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Abstract. In complex manufacturing industries that are not fully auto-
mated and involve human workers it is important to identify deviations
from the planned production schedule and locate bottlenecks for im-
proved efficiency. This is not an easy task as it requires data on how work-
ers are actually performing the manufacturing activities. Ultra-wideband
(UWB) tags, which are sensors that track movement, can be used to col-
lect this data. Previous research has mostly focused on using these sen-
sors to detect faults and anomalies and to ensure worker safety. However,
this paper presents a method for using UWB data to discover process
models of manufacturing activities using process mining techniques. We
applied our method to a real assembly line with UWB data and found
deviations from the prescribed process steps and bottlenecks in the as-
sembly line, which indicated that the first assembly step can take twice
as much time compared to other steps.

Keywords: manufacturing process optimisation, industrial productiv-
ity, process mining, indoor positioning systems

1 Introduction

In many manufacturing industries where it is not economically feasible to im-
plement automated production lines human workers have to interact with con-
stantly changing environment, consequently deviations from the planned pro-
duction schedule are common. To improve efficiency, it’s important for manufac-
turers to identify and understand these deviations in order to find bottlenecks
in the manufacturing process. However, this can be a challenging task, as it re-
quires real-time data on how workers are actually performing the manufacturing
activities. By analysing this data, manufacturers can identify areas where the
process is deviating from the plan and take steps to improve efficiency.

Sensors on the shop floors are commonplace in the Industry 4.0 era. They
allow tracking of workers, materials, products, and machine states in real-time.
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The information they provide gives an opportunity to infer information about
a dynamically changing manufacturing state and performance, more accurately
than static models or general historical trends (that do not take into account
variations in the manufacturing processes). With the help of data science meth-
ods, sensor data can be exploited to predict and analyse manufacturing processes
within a purely data-driven approach [1].

In this paper, we demonstrate the potential for using localisation sensors
that track the positions of workers in a manufacturing environment to discover
data-driven process models of manufacturing activities and performance. The
derived process models can be used to identify how human workers deviate from
prescribed process steps and detect bottleneck manufacturing activities by pre-
dicting performance metrics such as mean duration of activities. Our method-
ology involves extracting event logs from worker localisation data and applying
process mining techniques to generate system models that can be used to analyse
a range of manufacturing performance measures. To demonstrate the applicabil-
ity of our approach, we use the real-world dataset provided in [2] that contains
the positions of 6 assembly workers in our case study. Our methodology iden-
tifies where and how the process deviates from the prescribed assembly steps
and their order, and which manufacturing activities are the bottlenecks in the
assembly line. Overall, our approach shows the potential for using data-driven
process models from worker localisation sensor data to improve the efficiency of
non-fully automated manufacturing systems.

The rest of the paper is organised as follows. Section 2 reviews the related
literature and highlights how our work differs from the existing studies. In Section
3, we present our data-driven approach, which we apply in a case study in Section
4. Lastly, Section 5 concludes the paper.

2 Literature Review

Performance tracking and identification of deviations and bottlenecks in man-
ufacturing have received significant attention from researchers because of their
relevance to improving productivity. Researchers have applied various methods
to detect bottlenecks and deviations in manufacturing processes. [3] applied the
“Turning Point” method to detect bottlenecks in a serial production line using
data on production line blockage, starvation probabilities and buffer content.
[4] also used this well-recognised method to non-serial production lines based
on time logs of stations which provide data on the status of stations. [5] ap-
plied Bayesian inference to analyse the probability of deviating from the sched-
uled target on production output with various production state data including
processing times, instances of production shortage/overage and availability of
buffers. Based on the data on machine states collected through a Manufactur-
ing Execution System, [6] proposed a data-drive prognostic algorithm using the
active-period bottleneck analysis theory. Machine learning methods such as neu-
ral networks are also used for this purpose [7]. All these studies use production
state data that can be more directly linked to manufacturing performance, such
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as the status of work stations, machines, or product flow. In contrast, our paper
proposes the use of worker movement data to derive performance measures and
identify deviations and bottlenecks in manufacturing processes.

