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Abstract

Data has proved to be the most valuable asset in a modern world of rapidly advan-
cing technologies. Companies are trying to maximise their profits by getting valuable
insights from collected data about people’s trends and behaviour which often can be
considered personal and sensitive. Additionally, sophisticated adversaries often tar-
get organisations aiming to exfiltrate sensitive data to sell it to third parties or ask for
ransom. Hence, the privacy assurance of the individual data producers is a matter of
great importance who rely on simply trusting that the services they use took all the
necessary countermeasures to protect them.

Distributed ledger technology and its variants can securely store data and preserve
its privacy with novel characteristics. Additionally, the concept of self-sovereign identity,
which gives the control back to the data subjects, is an expected future step once
these approaches mature further. Last but not least, big data analysis typically occurs
through machine learning techniques. However, the security of these techniques is
often questioned since adversaries aim to exploit them for their benefit.

The aspect of security, privacy and trust is highlighted throughout this thesis which
investigates several emerging technologies that aim to protect and analyse sensitive
data compared to already existing systems, tools and approaches in terms of security
guarantees and performance efficiency.

The contributions of this thesis derive to i) the presentation of a novel distributed
ledger infrastructure tailored to the domain name system, ii) the adaptation of this
infrastructure to a critical healthcare use case, iii) the development of a novel self-
sovereign identity healthcare scenario in which a data scientist analyses sensitive data
stored in the premises of three hospitals, through a privacy-preserving machine learning
approach, and iv) the thorough investigation of adversarial attacks that aim to exploit
machine learning intrusion detection systems by “tricking” them to misclassify carefully
crafted inputs such as malware identified as benign.

A significant finding is that the security and privacy of data are often neglected since
they do not directly impact people’s lives. It is common for the protection and confid-
entiality of systems, even of critical nature, to be an afterthought, which is considered
merely after malicious intents occur. Further, emerging sets of technologies, tools,
and approaches built with fundamental security and privacy principles, such as the
distributed ledger technology, should be favoured by existing systems that can adopt
them without significant changes and compromises. Additionally, it has been presented
that the decentralisation of machine learning algorithms through self-sovereign identity
technologies that provide novel end-to-end encrypted channels is possible without
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ABSTRACT

sacrificing the valuable utility of the original machine learning algorithms.
However, a matter of great importance is that alongside technological advance-

ments, adversaries are becoming more sophisticated in this area and are trying to
exploit the aforementioned machine learning approaches and other similar ones for
their benefit through various tools and approaches. Adversarial attacks pose a real
threat to any machine learning algorithm and artificial intelligence technique, and
their detection is challenging and often problematic. Hence, any security professional
operating in this domain should consider the impact of these attacks and the protection
countermeasures to combat or minimise them.
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; First Chapter <

Introduction

1.1 Introduction

Technology is advancing quickly, and there are continuously new inventions and emer-

ging technologies that aim to improve citizens’ quality of life and solve previously

unsolvable problems. However, the security of these systems is often neglected or is

not the priority, and this enables new routes for exploitation by adversaries. Since the

last century, every service has been digitalised, in some way; hence, the attack surface

that security engineers should guard has widened. Regarding cyber attacks, adversaries

typically have significant economic incentives for breaching the security of specific

systems and organisations, and as the technology advances, the tools, approaches,

and technologies that adversaries use, evolve as well [2]; hence, the available defences,

legislations and regulations should be ever-changing, too.

Privacy concerns attract more popularity over time. Europe had already taken care

of the privacy of the citizens to a certain point, from 1995 with the Data Protection

Directive (DPD) [3]. This legislation, aimed to facilitate cross-border data transfer and

required an absolute recognition of individual privacy rights. Further harmonisation

occurred under the General Data Protection Regulation (GDPR) [4]. GDPR implies there

is always a controller that can be held responsible for complying with a set of regulations

if personal data are processed. These regulations are: 1) the principle of lawfulness,

fairness and transparency, 2) the principle of purpose limitation, 3) the principle of data
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minimisation, 4) the principle of accuracy, 5) the principle of storage limitation, 6) the

principle of integrity and confidentiality, 7) the principle of accountability [4].

GDPR specifies that the processing of special, sensitive personal data and data

relating to criminal convictions and offences is forbidden outside specific regulated

circumstances or without explicit consent. Additionally, data controllers must be trans-

parent about the processing of personal data, including the purposes for which data

are processed. Individuals can apply their data subject rights, including the rights to

access data, request correction of incorrect data, erasure (the right to be forgotten),

data portability, dispute to and not be subjected to a decision based merely on auto-

mated processing, including through profiling. Big data companies that collect citizens’

personal data were acting uncontrollably in the altar of profit [3]. GDPR legislation reg-

ulates this kind of action and gives the opportunity on people to control their personal

data. This can be further enhanced by utilising blockchain technology. Except for the

ability it provides to citizens, to sell their data to companies, it also helps to protect their

privacy from devices they use daily. In addition to that, sometimes citizen’s views on

privacy change if they have some kind of profit, that directly impacts their lives [5].

1.2 Blockchain Technology

Blockchain is a technology became popular by Satoshi Nakamoto, which initially served

as the underlying technology for the cryptographic currency named Bitcoin [6]. The au-

thor established trust in a distributed system designed for finance transactions utilising

timestamps, digital signatures, and distributed storage among the participating peers

where no entity is allowed to arbitrarily tamper data [7]. However, there are techniques

and mechanisms which use the advantages of blockchain technology, complementary

to strictly finance applications, such as the immutability that leads to a tampered proof

ledger and the ease of auditing since stored information can be publicly available [8].

