
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards the Forensic Investigation on the Hadoop
Distributed File System using RAM analysis

Stuart Laing1, Robert Ludwiniak1, Brahim El Boudani2, Christos Chrysoulas1, George Ubakanma2, Nikolaos Pitropakis1
1 School of Computing, Engineering and the Build Environment, Edinburgh Napier University, Edinburgh, United Kingdom

{s.laing, r.ludwiniak, c.chrysoulas, n.pitropakis}@napier.ac.uk

2 School of Engineering, London South Bank University, London, United Kingdom
{elboudab, george.ubakanma}@lsbu.ac.uk

Abstract—The usage of cloud systems is at an all-time high,
and with more organizations reaching for Big Data the forensic
implications must be analyzed. The Hadoop Distributed File
System is widely used both as a cloud service and with
organizations implementing it themselves. This paper analyzes
the forensic viability of a RAM analysis method for Hadoop
based investigations and compared it against targeted process
data dumping through the Java heap information. The RAM
analysis has been done through string searching and the use of
the RAM analysis tool Volatility. This work found that RAM
analysis can be a valuable tool for discovering artefacts of
deleted resources from a Hadoop cluster but was unable to
discover further information such as the block to node mapping.
The targeted process analysis managed to provide some partial
information about deleted resources and also produce
important metadata on the current state of the file system.

Keywords—cloud systems, RAM Analysis, Java Heap
Analysis, Hadoop, HDFS, forensic analysis

I. INTRODUCTION

Cloud systems are being used more now than ever before,
everyday life now involves the use of these systems, social
media, government websites, work infrastructure. It’s all
stored in the cloud. A recent survey from Rackspace
Technology has shown that 51% of respondents had their
entire infrastructure in the cloud and 41% said they plan to
move more of their infrastructure into the cloud. With this
increased demand for compute and storage, it is predicted that
by 2025 the cloud will store half of all data [1].

In traditional storage systems, the file is saved in its
entirety on a disk partition which will be connected to a single
host. This is perfectly suited for personal computers and even
some professional use cases but cannot scale to the needs of
larger organisations. This is where distributed file systems
come in. Distributed file systems are installed across
hundreds, possibly thousands of individual nodes, these
collections of nodes are called clusters and instead of a file
being stored on one node the file is instead fragmented and
spread across the entire cluster and even duplicated to ensure
redundancy in case of failure. This fragmentation also allows
read speeds to increase since the file can be read from multiple
disks simultaneously which bypasses the typical disk read
bottle neck. One of the driving forces behind the popularity of
these systems is ”Big Data”. One of the difficulties in
designing systems for Big Data is that the structure of the data
itself can vary, these systems need to be able to store
databases, videos, spreadsheets, social media posts, and all of
these have to be stored in the same cluster.

This paper covers the distributed file system Hadoop.
Hadoop was created in 2006 by the Apache software
foundation, its name was taken from one of the creator’s

child’s toy elephants which became a symbol for the
technology [2, 11]. It was one of the first pieces of software
designed for Big Data and is still in use in industry today [3].
The design mantra of Hadoop was to bring processing to data
instead of data to processing. It utilises MapReduce, a parallel
programming model for writing distributed applications.
Hadoop uses the Hadoop Distributed File System (HDFS) and
exists as a layer on top of the hosts own file system which
means anyone with access to the host operating system can
view the file blocks by simply navigating to the correct
directory [2].

When it comes to forensics, some of the main benefits of
distributed file systems become issues. The first principal of
the ACPO Forensic guidelines states that no action should be
taken that changes data [4], this is implemented by imaging
shutdown (dead) hosts so as to preserve the data, images are
then taken to be analysed at a later date. This works fine for a
personal computer or phone but when applied to a Hadoop or
Ceph cluster quickly becomes impractical. A cluster may
contain petabytes of data which cannot be imaged in a
reasonable time frame. It is not possible to image dead systems
as when a node is taken off the network the system will
redistribute the file blocks that it contained. Disabling the
entire network would ensure the data changes as little as
possible but would incur heavy costs to the organisation.