Existing studies using localisation data in manufacturing environments have
focused on assessing the accuracy of different localisation technologies such as
comparing ultra-wideband (UWB) technology to motion capture technology [2]
or ultrasound technology [8], filtering techniques to reduce positioning error in
localisation data [9], and monitoring the safety of the work environment with the
addition of tracking workers’ breathing patterns [10] and with vibration sensors
to detect abnormality (e.g. falling of a heavy object) [11]. In this work, simi-
lar to [12], we focus on predicting performance of manufacturing activities from
localisation data. In [12], authors additionally incorporate the product informa-
tion in their analysis. Our data-driven approach on the other hand utilises only
localisation data on workers’ positions, without tracking products. This allows
us to discover process models without the need for additional tracking systems.

Process mining techniques have been widely applied in the manufacturing
industry for identifying process deviations and detecting bottlenecks, with man-
ufacturing being the third largest application domain for these techniques [13], as
demonstrated in previous studies [14,15]. Process mining applications in manu-
facturing typically rely on event logs of activities performed on specific products,
which are often generated using IT tracking systems. [14] uses an order status
tracking system to compose event logs on ordered products and the activities
performed on them. [15] relies on code readers placed on machines that auto-
matically scan product IDs and record a timestamp when they process them
in their event logs. However, in our approach, we extract event logs based on
worker localisation data without tracking products.

3 Methodology

Let us consider the manufacturing process of a product that consists of a number
of activities i = 1, 2, .., I performed in designated activity zones k = 1, 2, .., I on
a shop floor by a number of workers j = 1, 2, ..., J . We suppose that through a
localisation sensing technology, such as UWB tags, the position of each worker j
on the floor is tracked in real-time, showing the position in two dimensions (x, y)
according to a chosen reference point in the shop. Using the timestamped worker
position data supplied through sensors, we generate models of the manufacturing
process and its performance in a purely data-driven approach using process
mining techniques. The methodology for this is shown in Figure 1. The steps of
our methodology are discussed in the following subsections.

Position Data Synchronisation: The UWB tags take a new measurement
every 100 ms. However, the position data points taken from workers can be
asynchronous, and during some periods the data might be missing (e.g. signal
getting blocked because of the metal objects near the worker). To synchronise
the data of all workers, we select seconds as the unit of time period (t) because
we do not expect any significant change of worker position on the shop floor in
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Localisation
Sensors

Timestamp Worker 1 ... Worker 6
13:30:00:01 (3.2, 5.2) ......(5.3, 6.2)
13:30:00:02 .........................................

......................................................................

Synchronise
Data

Compose
Event Log

Activity Worker ID Start Time End Time
Activity 1 Worker 1 13:30:01 13:31:15
Activity 2 Worker 2 .......................................
..........................................................................................................

Process Mining
Activities
as Events

Process Mining
Worker IDs
as Events

Process Model,
Activity Performance

Process Model,
Worker Performance

Fig. 1: Methodology: From worker localisation data to manufacturing processes and
performance analysis

a second. When there are multiple position data points taken within the same
second from a worker, we take the average of those points as the position of the
worker in that second. Note that this averaging technique is also a smoothing
function over the measurement errors. On the other hand, when there are periods
during which no position data points are recorded for a worker, we fill the missing
position data with the last known position of the worker.

Composing Event Logs: To apply process mining techniques we need event
logs [13] that show what activities are performed by workers and when the
activities start and end. We extract an event log from the second-by-second
position dataset that we synchronised. In doing this, we assign activities to
workers based on their proximity to activity zones, and for how long they were
in a particular zone. To consider that a worker is performing a specific activity
based on his/her position, we need to take into account whether the time spent
in a particular zone is long enough. For example, if the time spent is very short,
and the worker is in zone k at second t and in some other zone at second t+1, this
could be because the worker is walking. More specifically, by using a parameter
τ > 0, we consider that worker j is performing activity i at some period t if the
position of the worker was in activity j’s zone at any period t

′
= t, t−1, . . . , t−τ .

Event logs in process mining are often accompanied with case IDs that relate to
specific jobs on which activities are performed [13]. In this paper, we consider
a manufacturing environment in which only workers are tracked, and not the
products. Nevertheless, by exploiting the fact that manufacturing tasks are often
repetitive in time, namely, by considering that the data generated from a work
shift would all relate to a product, which is the workflow of a shift, we can apply
process mining techniques.