Blockchain technology may be perceived as the development of secure crypto-

graphic algorithm applications on modern decentralised databases. In specific, a

distributed ledger is a sequence of blocks containing a complete history of transaction
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records and a cryptographic hash value of the previous linked block. Additionally, the

very first block of the chain is called the genesis block [9].

As mentioned, a blockchain network is a distributed append-only timestamped peer-

to-peer (P2P) network, where non-trusted entities can securely interact with each while

eliminating the requirement of a central trusted jurisdiction [10]. The participating

entities, called nodes, verify each transaction. These nodes verify and validate both

the participating users and the produced transaction by successfully calculating the

corresponding hash value through adopting an authoritative consensus algorithm, in

order to generate a new transaction that would be included in a block of transactions

[11].

In a blockchain, the decentralised network of peers is capable of storing data in a

ledger where no participating party can arbitrarily change the data. All participants and

data are digitally signed to create a distributed trust relationship. Each peer keeps a

history of all the transactions, and each transaction must be approved by the majority

of the network, eradicating circumstances of tampered data [7]. Some variations of the

blockchain technology include a cryptocurrency, such as the Bitcoin and Ethereum [12],

to store transactions on the ledger. Some other technologies, such as the Hyperledger

Fabric, do not involve a cryptocurrency at all [13].

According to Wang et al. [9], a distributed ledger network handles the following

cryptographic mechanisms in order for the blockchain structure to operate successfully

while the identity of an associated user is preserved and the validation of the generated

transactions is continuously monitored:

• Asymmetric cryptography – A procedure also recognised as public-key crypto-

graphy, where a pair of cryptographic keys is operated in order to achieve proper

encryption and authentication

• Cryptographic hash function – A mathematical algorithm that is being used by

the computer software that produces a one-way value known as a hash which

protects the integrity of data
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The hashing functions such as SHA-256 that is currently deployed by blockchain

frameworks such as Bitcoin is capable of mapping an arbitrary-length data input to an

exclusive fixed-length binary output while eliminating the probability of hijacking the

generated output, in order to recover the original input, or produce the exact output

for two different inputs [9]. Therefore, hashing algorithms allow blockchain nodes to

create a digital digest of the transaction, known as a hash pointer, and append the hash

value to the original block, thus generating a digitally certified document [14].

In addition, an asymmetric cryptographic mechanism such as the Elliptic Curve

Digital Signature Algorithm (ECDSA) can be utilised to assure reliable encryption and

authentication. Specifically, in the work of [9], the authors address how the users

practice a private key, which remains hidden to the entire blockchain network, as a

digital signature function, to provide a fixed-length string for any random-length input,

whereas a widely acknowledged key is associated with a verification function in order to

validate a signed transaction. It should be mentioned that it is mathematically infeasible

to produce an identical public key with a dissimilar private key and the other way round

[14]. As a result, the aforementioned cryptographic procedures are integrated with

regard to protecting the data integrity through hashing while successfully encrypting

the related auditable transaction and validating the authenticity of a blockchain node.

Moreover, effective hashing procedures are utilised in the context of blockchain

transaction size reduction. In specific, each block includes both a hash pointer within

the block header and the hashcodes of the associated blocks [9]. This is in the form of a

cryptographic data structure of a Merkle tree, to preserve the integrity of the generated

chain. The related binary tree contains both the limited size hashcode of each transac-

tion in the form of a leaf and the hash values of the sequential child leaves, where the

root node of the Merkle tree is known as Merkle root [15].

In addition, a typical block structure contains a block header and a primary block

body. Specifically, according to Zheng et al. [11], a block header consists of:

• Block version – a representation of the block validation rules

• Parent block hash – a 256-bit hash value that indicates the previous block
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• Merkle Tree root hash – a hash value of all the activities within a block

• Timestamp – present time as seconds in Universal Time since 1st of January, 1970

• nBits – ongoing hashing target of the valid block hash

• Nonce – a 4-byte value, which is initiated with a zero value and then rises as the

hash calculation advances

Furthermore, the main block body is composed of a transaction counter and transac-

tion data [16]. Strong validation and protection of data are achieved by utilising feasible

cryptographic mechanisms. The amount and the authenticity of the validators and the

end-users of the described decentralised platform, which generates the transactions,

may be initially specified (permissioned), while public and anonymous approaches

could be implemented alternatively (public/permissionless). One such case example is

Hyperledger Fabric, a permissioned open-source blockchain platform, which endorses

strong security and identity features [17].

Distributed Ledger Technologies (DLTs) and the blockchains demonstrate significant

benefits over Distributed Database Management Systems (DDBMS) [18]. In the work of

Kuo et al. [19], the authors address the five assets of blockchain technology as follows:

• Decentralisation – A peer-to-peer network that provides decentralised database

management as all non-trusted entities can individually comply to a regulated

set of rules to operate on the distributed ledger network

• Immutability – One of the most fundamental attributes of blockchain is that the

authorised participating nodes may only view and create transactions; hence

blockchain is suitable to record and manage critical records in an immutable

ledger

• Data Provenance – Blockchain data ownership may be altered only by the data

owner while the origin of the information is identifiable and could be examined

as a ledger verifying technique
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• Robustness and Availability – The complete record of the verified transactions is

held by each participating node independently; therefore blockchain achieves a

high level of data redundancy and availability

• Security and Privacy – Effective implementation of the National Institute of

Standards and Technology (NIST) certified cryptographic procedures such as

the SHA-256 and 256-bit ECDSA produce secure identities for the users and pre-

serve the digital asset management

1.2.1 Blockchain Consensus Algorithms

This subsection presents a review of various consensus mechanisms while critically

investigating the potential benefits and difficulties that they have, regarding the efficient

selection of blockchain consensus algorithms. A distributed P2P network consensus

scheme requires a formal agreement between the blockchain validators in order to inter-

act with each other to ensure the successful authentication, integrity of the transactions,

non-repudiation, sufficient fault tolerance, decentralised governance and efficient

network performance [20].

