (51) are integrable. To our knowl-
edge, there are still no universal formulas that can be used to determine the
integrating factors for any differential forms (Chen, 2017). In some specific
cases, the integrating factors can be derived by adopting suitable techniques.
Once the integrating factors are obtained, the first integrals of the differential
forms (51) just provide the explicit expressions of η1(θ1, θ2) and η2(θ1, θ2).
Accordingly, the expressions of θ1(η1, η2) and θ2(η1, η2) are also obtained.

On the parametric variable region Ω∗
r in the η1η2-plane, we define a new

surface Si in R3, which has the following parametric equation

Si : s(ηα) =
{
X1(ηα), X2(ηα), X3(ηα)

}
, (ηα) ∈ Ω∗

r. (53)

Notice that Si and Sr have the same parametric equation, but they are
defined on the different parametric variable regions. In fact, Si and Sr should
be the different subregions contained in a larger surface. According to the
assumption on the parametric equation s(ηα), the coordinate curves of {ηα}
constitute a net of curvature lines on Si. By virtue of the variable change
η1(θ1, θ2) and η2(θ1, θ2), another parametric equation of surface Si can be
obtained as follow

Si : s∗(θα) = s(η1(θ1, θ2), η2(θ1, θ2)), (θα) ∈ Ωr, (54)

which is defined on the parametric variable region Ωr in the θ1θ2-plane. We
choose Si as the shape of the base surface of the shell in an intermediate
configuration Ki. The position vector X∗ of a material point in Ki is set to
be (cf. Eq. (4))

X∗ =s∗(θα) + Zn∗(θα),

=s(η1(θα), η2(θα)) + Zn(η1(θα), η2(θα)), (θα) ∈ Ωr, 0 ≤ Z ≤ 2h.
(55)

Based on the above results, we can write out the growth tensor that
produces the shape change of the base surface of the shell from Sr to S. As
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shown in Fig. 3, the whole deformation process is divided into two steps.
In the first step, we consider the deformation of the shell from the reference
configuration Kr to the intermediate configuration Ki (i.e., the shape change
of the base surface from Sr to Si ). Based on (54) and (55), it is known that
the corresponding deformation gradient tensor should be given by

F0 =(∇X∗)U−1 +
∂X∗

∂Z
⊗ n

=
∂η1

∂θ1
g1(η

α)⊗ g1(θα) +
1− κ1Z

1− κ2Z

∂η1

∂θ2
g1(η

α)⊗ g2(θα)

+
1− κ2Z

1− κ1Z

∂η2

∂θ1
g2(η

α)⊗ g1(θα) +
∂η2

∂θ2
g2(η

α)⊗ g2(θα) + n(ηα)⊗ n(θα),

(56)
In Eq. (56), the covariant base {g1,g2,n} is evaluated at the position s(ηα)
on Si and the contravariant base {g1,g2,n} is evaluated at the position s(θα)
on Sr. In the second step, we consider the deformation of the shell from the
intermediate configuration Ki to the current configuration Kt (i.e., the shape
change of the base surface from Si to St). As shown in Fig. 3, Si and St

possess the same parametric variable region Ω∗
r in the η1η2-plane. Besides

that, the coordinate curves of {ηα} constitute the net of curvature lines on
these two surfaces. Thus, the formulas (42) and (44) obtained in section 3.1
should be applicable in this case. The growth tensor that can induce the
shape change from Si to St is then given by

G1 =

[
1 + Z

(
κ∗
1 −

L

E

)]√
E

E∗g1(η
α)⊗ g1(ηα)

+

[
1 + Z

(
κ∗
2 −

N

G

)]√
G

G∗g2(η
α)⊗ g2(ηα) + n(ηα)⊗ n(ηα).