Process Discovery and Performance Analysis with Process Min-
ing: There are various process model discovery algorithms such as Alpha Miner,
Heuristic Miner and Inductive Miner that can be applied to discover a process
model from an event log. As in [16], here, we choose to apply the Inductive
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Miner, which is an improvement on the Alpha and Heuristic algorithms. We use
the implementation in ProM 6.11 (https://www.promtools.org/). To derive a
process model of activities we first consider the activities as events. By compar-
ing the model mined from data to the supposed process model, we can identify
the deviations. Additionally, to derive insights into the dependencies between
workers and their performance, we then let the worker IDs be the activity la-
bels. The mined process models generated by Inductive Miner are annotated
with performance information such as waiting and sojourn times which provide
insights into bottleneck processes.

4 Case Study

We take the assembly line described in [2] that relates to the manufacturing of
tricycles by completing six activities with six workers. In Figure 2, we present the
supposed model of this process among activities where arrows between activities
represent the precedence relations. The supposed model assigns each activity
to a specific worker. From now on, we represent worker j as the worker who is
responsible for undertaking activity i = j.

Activity 1
Lower frame

Activity 3
Saddle and pedalboard

Activity 5
Front wheel axle

Activity 2
Axle

Activity 4
Rear wheel axle unit

Activity 6
Final assembly

Fig. 2: The assembly line activities for manufacturing tricycles

In this assembly line, the workers’ positions on the shop floor are tracked
through UWB and motion capture technologies during a three-hours long shift.
In our case study, we take into account the UWB data that provides positions in
two dimensions because the motion capture system provides fewer data points
(because it has been kept running for a shorter duration, around two hours).
The coordinates of the UWB positions are measured in meters by considering
the anchor position (0, 0) as the reference point in the shop.

We first synchronise this raw UWB data. Figure 3 shows the scatter plot of
the position data coming from one of the workers after synchronisation. For each
activity, there is a designated rectangular activity zone (this is called a rig in [2])
in the shop. In Figure 4, we show how we divide the shop floor into six activity
zones. This is in accordance with the rig locations and shapes as reported in [2].

https://www.promtools.org/
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We then compose an event log based on the positions of workers being inside
particular zones for some time by fixing τ to 60 seconds.

Fig. 3: Worker 1’s position data
(after synchronisation)

Activity 1 Activity 6

Activity 2

(3, 8)

(3, 1)

(3, 4)

(3, 6)

(6, 1)

(6, 8) (9, 8)

(9, 6)

(9, 4)

(9, 1)

Activity 5

Activity 3 Activity 4

Fig. 4: Locations of activity zones
on the shop floor

Before we apply process discovery algorithms, we explore the event log. Fig-
ure 5 shows the start times of the activity events performed by six workers. First
thing we remark is that there are deviations from the supposed process flow. In
particular, we note that worker 2 joins worker 1 for activity 1 during the early
stages of the shift. Also, we see that worker 4 sometimes takes on the responsi-
bility of activity 5, and worker 6 helps in activity 2 and 3. The reason for why
these workers deviate in this manner could be related to the fact that activities
assigned to workers 2, 4 and 6 are dependent on the outputs from earlier assem-
bly stages (see Figure 2), consequently, they cannot be commenced on their own.
Moreover, we note that some workers perform activities continuously through-
out the shift, worker 5 for instance. However, we see that usually the activities
performed by workers are clustered and that there are breaks to activities. The
reason for the breaks could be about the completion of the current product and
switching to another, as workers complete in total six tricycles during this shift.

4.1 Process Models of Activities and Workers

We apply the Inductive Miner on the event log with activities as event labels to
discover the process flow of work among activities in a work shift. The quality
of mined process models are often evaluated according to their fitness, precision,
simplicity and ability to generalize [13]. These quality dimensions are in line
with the objective of finding a balance between overfitting and underfitting that
any prediction model strives to achieve. The Inductive Miner can be tuned to
allow noise under a certain threshold, and by varying this parameter, models of
different fitness and complexity can be discovered from an event log. Specifically,
lower the noise threshold, higher the fitness will be. However, high fitness might
overfit to the data and can result in complex models that do not reveal important
patterns. Under a 30% noise threshold the mined model from our event log has
a high fitness of above 91%. However, the resulting model is highly complex, as
we present in Figure 6.