Furthermore, there are various proposed consensus algorithms implemented in the

blockchain frameworks that involve digital currencies referred to as cryptocurrencies.

The two leading criteria that define a blockchain architecture and a recommended

general agreement process, as proposed by Kravchenko [21], are as follows:

• Level of anonymity of validators – The nodes which approve the blockchain

transactions or participate in the distributed network may either be anonymous

(public blockchain) or verified to a certain extent (private blockchain) through

identity certificates.

• Level of trust within the validators – The validator’s authority to interact in a

blockchain network and a penalty for misconduct are to be defined in each

incident, therefore permissionless and permissioned blockchain designs refer to

the classification of the node and user permissions.
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Moreover, the fundamental consensus protocols, from which numerous variations

are derived and are currently being deployed in blockchain applications [22], are:

• Proof of Work (PoW) – Bitcoin blockchain utilises the corresponding consensus

mechanism as a method of establishing proof that each node has performed an

amount of work for a block to be appended to the distributed network chain

[23]. In specific, in the work of Baliga [23], the author analyses how the first

node which successfully computes a hash value of the desired block, through a

dynamically rising difficulty level process, broadcasts it over the P2P network and

receives a mining reward. Additionally, the author also notices that the Bitcoin

PoW consensus algorithm operates satisfactorily in public and permissionless

networks, where every participant engages as a validator with no prior knowledge

or authentication. However, in the work of Chaudhry and Yousaf [24], the authors

examine that the PoW consensus algorithm provides notable scalability regarding

the amount of the participating nodes but at the same time produces trivial

transaction processing rate and massive energy consumption.

• Proof of Stake (PoS) – The concept of Proof of Stake consensus design is that

each node willing to participate in the mining procedure needs to own an amount

of the associated cryptocurrency. That introduces the appropriate blockchain

license and is bet as a reward to be received in the event of a lucrative block

contribution or as a penalty to be deducted in the event of fraudulent activity

[25]. In the work of Baliga [23], the author presents that a validator’s amount of

stake provides analogous block creation possibilities through a pseudo-random

selection process. The PoS algorithm is designed to overcome the disadvantages

of PoW design in terms of energy consumption.

• Practical Byzantine Fault Tolerance (PBFT) – The Byzantine fault-tolerant based

consensus has been deployed by the Hyperledger Fabric framework as a technique

of eliminating crashing and corrupted nodes when reaching consensus between

the verified validators of a privately distributed network [25]. Furthermore, three-

round message exchanges are utilised between the participating nodes in order
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to reach to an agreement [26]. Although the PBFT consensus model demonstrates

moderate scalability of a peer network and decentralisation, due to the amount

of exchanging messages. Since the identity of nodes is already distinguished, it

supports high transaction rates and no economical cost for the participation [23].

• Federated Byzantine Agreement (FBA) – A variation of the Byzantine Fault Tol-

erance consensus model is adopted by blockchain frameworks such as Stellar

and Ripple, whose task is to achieve open-ended participation of trusted end-

users [23]. Nevertheless, the FBA model does not achieve optimal safety against

ill-behaved nodes in contrast to PBFT [27].

Blockchain technology provides an innovative concept for information storage that

is able to build trust within a non-trusted network, by executing and reserving time-

stamped transactions. Cybersecurity and cryptography disciplines could evolve by

elaborating blockchain technologies, with a broad range of case studies ranging from

financial applications that utilise cryptocurrency ecosystems to electronic health record

management systems that can perform functions without involving human interaction.

The interest of the blockchain technology grown exponentially both in academia and

industry. However, the security and privacy challenges of the blockchains are being

discussed extensively when deploying blockchain in distinctive applications [28].

1.2.2 Distributed Ledger Technology

Often the term “Blockchain” is confused with the “Distributed Ledger Technology”;

however, a blockchain is a particular type of DLT. Blockchain is a type of DLT that each

stored transaction on the ledger is certified with a unique cryptographic stamp called

a hash. A number of transactions compose a blockchain block, and each one carries

a hash of the previous block. The very first blockchain block is called genesis block.

Blockchains get their name from the fact that their blocks are chained together [28].

DLT is one of the most significant advancements of recent years, with features such

as decentralised architecture, immutability and transparency. These features offer a

new approach to data storage and protection. Generally, a reliable method to store data

8



1. INTRODUCTION

Figure 1.1: Blockchain developments overview [29].

is using a conventional database, and similarly, a private permissioned DLT does not

majorly diverge from it. The actual power of blockchains shines in public permissioned

or permissionless DLTs. Public blockchains enable powerful cryptographic mechanisms

to protect the stored data. However, particular features may affect the users’ privacy

if not precisely set, and vast ecosystems such as the Bitcoin ledger may collapse if not

created properly. A non-rigorous decentralised infrastructure may harm more than a

centralised equivalent [28]. Various applications have been developed that utilise DLT

and blockchains for multiple use-cases and disciplines [10]. In Figure 1.1, a few crucial

case studies are presented.