(57)

In Eq. (57), {E,G,L,N} are the fundamental quantities of surface S cal-
culated with the parametric equation x∗(ηα). {E∗, G∗} and {κ∗

1, κ
∗
2} are the

fundamental quantities and principal curvatures, respectively, of surface Si

calculated with the parametric equation s(ηα). It can be directly verified
that

G1F0 = QG, (58)

where Q is the rotation tensor

Q = g1(η
α)⊗ g1(θα) + g2(η

α)⊗ g2(θα) + n(ηα)⊗ n(θα), (59)
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and

G =

[
1 + Z

(
κ∗
1 −

L

E

)]√
E

E∗
∂η1

∂θ1
g1(θ

α)⊗ g1(θα)

+

[
1 + Z

(
κ∗
1 −

L

E

)]√
E

E∗

(
1− κ1Z

1− κ2Z

)
∂η1

∂θ2
g1(θ

α)⊗ g2(θα)

+

[
1 + Z

(
κ∗
2 −

N

G

)]√
G

G∗

(
1− κ2Z

1− κ1Z

)
∂η2

∂θ1
g2(θ

α)⊗ g1(θα)

+

[
1 + Z

(
κ∗
2 −

N

G

)]√
G

G∗
∂η2

∂θ2
g2(θ

α)⊗ g2(θα) + n(θα)⊗ n(θα).

(60)

Tensor G given in (60) is just the growth tensor that can result in the shape
change of the base surface of the shell from Sr to S in the general case, which
is consistent with the growth tensor obtained in (45) for the special case.

3.3. A theoretical scheme for shape-programming

Based on the above preparations, we propose a theoretical scheme for
shape-programming of a thin hyperelastic shell through differential growth.
The flowchart of this scheme is shown in Fig. 4, which contains the following
steps:

• With the given reference configuration Kr of the shell, we need to iden-
tify the parametric equation s(θα) for the initial shape of the base
surface Sr, which is defined on the region Ωr of the θ1θ2-plane. By us-
ing s(θα), the fundamental quantities {Er, Gr, Lr, Nr} and the principal
curvatures {κ1, κ2} of surface Sr can be calculated.

• We choose the target shape of the base surface S, which has the para-
metric equation x(0)(θα) defined on Ωr.

• The fundamental quantities {E,F,G} and {L,M,N} of surface S are
calculated by using the parametric equation x(0)(θα). In the case F = 0
andM = 0, it is known that the parametric curves net of {θα} is already
an orthogonal net of curvature lines (Chen, 2017). Then, the growth
tensor G can be obtained from Eq. (45).

• If both F and M are not equal to zero, we need to conduct the vari-
able change from {θα} to {ηα}, which yields a bijection from Ωr to a
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Figure 4: Flowchart of the theoretical scheme for shape-programming of a thin hyperelastic
shell through differential growth.
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new region Ω∗
r in the η1η2-plane. The explicit expressions of the vari-

able change should be calculated from the differential forms given in
(51), where the integrating factors A∗

1 and A∗
2 need to be determined

in advance.

• After the variable change, the surface S has a new parametric equation
x∗(ηα) defined on Ω∗

r. The coordinate curves of {ηα} constitute an
orthogonal net of curvature lines on S.

• By virtue of the variable change, an intermediate shape of the base
surface Si can be constructed, which has the parametric equation s(θα)
defined on Ωr and the parametric equation s∗(ηα) defined on Ω∗

r. The
associated geometrical quantities of Si are also calculated.

• Based on the above results, the growth tensor G is calculated from Eq.
(60), which results in the shape change of the base surface of the shell
from Sr to S.

• Finally, to check the correctness and accuracy of this scheme, the ob-
tained growth tensor (or growth functions) is incorporated in a finite
element analysis (we use Abaqus), and the growth-induced deformation
of the shell is simulated.

4. Examples

We demonstrate the feasibility and efficiency of the analytical framework
for shape-programming of thin hyperelastic shells through differential growth
proposed in Section 3 using some typical examples inspired by soft biological
tissues in nature.