In this paper, we instead choose the process model mined under the 40%
noise threshold that resulted in much simpler and meaningful representation of
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Fig. 5: Timeline of the activities performed by the workers where points mark the
start time of the activities (Activity 1: circle, Activity 2: square, Activity 3: up-pointing
triangle, Activity 4: down-pointing triangle, Activity 5: diamond, Activity 6: pentagon)

Fig. 6: High-fitness but complex process model of activities with sojourn times

Fig. 7: Process model of activities with sojourn times
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the workflow, as illustrated in Figure 7. When the fitness threshold is set high,
the derived process model will include a large number of traces observed in the
data. This will result in the replication of a variety of patterns in the derived
models. When comparing the model in Figure 7 to the high-fitness model in
Figure 6, we can see that there are many possible paths among the activities
(from the start point to the exit point) in the model shown in Figure 6 that are
not possible to observe in the model shown in Figure 7. In both models, any
path starts with activity 3, but in the model in Figure 7, the second activity can
either be activity 1 or 5, while in the model in Figure 6 it can also be activity 2
or 6.

Numbers above the edges in our process model given in Figure 7 show the
frequencies, which are important to understand transitions between activities.
Note that not all paths are shown in the model representation. These ones are
omitted due to their insignificance. Note also that the model is annotated with
average sojourn times spent on activities, where the activities taking the longest
to process are coloured redder. According to this model, it seems that activity 1
is the bottleneck of the process, while activities 5 and 6 are performed quicker.
Specifically, we see that the sojourn time of activity 1 is more than twice of
activities 5 and 6. In terms of compliance, we see that the model discovered from
data mostly matches the features and precedence constraints of the supposed
process flow given in Figure 2. However, we observe deviations. For example,
according to the mined model, activity 5 is performed after activities 1 and 3,
while there is no such dependency indicated in the supposed model. Note that
the fact that worker 5 is busy with activity 3 during the early stages of the shift
(see Figure 5), instead of performing activity 5, could be the reason why we
observe this in the mined process model.

Fig. 8: Process model of workers with sojourn times

In Figure 8, we mine a process model from the event log by considering
worker IDs as event labels. We see that there are discrepancies among workers
with respect to how long their activities take in the shift. This could be because
the workloads of activities are not comparable. Specifically, we observe that
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workers 1, 2 and 6 work the longest to complete their activities, while activities
of worker 3 are much shorter. Note that this is evidenced in the data; in Figure
5 we can see how worker 3 finishes earlier than everyone else.

5 Conclusion and Discussion

This study demonstrates the potential for using localisation sensors that con-
tinuously track the positions of workers in a manufacturing environment to dis-
cover data-driven process models of manufacturing activities and performance
through process mining techniques. Our methodology involves extracting event
logs from worker localisation data (e.g. provided by ultra-wideband sensors),
applying process mining techniques to the event logs to discover data-driven
process models, and deriving manufacturing performance measures. We demon-
strate the effectiveness of our methodology by applying it to a real-world assem-
bly line with UWB-based worker localisation data. Our methodology identifies
deviations from prescribed assembly steps, as well as bottlenecks in the assembly
line. For example, we find that the first assembly step can take more than twice
as much time as the last two steps. Overall, our approach shows how data coming
from worker localisation sensors can be exploited to discover data-driven pro-
cess models of manufacturing activities, which then can be used to improve the
efficiency of manufacturing systems, which can be particularly valuable for com-
plex systems that are not fully automated. Given that process mining is mainly
applied for processes where orders/products are tracked [14,15], the success of
our methodology shows that these techniques can also be used when workers’
locations are tracked, without tracking orders/products. Our research provided
in this paper has some limitations. Our major limitation is on the size of the
dataset which we used in our case study. This dataset contains localisation sensor
data collected from six assembly workers during a three-hour long shift. However,
process models derived from data collected over a longer period may represent
the actual manufacturing process more accurately. The extended version of this
research will further benefit from the position data to inform and enhance the
manufacturing process through re-designing of the layout. Specifically, we will
use the position data to identify collaboration relationships between workers and
incorporate this to optimise the locations of the activity zones on the shop floor
that will minimise the distance travelled by workers.

Acknowledgments This work was supported by the Engineering and Phys-
ical Sciences Research Council, UK [grant number EP/V051113/1 -Productivity
and Sustainability Management in the Responsive Factory].
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