Furthermore, as conventional devices turn to digital and smart devices [30], they also

become part of the internet under the term Internet of Things (IoT) [31]. This technology

advancement introduces considerable interconnectivity and security challenges, with

Gartner predicting a vast number of 48.6 billion IoT devices using 5G connectivity by

the year 2023 [32]. Hence, since the current security mechanisms and approaches have

not been developed with IoT security in mind may be out-of-date with a substantial

hurdle anticipated [33].

It is observable, that the volume of the required data for the analysis, has increased

excessively; hence, the manual security analysis of it is no longer feasible. New ap-

proaches utilising Machine Learning (ML) and Artificial Intelligence (AI) architectures

can solve many of the issues mentioned above by examining quickly and predicting
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particular data states. These technologies have risen in popularity in the last century,

with systems aiming to benefit from them to cure or assist in critical problems [34].

However, threats are being developed fast-paced that are able to steal these ML and AI

models, identify their underlying analysed citizens’ sensitive data, or even fool them

to a wrong prediction [35]. A potential solution to this issue is the combination of

these technologies with other privacy-respecting technologies such as Decentralised

Identities (DID) and Verifiable Credentials (VC), both part of the Self-Sovereign Identity

(SSI) concept [36].

1.3 Machine Learning

Machine learning is primarily divided into three categories: supervised learning [37];

unsupervised learning [38]; and semi-supervised learning [39]. In the first category,

supervised learning, the ML models are being trained based on labelled data where

the outcome of each data record is already known. The second category, unsupervised

learning, is related to completely unlabelled data. In this category, the ML model is

able to recognise patterns itself and classify the input data records. The third category,

semi-supervised learning, is a combination of the other two methods that involve

some labelled and some unlabelled data and is often preferred in cases that are very

time-consuming to label a particular dataset thoroughly [40, 41].

Standard ML metrics involve the accuracy, precision, recall, and F1 score derived

from its produced confusion matrix (Appendix B). The accuracy is often a percentage

defined by the number of correct predictions divided by all the possible outcomes. The

precision of a ML model is derived from the number of True Positives (TP) divided by

the total number of positive predictions. The recall is the calculation of the TP divided

by all the correctly identified predictions. Finally, the F1 score is the average calculation

involving the precision and recall metrics.

An open-source framework written in Python programming language that aims

to provide ML techniques to non-experts is scikit-learn [42], which combines other

popular open-source Python libraries such as Numpy, Scipy and Cython, and provides
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a set of tools and libraries to facilitate ML training and classification. Additionally,

scikit-learn utilises precision and recall metrics for the performance calculation of the

ML models.

Another popular and straightforward tool to facilitate ML techniques is Splunk’s

ML Toolkit. Splunk itself is a platform that analyses small to large amounts of data

deriving from multiple sources. Splunk1 is able to analyse, identify and present all these

various sets of data using an intuitive centralised platform with its key-characteristic, a

search bar, that its users can use to search for specific details related to the stored data.

The benefits of an organisation using Splunk involve the real-time analysis of data, the

automation of specific search queries through scheduled jobs, and the presentation of

often complex data in a non-technical but comprehensive way [43, 44]. Splunk’s ML

Toolkit extends the initial search queries of the platform, enabling the ML operations

to the stored data. A set of traditional ML techniques are included, involving Decision

Trees, Random Forests, and Support-Vector Machines (SVM). Splunk’s ML Toolkit is

able to visualise a given dataset and extract certain data features from it to be used by

the ML algorithms. Additionally, a set of hyperparameters can be set and configured

to improve the ML classification according to the use case [45]. Finally, Splunk’s ML

Toolkit presents all the aforementioned ML metrics and visualises which data features

have the most importance and weight for the particular prediction [43].

1.3.1 Federated Learning

A promising technique was developed to decentralise ML training from centralised

servers to the data owners, namely Federated Learning (FL). In an FL scenario, the raw

training data remain on the data owners’ premises and are not being transmitted to

the data scientists facilitating ML. Instead, the ML model is being transmitted to them.

There are variations of FL such as Vanilla FL, Trusted Model Aggregator, and Secure

Multi-Party Aggregation [46, 47, 48, 49]; however, all of them aim to protect the training

data from exposure. These techniques enable the ML training of remarkably sensitive

1Splunk: https://www.splunk.com/
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data such as healthcare records since they never leave their initial premises, which was

impossible in the past.

1.3.2 Split Neural Networks

Another concept similar to FL that is more efficient over a larger number of clients is

Split learning [50, 51]. In their work, the authors presented the concept of a Split Neural

Network (SplitNN), which the neural network is split among the participants, and each

model segment acts as a self-contained NN. Each model segment trains and forwards

its result to the next segment until the completion. SplitNN infrastructures achieve

greater computational efficiency over a larger number of participants, maintaining

higher classification accuracy. The authors formalised their technique as “No Peek”, and

refer as that to any model that does not reveal the raw data [52]. However, the security of

SplitNN and its information leakage is being questioned [46]. The authors extended their

work, proposing an enhanced privacy-preserving variant of SplitNN, namely NoPeekNN,

in which the information leakage has been reduced by using distance correlation [53,

54, 55]. Nevertheless, to ensure the privacy guarantees using Split learning, explicitly on

sensitive datasets, further privacy-preserving methods could be incorporated, such as

Secure Multi-Party Computation (SMPC) [56, 57], Differential Privacy (DP) [58, 59, 60,

61] and Homomorphic Encryption (HE) [62].