For the purpose of illustration, the reference configuration Kr of the shell
is selected to be a cylindrical shell, which occupies the region [R0, R0+2h]×
[0,Θ0]× [0, l] within a cylindrical coordinate system in R3. The base face Sr

of the shell has the following parametric equation

s(θ1, θ2) = {R0 cos(θ
1), R0 sin(θ

1), θ2}, 0 ≤ θ1 ≤ Θ0, 0 ≤ θ2 ≤ l, (61)

where θ1 and θ2 are the parametric variables. It is clear that the coordinate
curves of θ1 and θ2 constitute a net of curvature lines on Sr. Besides that,
we denote Z = R − R0 (R0 ≤ R ≤ R0 + 2h) as the thickness variable of the
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shell. From the parametric equation (61), we obtain the following covariant
and contravariant base vectors on Sr

g1 = R0

[
− sin(θ1)e1 + cos(θ1)e2

]
, g1 =

g1

R2
0

,

g2 = g2 = e3, g3 = g3 = n = cos(θ1)e1 + sin(θ1)e2.
(62)

The geometrical quantities of surface Sr are given by

Er = R2
0, Gr = 1, Lr = −R0,

Nr = 0, κ1 = −1/R0, κ2 = 0.
(63)

4.1. Example without change of variables

In the first example, the target shape of the base surface S is selected to
be a surface of revolution, which has the following parametric equation

x(0)(θ1, θ2) = {u(θ2) cos(θ1), u(θ2) sin(θ1), v(θ2)}, 0 ≤ θ1 ≤ Θ0, 0 ≤ θ2 ≤ l,
(64)

where u(θ2) and v(θ2) are arbitrarily smooth functions. Notice that both Sr

and S have the parametric variable region Ωr = [0,Θ0]×[0, l]. Corresponding
to the parametric equation (64), the following first and second fundamental
quantities of surface S are obtained

E = u2, F = 0, G = u′2 + v′2,

L = − u2v′√
u2 (u′2 + v′2)

, M = 0, N =
u (v′u′′ − u′v′′)√
u2 (u′2 + v′2)

.
(65)

Since F = 0 and M = 0, it is known that the θ1- and θ2-coordinate curves
have already constituted an orthogonal net of curvature lines on S. There-
fore, the growth tensor in the shell should be set according to (45), which
contains the growth functions

λ
(0)
1 = |u|, λ

(0)
2 =

√
u′2 + v′2,

λ
(1)
1 = −|u|

R0

+
v′√

u′2 + v′2
, λ

(1)
2 =

u (u′v′′ − v′u′′)

|u|(u′2 + v′2)
.

(66)

For concreteness, we consider four kinds of revolution surfaces inspired by
biological tissues, i.e., the sweet melon, the morning glory, the trachea and
the apple. The parametric equations and the corresponding growth functions
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of these surfaces are listed in (67)-(70). To verify the accuracy of the obtained
growth functions, we also conduct numerical simulations by using the UMAT
subroutine in ABAQUS, where the constitutive relation of a compressible
neo-Hookean material is adopted. The Poisson’s ratio of the material is
chosen to ν = 0.4995 to capture the effect of elastic incompressibility. The
growth functions λ1 = λ

(0)
1 +Zλ

(1)
1 and λ2 = λ

(0)
2 +Zλ

(1)
2 are incorporated as

the state variables in UMAT, which change gradually from 1 to the target
functions as those given in (67)-(70). The initial cylindrical shell has the
dimensions R0 = 4, h = 0.01 and l = 4. The value of Θ0 is set to π or 2π
depending upon the case. The whole sample is meshed into 20160 C3D8IH
elements (8-node linear brick, hybrid, linear pressure, incompatible modes).

In Fig. 5, we show the numerical simulation results. It can be seen that
the grown states of the shells are in good agreement with the target shapes.
Thus, the correctness of the obtained growth functions can be verified. It
should be pointed out here that we only try to mimic the shapes of the differ-
ent biological tissues, but we do not aim to reveal the underlying mechanisms
responsible for the growth of the biological tissues.

• Sweet melon (0 ≤ θ1 ≤ π, 0 ≤ θ2 ≤ 4) :

x(0) = 4 cos(2θ1) cos

(
9

40
π(θ2 − 2)

)
,

y(0) = 4 sin(2θ1) cos

(
9

40
π(θ2 − 2)

)
,

z(0) = −4 cos

(
1

40
π(9θ2 + 2)

)
,

λ1 = 8 cos

(
9

40
π(θ2 − 2)

)
, λ2 =

9

40
π(Z + 4).

