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Abstract. Monitoring and identification of defects during additive manufactur-

ing is mostly done by bespoke optical or acoustic measurement systems. These 

in-situ monitoring technologies are either intrusive or sensitive to noisy manu-

facturing environments. We propose a movement tracking-based in-situ monitor-

ing system for additive manufacturing, which is non-intrusive, less sensitive to 

environmental factors, and easier to operate and maintain. It evaluates the hy-

pothesis that extruder nozzle temperature can be predicted from printer head 

movement, since temperature and acceleration are correlated due to the printers 

control unit. Subsequently, this provides an indication of print quality as the ex-

truder temperature plays a vital role. We collected data from experiments using 

the MakerBot Replicator to examine the hypothesis. Results show that a Random 

Forest algorithm is more accurate in predicting the temperature variation using 

head acceleration and time lag temperature data as input parameters, and outper-

forms a k-Nearest Neighbors and a Vector Autoregression algorithm.  

Keywords: In-process monitoring, 3D Printer, Prediction Modelling, Machine 

Learning, Fault Detection.  

1 Introduction 

The Additive manufacturing (AM) process assists engineers in optimising designs by 

reducing material usage and enabling the use of metamaterials with unique microstruc-

tures and properties to develop robust and efficient parts. Although AM processes have 

matured in recent year, various processing defects, low repeatability and inconsistent 

product quality have slowed down their adoption in industry [1]. Since a failure in one 

layer can impact the integrity of the entire 3D print, it is vital to monitor in-situ to 

understand faults and rectify them immediately through a feedback loop during the 3D 

printing process. Processing-related defects can include cracks, delamination, distor-

tion, rough surface, lack of fusion, porosity, foreign inclusions, and process instability 

[2]. There are various factors that can lead to these defects such as printing material, 

product geometry, and process parameters. Fluctuations in process parameters influ-

ence the defect rate [3].   

To reduce defects, technologies for in-situ process defect monitoring supported by 

machine learning techniques have been developed for analysing and rectifying defects 
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in real-time AM processes [4]. Most of the proposed monitoring systems are optical or 

acoustic signal processing systems. However, these systems are either intrusive, i.e., 

require components to be embedded in the 3D printer, or sensitive to noisy manufac-

turing environments. In contrast to using optical technologies to identify parts defects 

by analysing print images, this research aims to utilise optical technology for in-situ 

monitoring based on print head movement tracking throughout the AM process. Feature 

recognition and movement extraction from a video stream was investigated along with 

machine learning techniques to predict the extruder nozzle temperature from printer 

head acceleration data.  

This article details the in-process monitoring technology development and the pre-

diction results. The layout of this paper is as follows: literature review on AM Process 

defect monitoring, research question and experimental method, experimental set-up, 

data processing and prediction results, discussion, conclusions, and future work.    

2 Literature Review on AM Process Defect Monitoring 

Table 1 summarizes techniques developed for AM process defect monitoring, focussing 

particularly on Extrusion-based AM. Two of the main in-process monitoring techniques 

proposed in the literature for Extrusion-based AM are acoustic- and optic-based. These 

technologies include the use of microphones, acoustic emission sensors, cameras, and 

Fiber Bragg Grating sensors. Machine-learning technologies utilise data collected from 

these monitoring systems to classify defective parts and identify printer failure states. 

Table 1. Techniques developed for Extrusion-based AM process defect monitoring 

Reference Process monitor-

ing equipment 

Purpose Applied machine learn-

ing techniques 

Wu et al. [5,6] Acoustic emis-

sion (AE) sensor 

Identify failure mode and ex-

truder state 

K-means clustering 

semi-Markov model 

Delli and 

Chang [7] 

Optical camera Classify good and defective 

parts 

Support Vector Ma-

chines (SVM) 

Wu et al. [8] Optical camera Detect malicious infill struc-

ture 

K-Nearest Neighbours 

(KNN), Random Forest 

(RF) 

Rao et al. [9] Thermocouples, 

accelerometers,   

video borescope 

Detection of process failures 

such as nozzle clog 

Bayesian Dirichlet pro-

cess, Neural Network 

(NN), SVM 

Liu et al. [10] Optical camera Identify overfill and underfill 

defects 

SVM 

Kim et al. [11] Accelerometer 

and AE sensor 

Identify healthy and faulty 

process states 

SVM 

Faes et al. [12]  2D laser scanner Assess geometrical error - 

Kousiatza and 

Karalekas [13] 

Fiber Bragg grat-

ing sensor 

Identify strain fields and 

temperature profiles 

- 
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The listed literature (Table 1) emphasized the importance of in-situ monitoring in 