As the use of these systems increase so do the attacks
against them [5], breaches against these systems can happen
and forensic investigators need to be able to gather as much
information as possible to assess what damage was done and
how to prevent attacks in the future. The investigators need to
be able to construct a timeline of events, identify what users
were involved, and track actions taken. Some attacks may
involve deleting files from the network, the investigator may
be able to recover these files using forensic techniques.

One of the larger issues with forensic analysis on
distributed file systems is acquisition [10]. Since files are
fragmented across the cluster acquiring specific files can
prove challenging, using the systems features to access the
files may change timestamps and access logs which should be
avoided so custom tools may be required that can search the
meta data of a node to discover the locations of file blocks.
There are legal issues that forensics can encounter, these
systems can be spread across multiple data centres and
possibly countries which means multiple jurisdictions must be
navigated. The nodes may hold the personal information of
third parties which privacy protections will restrict the
viewing of.

The aim of this work is to compare and evaluate two
different techniques for Hadoop investigations. The first
technique is the analysis of a RAM capture through methods

such as string searching. The second technique is the analysis
of heap memory in the Hadoop processes themselves. This is
going to be achieved through the design and implementation
of a forensic scenario on a virtual environment. The designed
scenario will be used to compare the two approaches.
Additionally, research will be conducted into the Hadoop
forensic artefacts and how they can be recovered, and what
other artefacts exist that contain useful forensic evidence.
Work will need to be undertaken to discover what effect the
configuration of these systems has on the viability of forensic
action.

The rest of the paper is structured as follows: Section II
provides a detailed literature review. Section III drive us
through the used for the experiments methodology, while
Section IV in detail describes the experiments and the analysis
of the results, and finally Section V concludes our work and
provide insight for future work.

II. LITERATURE REVIEW

Leimich et al. [6] lay out a forensic methodology for
Hadoop investigations in A RAM Triage Methodology for
Hadoop HDFS Forensics which utilises an initial RAM triage
before targeted node imaging. The proposed methodology
does not follow the traditional forensic stages linearly but
instead moves back and forth returning to previous stages
when needed. A forensic investigator following this
methodology would begin the process without yet knowing
the full extent of the investigation, time and resources would
need to be estimated to a greater extent than that of a
traditional investigation. They found that after deleting a file
from the cluster and then taking an image of RAM it can be
analyzed to discover which block IDs were removed.
Additionally, the paper identified a “magic number” that can
be used to identify the blocks in the memory image. The
experiment was undertaken on a Hadoop version 1 cluster and
the authors admit that there have been some changes between
versions 1 and 2, a similar experiment repeated on Hadoop
version 3 is likely to see significant differences in results.
After the RAM image was taken the authors analyze the dump
using basic string searches, no attempts into further memory
analysis were attempted which could prove fruitful if only to
limit the search space to the relevant processes. This paper is
focused on the creation of the forensic methodology and
doesn’t delve into detail on the analysis, this project hopes to
go further in the analysis and extract more information.

Gao and Li [7] put forward a three level mapping for
efficient file extraction in their paper A Forensic Method for
Efficient File Extraction in HDFS Based on Three-Level
Mapping. They state the importance of discovering the
mapping between files and nodes which can aid in the
extraction of files. An interesting conclusion that the results
show is that the larger the files the less blocks are likely to be
recovered, this makes sense since larger files have more
blocks, and each block only has a limited chance to be
recovered. The results of this project will need to be evaluated
not only on a per block basis but on a per file basis as well.
The experiment that is undertaken in the paper is done with
the 3L mapping previously established, the authors write:
”Without 3L mapping, it is difficult to overcome the problems
caused by the features of cloud and HDFS to implement file
extraction.” [7]. This is of specific relevance to the work in
this project, any analysis of RAM or processes must either
mitigate or solve this issue of mapping. Any proposed solution
must be evaluated with this in mind.