(67)

• Morning glory (0 ≤ θ1 ≤ π, 0 ≤ θ2 ≤ 4)
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(a)

(d)

(b)

(c)
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𝒮

Figure 5: Numerical simulation results on the growing processes of the shells with the
target surfaces and growth functions listed in (67)-(70): (a) the sweet melon; (b) the
morning glory; (c) the trachea; (d) the apple.
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

x(0) = −(1 + θ2) cos(2θ1),

y(0) = −(1 + θ2) sin(2θ1),

z(0) = 6− 1

8

(
7− 2θ2

)2
,

λ1 =
1

2
(θ2 + 1)

[
4− 4(2θ2 − 7)Z

(θ2 + 1)
√

4θ2 (θ2 − 7) + 53
− Z

]
,

λ2 =

√
θ2(θ2 − 7) +

53

4
− 4Z

4θ2 (θ2 − 7) + 53
.

(68)

• Trachea (0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤ 4)

x(0) =
1

5
cos θ1

[
20 + sin(2πθ2)

]
,

y(0) =
1

5
sin θ1

[
20 + sin(2πθ2)

]
,

z(0) = 2(2 + θ2),

λ1 = − 1

20
(Z − 4) sin(2πθ2) + 4 + Z

(
5
√
2√

π2 cos(4πθ2) + π2 + 50
− 1

)
,

λ2 =
1

5

√
2
√

π2 cos(4πθ2) + π2 + 50 +
20π2Z sin(2πθ2)

π2 cos(4πθ2) + π2 + 50
.

(69)

• Apple (0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤ 4)

x(0) = 8 cos θ1 cos2
(
πθ2

4

)
,

y(0) = 8 sin θ1 cos2
(
πθ2

4

)
,

z(0) = −6 sin

(
πθ2

2

)
,

λ1 =
−3

√
2Z cos

(
πθ2

2

)
√

5 cos(πθ2) + 13
− 2(Z − 4) cos2

(
πθ2

4

)
,

λ2 = π

[√
5 cos(πθ2) + 13√

2
− 6Z

5 cos(πθ2) + 13

]
.

(70)
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4.2. Example with change of variables

To further demonstrate the efficiency of the proposed theoretical scheme,
we study two more examples, in which the target shapes are chosen to be
the Cereus Forbesii Spiralis and the tendril of pumpkin.

For the case of Cereus Forbesii Spiralis, the parametric equation of the
target surface S is

x(0)(θ1, θ2) =

{
2θ1

π
sin(πθ2),

2θ1

π
cos(πθ2), θ2

}
, (71)

where the region of the parametric variable is chosen to be Ωr = [0, π] ×
[0, 4]. Corresponding to this parametric equation, one can obtain the first
and second fundamental quantities as follows

E = 4/π2, F = 0, G = 1 + 4θ1
2
,

L = 0, M = 2/
√

1 + 4θ12, N = 0.
(72)

As the quantity M ̸= 0, we need to conduct the change of variables from
(θ1, θ2) to (η1, η2). According to the procedure of variable change introduced
in section 3.2, we have

η1
(
θ1, θ2

)
=

arcsinh(2θ1)

π
+ θ2, η2

(
θ1, θ2

)
= −arcsinh(2θ1)

π
+ θ2. (73)

After the variable transformation, the original region Ωr in the θ1θ2- plane is
mapped into a new region Ω∗

r in the η1η2-plane, which is shown in Fig. 6(b).
On the region Ω∗

r, a new surface Si is defined as follows

Si : s
∗ = {R0 cos η

1, R0 sin η
1, η2}, ηα ∈ Ω∗

r. (74)