AM. The accuracy of predicting defective parts and printer failure states is high across 

these published articles. Wu et al. [6] identified normal and abnormal machine states 

with the accuracy of 91.9 % by applying the hidden semi-Markov model (HSMM) in 

the acoustic emission time- and frequency-domain features. Wu et al. [8] showed that 

the Random Forest algorithm detects anomaly in printing infill patterns (seam, irregular 

polygon, circle, rectangle, and triangle infill) with 96.1 % accuracy using static camera 

images. Rao et al. [9] identified three process states (i.e., normal, abnormal operation 

due to insufficient extrusion, and failure to extrude due to nozzle clog) using accel-

erometers and an infrared temperature sensor. They applied a Bayesian Dirichlet Pro-

cess (DP) mixture model with the accuracy of 85 %. Liu et al. [10] identified overfill 

and under-fill defects with the accuracy of 80-90 % by applying Support Vector Ma-

chine (SVM) on images collected from a digital microscope. Kim et al. [11] recognized 

healthy and faulty process states with the accuracy of 87.5 % by applying SVM algo-

rithm on data collected from an accelerometer and an acoustic emission (AE) sensor.  

Although the reported accuracy of predicting defective parts and printer failure states 

is high, all these studies had attached measurement equipment onto the 3D printer. 

These equipment attachments may itself influence the printing performance, are sensi-

tive to the printing environment, and can be difficult to maintain for permanent use. 

Acoustic-based systems provide some benefits, such as being lightweight; less costly; 

providing a high temporal sampling rate (around 5 M samples per second); requiring 

less processing time than image processing and constituting a less intrusive approach 

for process monitoring. However, acoustic-based systems have the following limita-

tions: 

• The manufacturing factory environment is noisy, with various magnitudes of 

signals coming from multiple directions which makes it difficult to segregate 

acoustic signals from different sources. As observed in [6], the threshold param-

eter plays an essential role in the AE system to detect failures. Identifying 

thresholds in a noisy environment can be difficult.  

• The setting of the AE threshold and further parameters of these systems need to 

be continuously adjusted because the AE signals are influenced by distance to 

the sensor. In addition, multiple printing layers and changing part models can 

generate different AE signals that can be difficult to learn and adapt. 

• Robust one-to-one mapping from AE signatures to printing failures and printer 

state may be challenging, considering the significant overlap across failures and 

conditions.  

Further, some of the challenges observed with optical technologies are: 

• The accuracy of defect identification on the layers is greatly influenced by light-

ing conditions [7].  

• The process is intrusive and could lead to changes to the printer’s performance 

due to external attachment.  

The discussed limitations highlight a potential research gap in the area of developing 

non-intrusive technologies that measure important printing parameters to assists in de-

termining failure modes.  
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3 Research Question and Experimental Method 

This research project aims to develop a movement tracking-based in-situ monitoring 

system for additive manufacturing, which is non-intrusive, non-contact, less sensitive 

to environmental factors, and easy to operate and maintain. Movement tracking is use-

ful because extrusion temperature mainly depends on the properties of the filament and 

print speed [14]. Since filament takes time to melt, higher print speeds require higher 

extrusion temperatures. Based on whether the filament is being pulled through the ex-

truder faster or slower, the extrusion temperature needs to be changed accordingly for 

better print quality. The main research question addressed in this research is: 

• How well can printer extruder nozzle temperature be predicted using print 

head acceleration data by utilising machine learning techniques? 

The 3D printer head movement was extracted from a real-time video stream using a 

feature recognition algorithm and used to predict the extruder temperature. In addition 

to the video stream's acceleration data, we collected head movement acceleration data 

using an accelerometer for cross-validation. The temperature prediction efficiency was 

assessed by comparing results obtained from the accelerometer data to results obtained 

from the acceleration data extracted from the video stream. Three machine learning 

prediction algorithms were used: k-Nearest Neighbors, Vector Autoregression and 

Random Forest algorithm. These machine learning algorithms were chosen due to pre-

diction success shown in the discussed literature (Table 1). The study also investigates 

the effect of incorporating the temperature with a time lag of 0, 1, 5 and 10 seconds on 

the prediction. The subsequent sections detail the experimental set-up, conducted ex-

periments, and temperature prediction results. 