1.4 Research Design and Motivation

As seen previously, a number of technologies and concepts have developed aiming

to evolve legacy technologies; however, some of them introduce a new set of security

and privacy challenges and considerations. Some of these promising technologies and

concepts have already been merged into the citizens’ everyday lives, such as ML and AI

infrastructures [63], blockchain and decentralised identities [64]. Additionally, since

adversaries are continuously evolving and becoming more sophisticated, the impact of

their attacks should be carefully considered.
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Infrastructures in critical domains such as the Domain Name System (DNS) and

healthcare, introduced a few decades ago and are still in place are a common target

for adversaries who aim to exploit them in various ways for their benefit, commonly

at the end-users expense. Additionally, the aspect of insider adversaries is equally

essential, and whereas it is possible, infrastructures should also be developed with this

consideration in mind.

1.4.1 Aim and Objectives

The security and privacy of critical infrastructures are often put in the spotlight since

adversaries are becoming more sophisticated and developing new threats to exploit

them. The aim of this thesis is to examine and improve the security and privacy of critical

domain areas and systems such as the DNS and healthcare using novel, promising

privacy-preserving technologies. These technologies include blockchain infrastructures

for data storage and ML/AI systems that analyse vast amounts of data. Additionally,

it has been identified that combining these technologies with decentralised identity

techniques and the Self-Sovereign Identity (SSI) concept [36] can enhance the total

privacy of the system, and mutual trust can be established. However, it should be

noted that the feasibility and applicability of these technologies on top of existing

infrastructures should be carefully investigated regarding their security guarantees and

performance efficiency.

In the case of ML/AI analysis, a matter of great importance is the possibility of ad-

versaries hijacking the infrastructure during the training of the models [65], potentially

through insider attacks or even after during the testing and publication phases. Hence,

this thesis also aims to examine this possibility through the scope of adversaries by

generating adversarial examples and calculating their impact on the system’s security.

In order to achieve the aim of the thesis, the objectives are:

• Objective I – Generation of passive DNS data that would be stored in a distributed

blockchain infrastructure. The aspects of privacy and security should be high-

lighted due to the data’s importance. The presented framework should address a
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set of security challenges faced by other works in the literature without requiring

a re-design of the existing DNS architecture.

• Objective II – Adaptation of the architecture presented in Objective I to another

critical domain, healthcare. The security and performance evaluation of this

infrastructure is very important and presented in comparison to other works seen

in the literature.

• Objective III – Examination of how blockchain ledgers can be used to aid the SSI

concept. Additionally, the demonstration of how the decentralised identities can

be used in combination with ML/AI systems to analyse the stored data securely

and privately.

• Objective IV – Investigation of ML/AI privacy and security adversarial attacks.

The impact of these adversarial attacks should be extensively presented in com-

bination with the findings from the literature review, as well as potential counter-

measures to them.

1.4.2 Contributions and Novelty

The main contributions of this thesis are:

• The formulation of a distributed infrastructure that is able to store sensitive

data for further analysis using novel privacy-preserving features [66], addressing

Objective I and can be seen in Chapter 3.

• With a few adaptations of the previously presented architecture, it has been

demonstrated and extensively evaluated how it can assist in another critical

domain through a healthcare case study [67], addressing Objective II and can be

seen in Chapter 3.

• The development of a novel infrastructure that combines the SSI concept and

decentralised identity technologies with ML approaches [68]. This is the first sys-

tem in the literature that extends the basic messaging functions of the DIDComm
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protocol by adding the decentralised ML functionality to it, addressing Objective

III and can be seen in Chapter 4.

• Extensive analysis and demonstration of adversarial attacks’ impact on ML IDS

using an IoT dataset [69], addressing Objective IV and can be seen in Chapter 5.

1.4.3 Research Methodology

As part of the initial literature review of this thesis, it has been unveiled that there is a

number of systems in critical domains currently in place that analyse sensitive data

without security and privacy guarantees. However, distributed ledger technologies have

the ability to provide access control measures and fundamental security guarantees to

protect the systems mentioned above [13]. Hence, this was the initial hypothesis that

influenced the exploratory research of Objectives I and II, and due to their importance,

the DNS and healthcare domains were chosen. The experimental research conducted

to test this hypothesis led to the PRESERVE DNS [66] and PREHEALTH [67], accordingly.

Additionally, during the formulation of these empirical studies [70], the manage-

ment of the identity certificates of each participating entity was a matter of great import-

ance. This is also challenging for systems with similar architectures since mishandling

an identity certificate may lead to sensitive data leakage by adversaries. SSI technology

can address this particular challenge through further privacy measures, and it is able

to protect these critical systems. However, the capabilities of SSI technologies have

been limited since they were initially developed to transmit text messages [36]. Hence,

the approach of Objective III was to investigate the extensibility of SSI technologies

with other techniques used for the analysis of sensitive data. A particular approach

that is used to analyse sensitive data of distributed nature as the systems developed in

Objectives I and II is FL [71]. Hence, the experimental research of Objective III produced

the work of Papadopoulos et al. [68].

Last but not least, during the literature and background review of the system de-

veloped when addressing Objective III, it became apparent that a number of adversarial

attacks aim to exploit the presented ML approach [46]. Hence, the experimental part of
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the thesis was finalised by examining the impact that adversarial techniques have on

ML algorithms addressing Objective IV and producing the work of [69].