Notice that the cylindrical shell Sr defined by (61) and surface Si defined
by (74) have the same parametric equation, but their parametric variable
regions are different. As shown in Fig.(6)c, both Sr and Si can be viewed
as a subregion cutting from a large cylindrical surface with radius R0 = 4.
Also, the coordinate curves of {ηα} (i.e., the blue and red curves in Fig.6)
constitute the orthogonal nets of curvature lines on both Si and S. By
choosing Si as the base surface, we define an intermediate configuration Ki

according to (55), then the whole growth process can be divided into two
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Figure 6: Change of variables between {θ1, θ2} and {η1, η2}, and the decomposition of
the growth process for generating Cereus Forbesii Spiralis: (a) the original region Ωr on
the parametric plane θ1θ2; (b) the new region Ω∗

r on the parametric plane η1η2; (c) the
base surface Sr in the referential configuration Kr, the base surface Si in the intermediate
configuration Ki, and the target base surface S in the current configuration Kt; (d) the
simulated growing process for generating the Cereus Forbesii Spiralis configuration of the
shell.
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steps: Kr → Ki and from Ki → Kt. For the first step, according to (56) the
deformation gradient F0 is given by

F0 =
2

π
√
1 + 4θ12

g1(η
α)⊗ g1(θα) + (1 + Z/R0)g1(η

α)⊗ g2(θα)

− 2

π (Z/R0 + 1)
√

1 + 4θ12
g2(η

α)⊗ g1(θα) + g2(η
α)⊗ g2(θα) + n(ηα)⊗ n(θα).

(75)
For the second step, the growth tensor G1 on domain (η1, η2) is obtained
according to (57)

G1 =g1(η
α)⊗ g1(ηα)

[
1

8

√
cosh(π(η1 − η2)) + 1

−
Z
(
16π
√

cosh4
(
1
2
π(η1 − η2)

)
+ cosh2(π(η1 − η2)) + 2 cosh(π(η1 − η2)) + 1

)
32(cosh(π(η1 − η2)) + 1)3/2

]

+ g2(η
α)⊗ g2(ηα)

[1
2

√
cosh(π(η1 − η2)) + 1 +

2πZ
√
cosh4

(
1
2
π(η1 − η2)

)
(cosh(π(η1 − η2)) + 1)3/2

]
+ n(ηα)⊗ n(ηα).

(76)
Then the tensor G generating the shape change from Sr to S can be obtained
according to (60). To verify the correctness of these growth functions, we
simulate the growth process of Cereus Forbesii Spiralis in ABAQUS. The
setting of the numerical simulations is the same as that introduced in the
previous example. The numerical results of this case are shown in Fig. (6)d,
which shows that the final shape of the shell can fit the target shape quite
well.

For the case of pumpkin tendril, the parametric equation of the target
surface S is

x(0)(θ1, θ2) =

{
(cos θ1 + 2) cos

(
πθ2

2

)
, (cos θ1 + 2) sin

(
πθ2

2

)
, sin θ1 + θ2

}
,

(77)
where the region on the parametric plane is chosen to be Ωr = [0, 2π] ×
[0, 8]. Corresponding to this parametric equation, one can obtain the first
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and second fundamental quantities as follow

E = 1, F = cos θ1, G =
1

8

(
π2(8 cos(θ1) + cos(2θ1)) + 9π2 + 8

)
,

L =

√
2π(cos(θ1) + 2)√

8π2 cos(θ1) + (π2 − 4) cos(2θ1) + 9π2 + 4
,

M = −
√
2π sin2(θ1)√

8π2 cos(θ1) + (π2 − 4) cos(2θ1) + 9π2 + 4
,

N =
π3 cos(θ1)(cos(θ1) + 2)2

2
√
2
√

8π2 cos(θ1) + (π2 − 4) cos(2θ1) + 9π2 + 4
.

(78)

Note that the quantities F ̸= 0 and M ̸= 0, thus the change of variables from
(θ1, θ2) to (η1, η2) is required. As shown in Fig.7(b), the original region Ωr

is mapped into a new region Ω∗
r through the change of variables. Following

the same parametric equation, these two regions define surfaces Sr and Si

respectively, where Sr is a cylinder with radius R0 = 4 and length l = 8,
while Si is an irregular shaped subregion cut from a cylinder with radius
R0 = 4 as follow

Si : s
∗ = {R0 cos η

1, R0 sin η
1, η2}, ηα ∈ Ω∗

r. (79)