4  Experimental Set-up 

We attached acceleration and temperature sensors to a MakerBot Replicator extruder 

for cross-validation and mounted a video recorder externally above the print head (as 

shown in Figure 1a. In addition, a crosshair sticker was attached to the printer head to 

mark its exact position (Figure 1b). This sticker was tracked in the video stream using 

feature recognition and object-tracking software to compute the print head position, 

movement, and acceleration. In this work, we compared the accuracy and speed of 

seven tracking algorithms available in OpenCV [15]: Discriminative Correlation Filter 

(with Channel and Spatial Reliability) (CSRT); Kernelized Correlation Filters; 

BOOSTING Tracker; MIL Tracker; TLD Tracker; MedianFlow Tracker; and MOSSE 

Tracker. The CSRT algorithm was chosen for this particular use case based on the speed 

and accuracy of tracking coordinates.  

The extracted movement tracking coordinates were converted into acceleration data. 

An ADXL335 3-axis accelerometer was used to record print head acceleration at 1 kHz 

frequency. A Digilent Pmod TC1: K-Type thermocouple module with wire expansion 

module was used to measure temperature at 45 Hz (Figure 1c). Samsung OIS DUO 

camcorder was used to record video. The video was recorded with full HD 1920 x 1080 

pixels and 50 frames per second. We conducted three 3D printing experiments that 
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printed the same part in different sizes and printing positions (detailed in Table 2). The 

reason for setting up three experiments of the same part in different settings was to 

verify the variation in extruder temperature prediction based on print head movement. 

The comparison across the three experiments provides a measure of prediction robust-

ness. The data collected from temperature and acceleration sensors and movement co-

ordinates extracted from the video stream were used in the prediction approaches.   

 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. (a) Experimental set-up, (b) Print head movement tracking, (c) Thermocouple extruder 

nozzle attachment 

Table 2. 3D Print Description 

Print  

Experiment No 

Print Name Description 

1 Original A cylinder with a diameter of 30 mm and a depth of 10 

mm was printed at the centre bed location. 

2 Original Dis-

placed 

A cylinder with a diameter of 30 mm and a depth of 10 

mm was printed at a bed location offset by 60 mm to 

the x and 40 mm to the y dimensions from the centre. 

3 Original  

25% Shrunk and  

Displaced  

A cylinder shrunk in the size from the original shape by 

25% was printed in the displaced location (i.e., offset in 

the x and y dimensions by 60 mm and 40 mm, respec-

tively, from the centre). 

5 Data Processing and Prediction results 

We used sensor-based and video-tracking-based acceleration data from the experiments 

described above to predict extruder nozzle temperature. Sensor-based acceleration data 

provides acceleration of both, printer bed and head, in each of the three dimensions (x, 

y and z), whereas video-tracking-based data provides acceleration data in two dimen-

sions (x and y). The data from these sources was synchronised for a second-by-second 

prediction, which resolved the issues of varied data collection frequencies. For this pre-

diction, statistics (i.e., min, max, mean, variance) from input data from every second of 

each 3D print were generated and used as input features. With these statistics, we com-

posed four different data columns, tracking the state of each acceleration data source in 
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every second (e.g., the minimum of printer bed acceleration measurement taken in x 

dimension in second t). The resulting dataset was a multidimensional time series da-

taset. The mean extruder temperature was then selected as the predicted variable.  

To understand the effect that dynamic tracking of the printing status has on the pre-

diction quality, we added time-lagged variables which provide data from previous sec-

onds as additional features to the dataset. In other words, time lagging provides a short 

memory from which the prediction method can benefit. This short memory has been 

found useful in prediction across various domains. For example, Nan et al. [16] intro-

duced a three second lag to predict the energy consumption of an electric bus with a 

Long-short-memory neural network. We obtained prediction results with no time, one 

second, five seconds and ten seconds lagging, where the past data was introduced as 

input features in prediction. Note that depending on the length of this short memory, 

the total number of input features will vary and increase proportionally. For example, 

when predicting the mean extruder temperature in second t with p seconds time lag, we 

consider the measurement of the input feature tracking and the minimum of printer bed 

acceleration in x dimension in second t, and also consider its measurements taken in 

seconds t-1, …, t-p. 

First, the prediction results are presented considering both printer head acceleration 

data collected from the acceleration sensor and acceleration data extracted from the 

video stream. Then, the prediction results considering only the acceleration data ex-

tracted from the video stream are presented and discussed. Table 3 shows the prediction 

results with various time lags and considers a 2-fold, 5-fold and 10-fold cross-validation 

on each printing experiment. We used three different prediction methods: vector auto-

regression (VAR), random forest (RF) and k-nearest neighbour (kNN) algorithms. We 

implemented VAR in Python. In VAR, the predicted variable is represented as a linear 

function of past lags of itself and past lags of the other variables. 

So, representing the mean extruder temperature in second t with 𝑌𝑡, and the meas-

urement of acceleration-based input feature k in second t with 𝑋𝑡
𝑘, we have under p 

seconds time lag with I acceleration input features. 