Sremack [8] wrote all about Hadoop investigations in his
book Big Data Forensics - Learning Hadoop Investigations,
the book was written about Hadoop version 2 but much of the
information is applicable to modern Hadoop. One of the
observations Sremack makes is that Big Data forensics is not
a replacement for traditional forensics, it exists to augment
traditional investigations for the target. One of the conclusions
Sremack makes is that metadata in Hadoop can be less
valuable than it would be in a more traditional investigation,
often metadata is changed or lost when the information passes
through Big Data systems and might not be able to be relied
upon. While the book is a great resource for technical
information about Hadoop and has very detailed information
on practical investigations, RAM analysis as a technique is
curiously lacking in the work. Very little information is stated
about what information is held in RAM and the possibility of
an investigation using RAM analysis is not considered [8].
The lack of coverage of RAM analysis as a strategy may point
to it not being practical in real investigations. More can be
found in [9,10, 11]. Our work hopes to cover this literature gap
and show if RAM analysis is a practical solution for
investigations.

Summarizing we can argue the following. Hadoop is a
commonly used distributed file system. Often it is deployed in
the cloud by a cloud service provider as PaaS, forensic
investigations on distributed systems can be a challenge which
is magnified when they are being hosted by a third party. The
traditional forensic strategy cannot be applied to cloud and
with more and more services being migrated to the cloud this
issue will only increase in scope.

Any solution proposed for cloud forensics need to take
into account these challenges and address them. Leimich, et
al. [6] showed that RAM forensics can be a possible solution
but does come with some drawbacks in the amount and
accuracy of its results. Gao and Li state the importance of
discovering the mapping between blocks and the DataNodes
that store them [7]. The following section discusses the
proposed solution to address each of these concerns.

III. METHODOLOGY

This section covers the planning and justifications for the
implementation. With the knowledge gained from the
literature review it was decided that there will be two separate
techniques used. The first approach is duplicating the work
that was done in A RAM triage methodology for Hadoop
HDFS forensics on the most recent version of Hadoop.
Alongside this work an additional approach will be done using
a targeted Java heap dump of the relevant processes
themselves. Both approaches will be done on both the master
node and a slave node to compare the two results.

A. Cluster Design

The cluster is designed with the aim of simulating a real
Hadoop cluster but on a smaller scale, the smaller scale is
necessary to complete this experiment with the limited
resources and time imposed upon it. Each host in the network
will be using a Linux distribution to allow Hadoop to run. The
cluster itself will not be done using physical machines but
rather simulated in a virtual environment, each host is a virtual
machine inside of VMWare which are networked together.

The cluster will be made up of one master node and three
slave nodes. Having three slave nodes allows for a file block
to maintain Hadoop’s default replication rate of three. The

master node in the cluster will be functioning as both the
NameNode and Secondary NameNode since the small size of
this cluster means that a Secondary NameNode is not required
for stability. It is a possibility that the existence of the
Secondary NameNode on the same machine as the NameNode
may alter the results of the RAM capture, this is an acceptable
risk as literature review shows that the information stored by
the Secondary NameNode is identical to the NameNode.

B. Gathering of Test Data & Creating a Forencic Event

To properly simulate the cluster it must be populated with
data. A real Hadoop cluster can have petabytes of data but for
the purposes of this project only a handful of large files will
be uploaded. With Hadoop’s block size of 128MB the test files
should be larger than this so that they are split into a number
of blocks. The raspberry PI operating system images are a
good solution here, the files are large enough to have a few
blocks under them but not so large that the minimal test cluster
will have issues storing and handling them. A number of
images will be used and uploaded to the file system inside
various directories and sub directories to further simulate a
real scenario.

After the data has been uploaded and moved into its final
state all the relevant data about the state of the file system will
be extracted and saved, this is so that during Section 4 the
results of the experiment can be measured against the real data
to evaluate accuracy and coverage. This data includes various
Hadoop commands that show the structure of the file system
with respect to DataNodes. In order to evaluate the proposed
forensic processes they must be put to use. In order to facilitate
this a forensic event must be executed on the cluster. This
forensic event will involve a user account accessing a host on
the network and deleting a number of files from HDFS. List
of steps which will be undertaken: a) Logs on to a DataNode
on the network through SSH, b) Deletes a number of files from
the file system with the additional flag of not saving them to
trash, and c) Disconnects from the system.