Also, the coordinate curves {ηα}(i.e., the blue and red curves in Fig.7) con-
stitute an orthogonal curvature net on both Si and S. By choosing Si as the
base surface, we define an intermediate configuration Ki. The whole shape
morphing process can be divided into two steps: from Kr to Ki described by
F0, and the from Ki to Kt induced by G1. However, the analytical explicit
expressions for integrating factors and (η1, η2) are difficult to obtain. There-
fore the tensor F0 and G1 are calculated numerically in this case, and then
the growth values are passed to the relating integration points on meshes in
ABAQUS. According to the numerical results of this case shown in Fig.(7)(d),
the final shapes fit the target shapes quite well.

5. Conclusions

The deformations of thin hyperelastic shells caused by differential growth
are investigated in this paper. To fulfil the goal of shape-programming of
thin hyperelastic shells, the following tasks have been accomplished: (i) a
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Figure 7: Change of variables between {θ1, θ2} and {η1, η2}, and the decomposition of
the growth process for generating tendril of pumpkin: (a) the original region Ωr in the
parametric plane θ1θ2; (b) the new region Ω∗

r in the parametric plane η1η2; (c) the base
surface Sr in the referential configuration Kr, the base surface Si on the intermediate
configuration Ki, and the target base surface S in the current configuration Kt; (d) the
simulated growing process for generating the tendril of pumpkin configuration of the shell.
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consistent finite-strain shell system of equations for growth-induced defor-
mations of general incompressible hyperelastic material was formulated; (ii)
the inverse problem is solved analytically under the stress-free condition, from
which the sufficient condition to ensure the validity of zero stress is derived,
and relations between growth functions and geometrical properties (i.e., the
first and second fundamental forms) of the target surface are revealed; (iii) a
theoretical scheme for shape-programming of thin hyperelastic shells through
differential growth was proposed; (iv) to verify the correctness and efficiency
of the scheme, some examples of biological tissues are simulated through the
user subroutine UMAT in ABAQUS.

Since the obtained explicit formulas for shape-programming have rela-
tively simple forms and are valid for general incompressible hyperelastic ma-
terial, they will be useful for design and manufacturing of intelligent soft
devices. Furthermore, the analytical results can provide significant insight
into the growth behaviors of some soft biological tissues in nature. Besides
the above advantages, it should be pointed out that the current work still
has some deficiencies that need to be tackled in future works. One short-
coming is that the analytical formulas for shape-programming are derived
only under the stress-free condition, which is not satisfied when the shells
are subjected to external loads or boundary restrictions. In addition, for
complicated 3D surfaces that have no explicit parametric equations, the the-
oretical scheme is not applicable. In that case, an efficient numerical scheme
for shape-programming of complicated surfaces needs to be proposed.

Supplementary material

Movie 1: Growth process of shape-programming cases. Video of the
growing processes of the six illustrative examples introduced in Fig. 5, 6
and 7 of the main text, which is available at https://github.com/Jeff97/
growth-deformation-of-shell
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Appendix A. Some results for incompressible Neo-Hookean ma-
terial

To obtain some concrete results on the unknowns (x(n) and p(n)), we
further assume that the shell is made of neo-Hookean material with the
following elastic strain-energy function

ϕ(F,G) = JGϕ0(A) = JGC0

[
tr(AAT )− 3

]
, (A.1)

where C0 is a material constant. From the elastic strain-energy function
ϕ(F,G), the nominal stress tensor S is given by

S = JGG−1
(
2C0AT − p(R,Z)A−1

)
. (A.2)