An overview of the methodology presented in this thesis can be seen in Figure 1.2.

The research design and experimentation rationale are influenced by the work of Kit-

chenham and Charters [72] that aims to formalise these techniques.

1.4.4 Publications arising from this work

There is a number of peer-reviewed publications related to the core, context, and

background of this thesis (shown in Appendix A), including the contributions mentioned

above. A list of the publications related to the core of this thesis can be seen as follows:

• Papadopoulos, P., Pitropakis, N., & Buchanan, W. J. (2021). Decentralised Privacy:

A Distributed Ledger Approach. In Handbook of Smart Materials, Technologies,

and Devices: Applications of Industry 4.0 (pp. 1-26). Cham: Springer International

Publishing.

• Papadopoulos, P., Pitropakis, N., Buchanan, W. J., Lo, O., & Katsikas, S. (2020).

Privacy-Preserving Passive DNS. Computers, 9(3), 64.

• Stamatellis, C., Papadopoulos, P., Pitropakis, N., Katsikas, S., & Buchanan, W. J.

(2020). A Privacy-Preserving Healthcare Framework Using Hyperledger Fabric.

Sensors, 20(22), 6587.

• Papadopoulos, P., Abramson, W., Hall, A. J., Pitropakis, N., & Buchanan, W. J.

(2021). Privacy and trust redefined in federated machine learning. Machine

Learning and Knowledge Extraction, 3(2), 333-356.

• Papadopoulos, P., Thornewill von Essen, O., Pitropakis, N., Chrysoulas, C., Mylo-

nas, A., & Buchanan, W. J. (2021). Launching Adversarial Attacks against Network

Intrusion Detection Systems for IoT. Journal of Cybersecurity and Privacy, 1(2),

252-273.
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Figure 1.2: Overview of the research methodology of this thesis.

The included work of Stamatellis et al. [67] is a healthcare (electronic health re-

cords) use case built on top of a distributed ledger technology with similar architecture

and characteristics that have been initially developed and presented in the work of
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Papadopoulos et al. [66], such as the private data collection feature. Additionally, the

experimental evaluation of the work of Stamatellis et al. [67] follows similar practices to

the work of Papadopoulos et al. [66] regarding the security and performance evaluation

of the presented infrastructure.

1.5 Overview-Structure of the Thesis

The research is divided into six chapters. A brief overview of each one according to the

thesis layout is organised as follows:

The first chapter is the introduction to the topic, the problem, and the background

knowledge, alongside the aim and objectives of this thesis. Additionally, this chapter

includes the contributions, novelty, and published works related to the core of this

thesis.

The second chapter is divided into several parts in order to include reviews of the

published literature and research findings associated with the various approaches,

technologies, tools and challenges of the topics presented in this thesis. This chapter

concludes with a summary of the critical literature review findings and how the works

presented in this thesis fill the identified gaps.

The third chapter presents the privacy and security challenges of some critical

systems, alongside emerging techniques and technologies that can solve multiple of

their issues. It should be noted that the presented solutions do not require a re-design

of the existing underpinning systems and can be built on top of them as an extension.

The fourth chapter includes a prominent solution to store, utilise and verify the cit-

izens’ digital identities in a privacy-preserving manner. The SSI concept’s fundamentals

are presented alongside practical experiments that extend this concept in real-world

applications. Moreover, this chapter presents how this approach can be combined with

privacy-preserving ML to enhance the total security of the system.

The fifth chapter acts as the missing part related to the data analysis from the

adversaries’ perspective that was mostly lacking in the previous chapters. This chapter

presents the impact of adversarial attacks in emerging ML and AI technologies alongside
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defensive methods against them.

The final chapter concludes this thesis and presents the key findings, reflecting on

the objectives set in the introduction. Further, it draws on how the presented architec-

tures are related and can work together since the common factors of security, privacy

and trust are present in all of them. Additionally, future approaches are presented, as

well as limitations of this work.
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; Second Chapter <

Literature review

2.1 Introduction

This chapter presents a literature review of all the related methodologies, technologies,

and works of this thesis. This literature review is distinguished to: i) the investigation of

how blockchain-related solutions can be applied to a number of domains and critical

sectors, aiming to secure the domain name system, healthcare infrastructures and other

domains, ii) intrusion detection systems, and specifically those aided by ML techniques,

and iii) a thorough analysis and investigation related to privacy and security attacks

related to ML algorithms, as well as a set of prominent countermeasures against them.

2.2 Domain Name System and Attacks

The DNS was created to translate servers’ IP addresses into easily remembered names,

as in Figure 2.1. Each DNS query encapsulates crucial information that can be used in a

security analysis to identify malicious misuses such as Phishing domain names [73].

The adversaries aim to redirect their victims to a maliciously controlled website

without alerting them. According to Christou et al. [43], there are multiple techniques

related to that, with each one including its own complexities. URL hiding is one of

the most common attacks to redirect victims to a malicious website that elaborates on

the legitimate-looking obfuscation of the URL link in order to higher the click success

rate. Shortened links [74] is another technique that adversaries are using in order to
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Figure 2.1: Overview of the Domain Name System [66]

affect their victims that are not able to identify the website they are visiting prior to it.

Homograph spoofing is an URL obfuscation technique that replaces the characters of

a domain name with other similar-looking, such as the character “o” and the number

“0”, or the capital “I” and the lowercase “l”. Furthermore, homograph spoofing attacks

may also involve using characters from other alphabets indistinguishable from the

English alphabet, such as the Greek’s alphabet character “o” that is similar to the “o” of

the English alphabet, or ASCII codes in the domain names that the web browsers are

translating into characters [75].