C. Extracting and Analysing the RAM Image and Heap
Dump

After the forensic event has been conducted then the RAM
will be captured. Two RAM dumps will be taken, one from
the master node and one from a slave node. They will be taken
using the tool AVML (Acquire Volatile Memory for Linux)
developed by Microsoft for capturing the RAM of Linux
hosts. Since each host is a VM running in VMWare it would
be possible to extract the RAM directly from VMWare, this
was decided against to keep the experiment closer to a real
scenario. It is vital that the RAM capture occur before the heap
dump is taken. The process of taking the heap dump will
change the contents of the system memory which should be
avoided when possible. After each dump is taken the file will
be transferred out of the host.

Each RAM capture will be analysed using the same steps.
The capture will first be analysed using Volatility, this will let
us extract information about environment variables and
process arguments. The second phase of analysis will be a
more primitive string search, by searching for strings in the
entire RAM dump we can be sure to not only find current data
in RAM but any data that has yet to be overwritten. Volatility
was chosen for the initial RAM analysis stage. Volatility is a
python-based tool for analysing RAM dumps in a variety of
formats and operating systems, it allows us to identify the
relevant processes in the dumps and extract forensic

information. Volatility is less useful when searching for
arbitrary data, in this case it makes more sense to search for
byte sequences using custom scripts. Volatility version 2 will
be used instead of the more up to date version 3 since the
support for Linux analysis is still limited in the newer version.

Hadoop’s processes are all Java based, Java supports
dumping the heap of a process into a standard format that can
be parsed. These heap dumps are primarily designed for
debugging and finding memory leaks but can be repurposed
as data dumps of all classes and instances of a Java process.
For dumping the heap of a Java process the command line tool
JCMD will be used. The tool allows for commands to be sent
to the JVM, one such command is for dumping the heap from
a process into a file. JCMD comes standard with installations
of Java so it can be assumed to exist on any host that Hadoop
is installed on.

Two heap dumps will be taken during the experiment. The
first heap dump is on the master node and of the NameNode
process, the second dump will be on a slave node and of the
DataNode process. As shown in Section 3.A the nodes will
have other processes running but these will not be dumped.
The Secondary NameNode process will not contain any
additional information that the NameNode does not have, and
the processes related to MapReduce are not being utilised in
the test cluster.

The heap dump file is in a standard format that can be
parsed for relevant information. The heap dump contains all
data stored in the heap, for the purposes of this work almost
all of it is useless. A script will be constructed that reads the
relevant data from the dump and outputs it into a standard
readable format. The extract script could extract the data
directly from the heap dump file but this would require parsing
the format of the file itself, Java already has a tool to solve this
problem called JHAT. JHAT reads a heap dump and launches
a web server that allows a user to navigate the data and find
what they need, it supports OQL (Object Query Language) for
complex queries. The extract script can instead be run against
the web server itself and remove the need for custom parsing.

IV. DESIGN AND IMPEMENTATION

This section covers the entire experiment process from the
creation of the cluster to the recording of results. Fig. 1 shows
each step that will be taken and the order.

Fig. 1. Flow chart of Experimental Steps

A. Creating the Cluster

As shown in Fig. 2 there are four nodes each running
sections of Hadoop. The cluster will be created within
VMWare with each node being a virtual machine, each node
will then be connected together in a network. Each node is
running Ubuntu Server 20.04.3 with 4GB of RAM, 16
processors, and 60GB of disk space. Hadoop communicates

between nodes using SSH, therefore each node needs to have
SSH configured to be both client and server. This is also
beneficial for ease of use to allow SSHing into the hosts
instead of using VMWares interface. Hadoop itself is written
and run using Java so each node has Java 1.8.0 342 installed,
this installation includes the JCMD tool that is used for the
heap dump too. This experiment is conducted on Hadoop
version 3.3.1. and then extracted under the directory
/opt/hadoop. Each node has the following directory structure
showed in the figure below, except that the master-node will
not contain the datanode directory and each datanode will not
contain the namenode directory.

Fig. 2. Topology and Processes of Each Node in the Cluster

After the files have been installed into the correct
directories Hadoop needs to be configured. Hadoop has a
number of configuration files. Special mention should be
made though to three configuration files: a)
/opt/hadoop/etc/hadoop/workers, that stores the list of
DataNodes and include the three hostnames of the slave nodes
and b) /etc/profile and /opt/Hadoop/etc/hadoop/Hadoop-
env.sh which configures the environment variables of
Hadoop, pointing it to directories and users for the running of
Hadoop.