For simplicity, we assume the shell is under traction-free condition. By
taking series expansion on Z = 0 and through some truncation manipula-
tion, a closed linear system for {x(1),x(2), p(0), p(1)} is formulated by (23) and
(24)1, combining with the boundary conditions (25)1. Then the following
expressions of {x(1),x(2), p(0), p(1)} in terms of x(0) are solved

x(1) = Λ
xN

∆
, p(0) = 2C0

Λ2

∆
, (A.3)

x(2) =
1

∆5/2
xN

(
Λ2t9 +

∆2

Λ2
t8 −∆3/2t1

)
− 1

Λ2
a

+
1

∆3Λ3

[
x
(0)
,1

(
Λ4t5 −∆3λ

(0)
2 t7

)
+ x

(0)
,2

(
Λ4t4 −∆3λ

(0)
1 t6

)]
,

p(1) =2C0

(
1

Λ
√
∆
t8 −

2Λ

∆
t1 +

Λ3

∆5/2
t9

)
,

(A.4)

where

Λ = λ
(0)
1 λ

(0)
2 , xN = x

(0)
,1 × x

(0)
,2 , ∆ = xN · xN ,

Bαβ = gα · gβ,α, a =
(
λ
(0)
1

2
x
(0)
,2,2 + λ

(0)
2

2
x
(0)
,1,1

)
,

t1 = (κ1 + κ2) Λ− λ
(1)
1 λ

(0)
2 − λ

(0)
1 λ

(1)
2 ,

t2 = (B11 +B21) Λ, t3 = (B12 +B22) Λ,

t4 = Λ (∆,1F −∆,2E) + ∆ [E (2Λ,2 + t3)− F (2Λ,1 + t2)] ,

t5 = Λ (∆,2F −∆,1G) + ∆ [G (2Λ,1 + t2)− F (2Λ,2 + t3)] ,

t6 = λ
(0)
1,2Λ + λ

(0)
1

(
t3 − λ

(0)
2,2λ

(0)
1

)
, t7 = λ

(0)
2,1Λ + λ

(0)
2

(
t2 − λ

(0)
1,1λ

(0)
2

)
,

t8 =
(
λ
(0)2

1 N + λ
(0)2

2 L
)
, t9 = (EN − 2FM +GL) .
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The expressions of S(0) in terms of x(0) are obtained by substituting x(1)

and p(0) into (22)1

S(0) =2C0g1 ⊗

[
Λ3

∆2
(Fx

(0)
,2 −Gx

(0)
,1 ) +

λ
(0)
2

λ
(0)
1

x
(0)
,1

]

+ 2C0g2 ⊗

[
−Λ3

∆2
(Fx

(0)
,1 − Ex

(0)
,2 ) +

λ
(0)
1

λ
(0)
2

x
(0)
,2

]
.

(A.5)

Accordingly, expression of S(1) is also obtained, where x(2) and p(1) are kept
for brevity

S(1) =2C0g1 ⊗

[(−λ
(1)
1 λ

(0)
2 + λ

(0)
1 λ

(1)
2 + Λκ1

)
λ
(0)2

1

x
(0)
,1 − Λ2

∆
x
(0)
,2 × x(2)

+
Λ4

∆5/2

(
Nx

(0)
,1 −Mx

(0)
,2

)
+

λ
(0)
2 (∆Λ,1 − Λ∆,1)

∆2λ
(0)
1

xN

−
Λ
(
κ2Λ

2 + p(1)∆/(2C0)
)

∆2

(
Gx

(0)
,1 − Fx

(0)
,2

)
+

λ
(0)2

2

∆
xN,1

]

+ 2C0g2 ⊗

[(
λ
(1)
1 λ

(0)
2 − λ

(0)
1 λ

(1)
2 + Λκ2

)
λ
(0)2

2

x
(0)
,2 +

Λ2

∆
x
(0)
,1 × x(2)

− Λ4

Q5/2

(
Mx

(0)
,1 − Lx

(0)
,2

)
+

λ
(0)
1 (∆Λ,2 − Λ∆,2)

∆2λ
(0)
2

xN

+
Λ
(
κ1Λ

2 + p(1)∆/(2C0)
)

∆2

(
Fx

(0)
,1 − Ex

(0)
,2

)
+

λ
(0)2

1

∆
xN,2

]

+ 2C0n⊗

[(
−Λt1

∆
− p(1)/(2C0)

)
xN + Λx(2)

+
Λ2

∆3

[
(∆Λ,1 − Λ∆,1)

(
Gx

(0)
,1 − Fx

(0)
,2

)
− (∆Λ,2 − Λ∆,2)

(
Fx

(0)
,1 − Ex

(0)
,2

)]
+

Λ3

∆2

(
xN,2 × x

(0)
,1 − xN,1 × x

(0)
,2

)]
.