𝑌𝑡 = ∑ 𝛽𝑛
𝑌𝑌𝑡−𝑛

𝑝

𝑛=1

+ ∑ ∑ 𝑋𝑡−𝑛
𝑘 𝛽𝑛

𝑘

𝑝

𝑛=0

𝐼

𝑘=1

 

With the part of the data used for training, whose size depends on the number of 

folds selected, VAR fits the coefficients of the input variables via solving 𝛽 =
(𝑋𝑇𝑋)−1(𝑋𝑇𝑌), where 𝑋 is the matrix containing all input variables (past values of the 

mean extruder temperature and the current and past values of acceleration-based input 

features) and 𝑋𝑇 is the transpose of this matrix. 

For implementing RF and kNN algorithms, we used the scikit-learn Python machine-

learning library. For kNN, we set its number of neighbours to 10, while keeping the 

other parameters in their default settings. Random Forest is an ensemble machine learn-

ing algorithm that takes input from multiple decision tree predictors. In our implemen-

tation of RF, we fixed its number of trees to 200, using mean squared error as the quality 

criterion for tree splits and setting the minimum number of samples required to split to 

two samples. 
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Table 3. Temperature Prediction Results (average 𝑅2 scores from cross-validations). 

  2-fold CV 5-fold CV 10-fold CV 

Exp. 

No 

Time 

Lag 

RF VAR kNN RF VAR kNN  RF VAR kNN 

1 0 0.93 0.55 0.61 0.93 0.53 0.61 0.93 0.53 0.63 

1 1 0.99 0.99 0.94 0.99 0.99 0.95 0.99 0.99 0.95 

1 5 0.99 0.99 0.95 0.99 0.99 0.95 0.99 0.99 0.96 

1 10 0.99 0.99 0.95 0.99 0.99 0.96 0.99 0.99 0.96 

2 0 0.75 0.10 0.46 0.79 0.12 0.52 0.10 0.78 0.51 

2 1 0.96 0.94 0.76 0.97 0.92 0.79 0.97 0.92 0.79 

2 5 0.96 0.93 0.77 0.97 0.96 0.79 0.97 0.95 0.79 

2 10 0.96 0.67 0.78 0.97 0.91 0.80 0.97 0.90 0.81 

3 0 0.68 -0.61 0.40 0.73 -0.57 0.42 0.75 -0.31 0.44 

3 1 0.97 0.96 0.74 0.97 0.97 0.78 0.97 0.97 0.78 

3 5 0.97 0.54 0.83 0.97 0.97 0.83 0.97 0.97 0.83 

3 10 0.97 0.32 0.84 0.97 0.90 0.85 0.97 0.92 0.85 

 

The temperature prediction results show that RF performs well and achieves signif-

icantly better results than VAR and kNN. Moreover, its accuracy is robust; it provides 

a high prediction quality across 2-fold, 5-fold and 10-fold cross-validations, all three 

experiment instances, and time lags. Examining the effect of time lagging reveals that 

not only RF but all prediction methods benefit from introducing features data from pre-

vious seconds. Nevertheless, we observed that with 10 seconds lagging that VAR can 

become unable to predict under the 2-fold cross-validation. Since the number of input 

features becomes very large with a very long-time lag, this might hinder the prediction 

ability of this method. In particular, when the number of training instances is small 

compared to the number of features, as with the 2-fold cross-validation, prediction mod-

els may not be trained well to predict accurately. In our case, VAR is sensitive to this. 

However, we must note that RF does not face this problem. The reason for this could 

be the feature selection ability of RF when it constructs its decision trees; unlike VAR, 

which is a regression method, RF does not have to include all features in its model. 

Figure 2 demonstrates the prediction accuracy using the RF algorithm.  

Although prediction accuracy is higher, we see that the print specifications impact 

the prediction methods' ability to predict the extruder temperature. With the original 

shape, RF can attain an 𝑅2 score up to 0.99; however, with the displaced shape experi-

ment, this drops to 0.97. Note that also for VAR and kNN, we observe a drop in the 

prediction accuracy in the second and third experiments compared to the first experi-

ment printing the original shape. The results indicate the print location and the specific 

shape printed by the 3D printer impact the ability to predict extruder temperature from 

its movement. Also, the results highlight that the time lag information play important 

role in prediction compared to validation folds, which leads to similar results across 

folds.  
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Fig. 2. Comparison results between predicted and actual temperature for experiment number 1 

with 5-fold validation and 5 seconds time lag using the RF algorithm.    