TABLE I. TEST FILES TO BE UPLOADED TO HDFS

Once both the NameNode and DataNodes have been
configured the cluster can be initialised. Before the cluster can
be started each node must be formatted, this is where Hadoop
creates files and directories under the ones specified in Figure
9. The DataNodes are formatted when the cluster is started but
the NameNode must be formatted separately using the
command: hdfs namenode -format. Finally, the cluster can be
started. Hadoop includes a script that starts each component
individually and provides some useful feedback in case of
errors. To check that each node is configured correctly we can
check that all the Hadoop processes are running.

B. Upload the Test Data and Executing the Forensic Event

Four files were selected to be uploaded to HDFS, the files
cover a range of file sizes meaning the number of blocks they
are split up into will vary as well. Table I lists each of the test
files and the URL that they were obtained from.

The files will be in separate directories within HDFS
according to Fig. 3.

Fig. 3. Example of a figure caption

Hadoop offers a few different methods to upload files to
the cluster, after each of the directories are created the files
can be uploaded from any of the nodes. Now that the files are
uploaded to HDFS the metadata must be extracted to be used
in the evaluation. The fsck command helps here as well, with
additional arguments it can show the blocks and their
DataNode locations. The full output of the fsck command is
all that is needed to evaluate the success of the methods. There
are files such as the edits log and fsimage which could be
extracted for information but the excess information they
provide is of no use to this project and can be ignored. Now
that HDFS is in a ready state and the metadata extracted the
cluster is ready for the forensic event.

The two files that will be deleted are rockyou.txt and PI-
OS-64-Bit-Lite.img.xz. Hadoop has a trash feature for deleted
files, in this event the trash will be circumvented using an
additional argument in the delete command. The deletion
itself will be done from the datanode-3 host using the
hadoopuser account. Like how the initial upload was verified
using the fsck command the deletion can be verified in the
same way. The below listing shows the output after running
the fsck command verifying that the files rockyou.txt and PI-
OS-64-Bit-Lite.img.xz no longer exist on the file system.

C. Extracting RAM, Heap Dumps,their Analysis and
Discussion

datanode-1 has been chosen as the DataNode to extract
information from along with master-node. Using AVML and
JCMD the dumps can be extracted from the hosts for later
analysis. This is done immediately following the forensic
event in the previous section. Fig. 4 shows the identification
of the Hadoop processes along with the creation of RAM and
heap dumps for both nodes. After the files were created they
were downloaded from the VMs for the analysis in the next.

The Volatility analysis produced minimal results and their
interest to an investigator is limited, the second phase of the
analysis included string searching through the RAM capture
and extracting information. The manual analysis of the
captures found promising regex patterns that could be used to
find deleted information. The first pattern only recovers
information in the NameNodes RAM and the second pattern
only finds information in the DataNodes RAM, the patterns
do not work across nodes. Each pattern locates the area of
memory where the file or block information can be found. In

the NameNodes RAM the file name and path are found in
memory after the pattern. When searching through the entire
capture multiple entries appear for each file deleted, this is
likely due to Java’s memory management and can be ignored.

Fig. 4. Extraction of RAM and Heap dumps after the event

The RAM analysis was conducted through string searches
and the tool Volatility. The information produced by Volatility
was metadata about the cluster itself, the relevant data from
both RAM captures is formatted in Table II.

The heap analysis as stated previously was done using a
custom script, the output that this script creates is formatted as
JSON to allow easy reading and parsing. The DataNode object
stores information such as the UUID and hostname. Where
multiple objects were recovered such as blocks the
information is in a list with each element having further
information within. The nature of heap dumps mean that all
data held in the process can be extracted, decisions were made
about which data was important enough to output into the final
JSON file, the output files represent the most forensically
relevant information from each of the heap dumps. While the
RAM analysis was able to find evidence of the deleted
resources the only listed files and blocks in the heap dumps
were the non-deleted ones that remained on the system.

TABLE II. INFORMATION GATHERED USING VOLATILITY ON RAM
CAPTURES

The fsck command showed that the two files deleted
during the experiment were made up of the following blocks
(See Fig. 5).