(A.6)
Note that S(1) is also in terms of x(0) with the use of (A.4).
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In order to fulfil the goal of shape-programming, growth functions {λ(0)
1 , λ

(1)
1 , λ

(0)
2 , λ

(1)
2 }

of an arbitrary target shape x(0) need to be determined from shell equation
system. Generally, the growth functions of a certain target shape may not
be unique. To facilitate derivation, we assume all the components S(0) and
S(1) in current configuration Kt are zero. It is clear that, under the stress-free
assumption, shell equation (28) and boundary conditions (29) are satisfied
automatically.

First, all components of S(0) in (A.5) are set to be zero
Λ3

∆2
(Fx

(0)
,2 −Gx

(0)
,1 ) +

λ
(0)
2

λ
(0)
1

x
(0)
,1 = 0,

−Λ3

∆2
(Fx

(0)
,1 − Ex

(0)
,2 ) +

λ
(0)
1

λ
(0)
2

x
(0)
,2 = 0.

(A.7)

For simplicity, we assume F = 0 in the current configuration, which means
the moving frame {x(0)

,1 ,x
(0)
,2 ,xN} are perpendicular to each other. Then the

equations (A.7) are simplified as

(
−G

Λ3

E2G2
+

λ
(0)
2

λ
(0)
1

)
x
(0)
,1 = 0,(

−E
Λ3

E2G2
+

λ
(0)
1

λ
(0)
2

)
x
(0)
,2 = 0,

(A.8)

where the relation ∆ = EG is used. Subsequently, growth functions λ
(0)
1 and

λ
(0)
2 are solved

λ
(0)
1 =

√
E, λ

(0)
2 =

√
G, (A.9)

where growth functions λ
(0)
1 and λ

(0)
2 just represent extension or shrinkage

along the coordinate curves {θα} on Sr.
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Second, we consider all components of S(1) in (A.6) are zero
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2 (∆Λ,1 − Λ∆,1)

∆2λ
(0)
1

xN

−
Λ
(
κ2Λ

2 + p(1)∆/(2C0)
)

∆2
Gx

(0)
,1 +

λ
(0)2

2

∆
xN,1 = 0,(

λ
(1)
1 λ

(0)
2 − λ

(0)
1 λ

(1)
2 + Λκ2

)
λ
(0)2

2

x
(0)
,2 +

Λ2

∆
x
(0)
,1 × x(2)

− Λ4

Q5/2

(
Mx

(0)
,1 − Lx

(0)
,2

)
+

λ
(0)
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(A.10)

With the use of (A.9) and ∆ = EG, (A.10)3 is automatically satisfied and
(A.10)1 and (A.10)2 have the following form−

(
EN +G

(
2L− E (2κ1 + κ2) + 2

√
Eλ

(1)
1

)
+ E

√
Gλ

(1)
2

)
x
(0)
,1 = MEx

(0)
,2 ,

−
(
2EN +G

(
L− E (κ1 + 2κ2) +

√
Eλ

(1)
1

)
+ 2E

√
Gλ

(1)
2

)
x
(0)
,2 = MEx

(0)
,1 .

(A.11)
To ensure the holds of Eqs. (A.11), we need to set M = 0, which together
with F = 0 assume that the coordinate curves {θα} formulate the orthogonal
net of curvature lines on the target surface St. Subsequently, the growth
functions λ

(1)
1 and λ

(1)
2 are solved

λ
(1)
1 =

(
κ1 −

L

E

)√
E, λ

(1)
2 =

(
κ2 −

N

G

)√
G. (A.12)
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It can be seen that the growth functions (A.9) and (A.12) are coincident
with the results obtained in Section 3.1. Compared with the plate sample
in Wang et al. (2022), a distinct feature of the current growth functions is
that, the effects of curvature κ1 and κ2 are taken into account. By solving
the problem of shape-programming of the Neo-Hookean shell, the relations
between growth functions and geometric properties of the base surface S are
also revealed.
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