Table 4. Prediction Results without Sensor-based Acceleration Data (average 𝑅2 scores from 

cross-validations). 

Exp. 

No 

Time 

Lag 

2-fold CV 5-fold CV 10-fold CV 

RF VAR kNN RF VAR kNN RF VAR kNN 

1 0 0.33 <0 0.22 0.31 <0 0.21 0.32 <0 0.24 

1 1 0.99 0.99 0.96 0.99 0.99 0.96 0.99 0.99 0.97 

1 5 0.99 0.99 0.95 0.99 0.99 0.95 0.99 0.99 0.95 

1 10 0.99 0.99 0.93 0.99 0.99 0.93 0.99 0.99 0.93 

2 0 0.12 <0 0.10 0.13 <0 0.09 0.12 <0 0.09 

2 1 0.95 0.94 0.87 0.95 0.92 0.88 0.95 0.92 0.88 

2 5 0.96 0.87 0.81 0.96 0.94 0.82 0.96 0.93 0.82 

2 10 0.95 0.81 0.72 0.96 0.92 0.74 0.96 0.94 0.74 

3 0 0.26 <0 0.26 0.30 <0 0.29 0.30 <0 0.29 

3 1 0.96 0.96 0.86 0.96 0.97 0.87 0.96 0.97 0.87 

3 5 0.97 0.75 0.81 0.97 0.95 0.82 0.97 0.94 0.82 

3 10 0.97 0.75 0.76 0.97 0.83 0.79 0.97 0.88 0.79 

 

The acceleration data derived from video tracking has the potential to be used as 

standalone data for predictions, avoiding need for other sensor data. To investigate this 

in terms of the impact on the prediction quality concerning the extruder temperature, 

we calculate 𝑅2 scores from RF, VAR and kNN without the sensor-based acceleration 
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data features. Table 4 summarises the prediction results without sensor-based acceler-

ation data. Comparing these results to Table 3 shows that as long as there is time lagging 

and that past measurements are included as input features in the prediction, comparable 

results can be obtained without the sensor-based acceleration data. Comparing the three 

tested prediction algorithms to one another, as in Table 3, we find that RF provides the 

best quality predictions, and it is more robust. For example, VAR can give very poor 

predictions (with 𝑅2 scores below zero) when there is no time lagging, whereas with 

RF we can still obtain reasonable quality predictions. The result suggests that the ben-

efit of using a short memory with the available data can compensate for the potentially 

detrimental effects caused by not having sensor-based acceleration data. 

6 Discussion and Conclusion 

In contrast to the in-situ monitoring technologies proposed in the literature, this work  

presents a non-intrusive movement-tracking-based monitoring system for additive 

manufacturing. The proposed system extracts the print head position from a video 

stream, converts print head movement into acceleration data, and utilises machine 

learning algorithms to predict extruder nozzle temperature. The perceived advantages 

of this system are less sensitivity to environmental factors, ease of operation and 

maintenance, and not requiring specialised hardware. The prediction of extruder tem-

perature is chosen since it plays an important role in predicting print quality and process 

failures, such as nozzle clog [9], and is influenced by the print head movement [14]. 

The important results from extracting movement data from three experiments are: 

• The Random Forest algorithm could predict the extruder temperature well by 

only using the acceleration data derived from video tracking. The RF predic-

tion is well above 0.95 𝑅2 score for all three experiments conducted, with at 

least one second time lag temperature information as an input feature. 

• The RF prediction accuracy results are robust considering the high prediction 

quality across 2-fold, 5-fold and 10-fold cross-validations, all three experi-

ment instances, and time lags. 

Although the prediction results establish the viability of the proposed technology, 

the notable limitation observed is with the no time lag information. Therefore, the on-

going and future research to develop this technology further are: 

• Creating a process parameter and print defect knowledge base and regularly 

updating it as the printer ages could be a potential learning option for improv-

ing the prediction. 

• Since the extruder nozzle temperature prediction could lead to identify print-

ing process states and faults in printed parts [9], further experiments will be 

conducted by stimulating print failures and exploring the prediction of them 

along with failure reasoning abilities.  

• Ongoing prediction research involves improving the second-by-second to mil-

lisecond prediction, thereby improving the temporal and spatial resolutions to 

identify the defect locations more precisely. 
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• Develop a closed-loop control system to in-situ adjustment of correct temper-

ature or print head movement speed using printer Application Programming 

Interface (API) and controller such as a Proportional-Integral-Derivative 

(PID) controller.  

• Compare the effectiveness of the proposed system to other systems reported 

in the literature and explore possible other technologies, such as using pulse 

train data collected from the stepping motor for prediction. 
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