Fig. 5. HDFS Blocks Making up the two Deleted Files

With this information the results can be put into context,
since these are the values that are expected to be found in the
analysis. In addition to finding the deleted resources the
analysis should show metadata about HDFS and the cluster.
Using this data, Table III can be constructed to display the
results. The Deleted Resource column covers both the files
and the underlying blocks. If evidence of the deleted resource
was able to be recovered with the technique, then the cell has
a yes. Each technique is measured separately, the RAM
analysis is split into the results from the NameNode and
DataNode, the same is done for the heap analysis.

TABLE III. INFORMATION GATHERED USING VOLATILITY ON RAM
CAPTURES

Table III demonstrates that the heap analysis was not able
to recover any information about the deleted files or blocks.
This is consistent with what was learned in the literature
review, when files are deleted in HDFS a message is sent to
all nodes that store the blocks instructing them to delete their
copies, when this happens the objects in Java will be allocated
for garbage collection and overwritten. RAM analysis can find
the remnants since it takes the entire memory but a heap dump
will only extract what Java has not deleted. Additionally as
expected the DataNodes have no concept of the HDFS files
that the blocks make up and therefore the information was not
found using either technique. Interestingly evidence of the
block IDs that were deleted was not able to be recovered from
the NameNodes RAM capture, despite that this information
must be sent to each DataNode.

Alongside the direct information about the deleted
resources there is other information such as the file paths or
mapping that an investigator would care about. The below
table shows the metadata about the resources and cluster and
the success of each technique in recovering that information.
Table IV is formatted in the same way to the previous table
with each technique being split into the node it was done on.
Table IV shows that for the metadata both RAM and heap
analysis are insufficient to recover the relevant information.
Some data such as the filepath for the blocks and files deleted
can be recovered. The filepath for the HDFS files is the path
inside HDFS while the filepath for the blocks is for the
underlying hosts operating system. The DataNode
information refers to values such as IP addresses, hostnames,
IDs etc. The RAM analysis on the NameNode was unable to
recover any DataNode information whereas the heap analysis
was able to extract multiple pieces of information about each
Node. For the DataNode both the RAM and the heap analysis

were only able to recover the information about the current
DataNode itself and not any other node in the cluster. A larger
cluster running various jobs may change this due to the larger
amount of cross node communication.

TABLE IV. METADATA RELATED TO CLUSTER AND FILE SYSTEM

While the entire filepath for each deleted blocks could be
recovered from the DataNodes RAM this information could
not be recovered from the heap. However, since the
information about non deleted blocks can be recovered it is
possible to deduce where in the file system the blocks would
have been stored by looking at the locations of the remaining
blocks. It is possible that by using the filepaths of the deleted
blocks an investigator could recover the block data itself and
reconstruct the file, the block IDs are sequential to when they
were created which allows the file to be constructed in the
correct order by looking at the IDs. Unfortunately, as the
number of blocks in a file increases the chance that all blocks
will be recovered on a single DataNode drops, meaning that
multiple nodes would need to be analysed.

Both results tables do not show the additional metadata
that was able to be extracted through the heap dump, while
this data is interesting it does not have the same forensic
potential as the other values and was chosen to not be
included. Four files were selected to be uploaded to HDFS,
the files cover a range of file sizes meaning the number of
blocks they are split up into will vary as well. Table 1 lists
each of the test files and the URL that they were obtained
from.

V. CONCLUSIONS

The aim of this work was to compare and evaluate two
different techniques for Hadoop investigations. The two
techniques that were compared were RAM analysis and Heap
analysis. The results from the RAM analysis showed it is
possible to recover the file names and paths from the
NameNode RAM with the use of a regex pattern. This pattern
recovered the file name and path for both files deleted in the
forensic event. In the DataNodes RAM with the use of another
regex pattern it was possible to find all deleted block IDs and

their location on the hosts file system. Both regex patterns
were run against the entire RAM capture to retrieve
information, with the use of the tool Volatility the specific
relevant processes can be analysed to show the environment
variables which provide metadata about the cluster. When the
Volatility tool was used on the NameNode and DataNode
information such as the Hadoop user and configuration
directories could be extracted.