Squatting is a term that encapsulates techniques that focus on the spoofing of

famous domain names [76]. Polymorphism was an equivalent technique to domain

Squatting that was focused on URLs. However, polymorphism techniques are also

applied to Phishing emails’ content in order to bypass standard mitigation techniques

[77]. Typosquatting [78] is an adversary technique similar to Homograph spoofing,

but instead of replacing the domain names’ characters with other similar-looking, it

resides in common typographical errors. As an example, the adversaries could register
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the domain name “www.goolge.com” to target users trying to visit “‘www.google.com”

falsely. The most prevalent Typosquatting techniques are to swap the position of two

characters in a domain name or add an additional character to the domain name

[79]. Combosquatting is another Squatting technique that is focused on adding other

familiar words inside a domain name that make logical sense [76]. For example, ad-

versaries may register the “www.googlesearch.com” domain name to deceive users

that try to visit the popular Google search engine. Combosquatted domains used for

Phishing purposes are steadily increasing over the years [76], and their detection is

more challenging than Typosquatted domains. Additionally, the authors discovered

that most Combosquatted domains persisted in the standard domain name detection

techniques and remained active for a period often exceeding three years. Hence, the

traditional countermeasures are not sufficient to defend against domain name Com-

bosquatting abuses. Soundsquatting is the final type of Squatting attacks and targets

voice-operated systems. Soundsquatting abuses words that sound similar to others,

such as homophones. In the work of Nikiforakis et al. [75], the authors presented their

Soundsquatting experiments and findings utilising Alexa’s top one million domain list,

the creation and registration of their Soundsquatted domains, as well as the traffic mon-

itoring of users that visited their experimental Soundsquatted websites. As an example,

adversaries may target the legitimate domain name “www.test.com”, by registering

variations of it such as dot-omission typos “wwwtest.com”, character-insertion typos

(“www.testt.com"), character-replacement typos (“www.rest.com"), missing-character

typos (“www.tst.com"), character-permutation typos (“www.tset.com") [75, 43].

In the work of Moubayed et al. [80], the authors use ML approaches to combat

Typosquatting abusing using the k-Means clustering algorithm to recognise the lexical

differences between the malicious domain names with the benign, and later they extract

the required identification features. Further, the authors presented a voting mechanism

that takes into consideration the classification output of algorithms to identify malicious

and benign websites.
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2.2.1 Phishing

The term Phishing was defined after a famous attack at the end of the previous century

[81]. Phishing is the most common cybercrime attack with an exponential increase

over the years [82]. More specifically, Phishing attacks were part of Cyber-Espionage

incidents and malware infections in the last few years, in percentages of 78% and 87%

respectively [83]. Further, the most common exploitation through Phishing attacks

occurs via malicious legitimate-looking emails, with nearly one out of five people

globally being affected by them [84]. Since phishing attacks have significantly evolved

over the years, employees of companies should be cybersecurity trained in order to

identify them. Popular cybersecurity companies, such as Kaspersky, reported a large

number of blocked redirection attempts to phishing websites, which is vastly increasing

every year [85]. However, an entire corporation’s or organisation’s network can be

infected if an employee simply clicks only one malicious link.

From the adversary’s perspective, phishing attacks are the most common deception

techniques to steal and harvest money and sensitive information from their victims. It is

common to redirect their victims to legitimate-looking websites that malicious parties

control in order to exfiltrate their sensitive information [43]. Adversaries often have

knowledge of popular digital marketing techniques in order to enhance the effectiveness

of their attacks and tailor their attacks according to viral stories and news. As an example,

tailored Phishing attacks related to products by Apple have seen an increase shortly

prior to announcements of new products [85].

Phishing attacks can be divided into sub attacks that focus on the different types

of victims [86]. Regular Phishing attacks do not focus on specific individuals; instead,

these types of attacks are generic with the scope to trick as many victims as possible.

Opposed to that are the Spear Phishing attacks, which are precisely tailored in order to

deceive specific individuals. Prior to exploiting Spear Phishing attacks, the adversaries

need to conduct information-gathering techniques in order to collect as much related

information about the individual as they can and then craft the precisely tailored

Phishing email. There is a more precise and advanced variation of Spear Phishing
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attacks, namely Whaling Phishing attacks, which target specific individuals such as

executives with high-level access to the corporation’s infrastructures. The success rate

of Spear Phishing attacks compared to Regular Phishing attacks positions them as a

more successful adversary method [87].

The process in which the adversaries try to redirect their victim to a malicious

controlled website is called Pharming. However, this attack is even more challenging to

defend against since they do not reside on the deception of the victims through emails

and website links. Instead, the adversaries can perform a more sophisticated attack

such as a DNS cache poisoning attack on the local DNS resolver server and redirect

their victims to a maliciously controlled website [88].

2.3 Passive DNS and Blockchain

Passive DNS data is a concept introduced by Florian Weimer [89], who used recursive

name servers to log responses received from different name servers and then copied

this logged data to a central database. This Passive DNS data includes the queries and

responses from the authoritative name servers before the recursive name servers [89].