The results from the Heap analysis even not the ones
expected are still interesting. They showed that even when the
heap dump is taken soon after resources have been deleted
from the system the relevant instances have already been
cleaned by Javas garbage collector. While the instances
related to the deleted resources cannot be extracted the
remaining files and blocks on the cluster can be extracted,
when paired with a historic image of the cluster the missing
files can be deduced. While the heap dump was far less
effective for recovering the deleted resources other
information like the clusters metadata was much greater.

It is clear from the results that while heap analysis is easier
and the results more confident it is far less effective in a
forensic investigation. With respect to cloud the RAM
approach requires less direct interaction with the host than the
Heap analysis. The host that is running the NameNode process
might not be accessible to the investigator if the system is
PaaS which means the CSP will need to be contacted, in this
case a RAM image of a host is a relatively simple procedure
whereas taking a heap dump requires multiple steps which
increases the chance for mistakes if done by a non-forensically
trained person.

Further research into this area could be done using a larger
cluster, the results seen might not scale when the number of
DataNodes exceeds the replication rate of the cluster.
Additionally the cluster could be more complex, this could
mean more files being stored, MapReduce jobs being run, and
various accounts using the cluster concurrent to the
experiment taking place. This work was done on a virtual
environment simulated using VMWare, this could be
improved. The same experiment could instead be ran on a real
cloud environment hosted by a CSP. Depending on the kind
of cloud environment chosen this may include communication
with the CSP itself. One shortcoming of the heap analysis is
that it requires commands to be run on the host itself, however
the Java processes heap exists in RAM. It should be possible
for the entire heap to be extracted not from a running system
but a RAM capture.

REFERENCES
[1] Rackspace. “New global rackspace technology survey, in association

with google cloud, underscores rapid pace of cloud adoption”.
https://www.rackspace.com/newsroom/new-global-rackspace-
technology-survey-association-google-cloud-underscores-rapid-pace
[Accessed March 2023].

[2] Apache Org. Apache hadoop 3.3.3 documentation.
https://hadoop.apache.org/docs/r3.3.3/ [Accessed March 2023].

[3] K.D. Foote. “A brief history of big data”.
https://www.dataversity.net/brief-history-big-data/ [Accessed March
2023].

[4] ACPO . “Acpo good practice guide for digital evidence”.
https://www.digital-detective.net/digital-forensics-
documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.p
df [Accessed March 2023].

[5] B. Thomas. Report shows cyber attacks on cl services have doubled.
https://www.bitsight.com/blog/report-shows-cyber-attacks-on-cloud-
services-have-doubled [Accessed March 2023].

[6] P. Leimich, J. Harrison, W.J. Buchanan. “A ram triage methodology
for hadoop hdfs forensics”. Digital Investigation, Volume 18, 2016,
Pages 96-109, ISSN 1742-2876,
https://doi.org/10.1016/j.diin.2016.07.003.

[7] Y. Gao, B. Li. “A forensic method for efficient file extraction in hdfs
based on three-level mapping”. Wuhan Univ. J. Nat. Sci. 22, 114–126
(2017). https://doi.org/10.1007/s11859-017-1224-7.

[8] J. Sremack. Big data forensics - learning hadoop investigations. Packt
Publishing. Retrieved from https://www.packtpub.com/product/big-
data-forensics-learning-hadoop-investigations/9781785288104

[9] R. Montasari and R. Hill, "Next-Generation Digital Forensics:
Challenges and Future Paradigms," 2019 IEEE 12th International
Conference on Global Security, Safety and Sustainability (ICGS3),
London, UK, 2019, pp. 205-212, doi: 10.1109/ICGS3.2019.8688020.

[10] A. Alenezi, H. Atlam, G. Wills. “Experts reviews of a cloud forensic
readiness framework for organizations”. Journal of Cloud Computing
Advances Systems and Applications, 8 , 14. doi: 10.1186/s13677-019-
0133-z

[11] M. Khader, A. Hadi, G. Al-Naymat. “Hdfs file operation fingerprints
for forensic investigations”. Digital Investigation, Volume 24, 2018,
Pages 50-61, ISSN 1742-2876,
https://doi.org/10.1016/j.diin.2017.11.004