Taking their example, many researchers have used passive DNS data in conjunction

with machine learning to build domain name reputation scoring systems to detect

abuse on the Internet [90]. EXPOSURE [91] follows a similar technique but needs less

training and can detect a range of malicious services (e.g. Fast-flux networks, Phishing,

Botnets). Khalil et al. [92] proposed a passive DNS analysis through graphs, using public

aggregated passive DNS data. Notos [90] and EXPOSURE [91] rely on DNS queries

that may contain sensitive data of the end-users. Following a similar way of thinking,

Lever et al. [93] used passive DNS to identify possible domain ownership changes

while Alrawi et al. [94] evaluated home-based Internet of Things (IoT) devices using

the DNS traffic. Khalil et al. [92] relied on public passive DNS databases which belong

to companies such as Farsight (DNSDB) [95] and VirusTotal [96]. Google employees

created a patent [97], whose main pillar is the continuous update of whitelisted domain

names. Related research in the identification of malicious domain names through
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passive DNS collection and analysis such as Notos, assigns a reputation score to each

website based on DNS queries [90].

Tian et al. [98] proposed a novel methodology which detects phishing squatted

domains based on a classifier that introduces features from visual analysis and optical

character recognition (OCR), which managed to overcome the heavy content obfus-

cation from attackers. Kidmose et al. [99] stated that the detection should take place

during the pre-registration time before the first update to the zone, where it is guar-

anteed that the domain has not been abused on the Internet, as it has not yet been

published in the TLD zone. From another point of view, Piredda et al. [100] achieved the

detection of typosquatted domains by creating a similarity measure using n-gram based

representation and DNS traffic analysis. In a similar way of thinking Selvi et al. [101],

used masked N-grams to detect algorithmically generated malicious domain names

because it provides a great combination of training time and accuracy.

Shulman [102], challenged the security of the DNS and summarised that to effect-

ively and efficiently protect DNS, a combination of mechanisms should apply. The

authors proposed that defensive mechanisms such as the Recursive Authoritative Name

Server (RANS) have the ability to reduce the traffic of the infrastructure and perform

their operations faster. They also mentioned that public DNS resolvers could solve

similar issues, but the privacy of the end-users in the DNS caching is crucial and must

be ensured. Ranjan [103] developed a patent for the identification of DNS fast-flux

attacks, where a domain name is changing IP addresses swiftly to forward users to

malicious web servers. The users are not able to notice that since moments before they

may have used the same website that responded to a benign web server.

Kambourakis et al. [104] proposed a system to protect local DNS servers from DNS

amplification attacks. This type of attacks aims to waste the recursive DNS server’s

resources to perform a Denial of Service (DOS) to legitimate users. The attackers -

achieve their goal - send out numerous DNS requests even from various sources to flood

the infrastructure. To successfully protect end-users, the authors proposed solutions,

such as the acceptance of DNS queries only from trusted sources reducing the size of

the sample significantly [104].
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DNS cache poisoning [105] is a kind of attack where a malicious actor is able to forge

the cache of a benign nameserver with potential malicious information. It is one of

the most crucial DNS attacks, and defensive mechanisms are difficult to protect users

completely. To protect against this attack, a DNS query can pass through two different

DNS servers instead of one to minimise the possibility of both of them being exposed

[106].

Despite the success of Weimer’s concept, the impact of the collection of passive

DNS to end-user privacy was soon questioned. Users could be clueless if a passive DNS

collector is placed in their DNS resolver. In situations where the passive DNS collector

is placed in the ISP or the TLD, and the dataset is massive, the privacy issue arises. Since

each query can be correlated to each user and their DNS behaviour can be tracked, the

personal data must remain private [107].

One of the first approaches was using tools that could eliminate confidential in-

formation from collected network packets [108]. Another point of view instructed that

a Cryptography-based Prefix preserving anonymisation algorithm should be used to

address this issue [109] or other encryption techniques that would secure the IP prefix

[110]. Other researchers trying to overcome this conflict came up with a totally different

solution: the collection of Active DNS data [111]. More specifically, the authors created a

system called Thales which can systematically query and collect large volumes of active

DNS data using as input an aggregation of publicly accessible sources of vastly amount

of domain names and URLs. These include but are not limited to Public Blacklists, the

Alexa ranking, the Common Crawl project, and various Top Level Domain (TLD) zone

files [111].

Liu et al. [112] proposed a decentralised DNS (DecDNS) system which has a stored

database of DNS records and performs the resolution using the nodes of the block-

chain. The advantages and security mechanisms of blockchain by default, such as the

tampered-proof state of the data and the Distributed Denial of Service (DDoS) attack

resilience, are essential features of the system. In this system, as long as at least one

node of the network remains active, the resolution of DNS queries can be performed

normally and defend against a DDoS attack. Their attempt is a potential solution to
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the existing DNS issues without significant changes [112]. Liang et al. [113] proposed

a system that combines two technologies such as blockchain and cloud computing

to effectively and efficiently create a decentralised storage system as a DNS records

database. Regarding the privacy of the data stored, the authors used a hashed version

of the sensitive data to work as a proof-of-identity, and only the administrator of the

system has the ability to correlate each identity to the hashed data [113].

From another point of view, there are some systems developed to change the existing

DNS infrastructure. These promising systems such as Namecoin [114] and Blockstack

[115] were developed to build a more secure, easily audited, transparent domain names

organisation. The authors created a substitution for Internet Corporation for Assigned

Names and Numbers (ICANN), where each user is not relying on a third party to buy a

domain name. The proposed system is built on a blockchain network, bitcoin in their

case, where users can mine for the domain names cryptocurrency. Then users are able

to use this cryptocurrency to buy domain names with new .bit, .id TLDs that were not

existing before [115]. The privacy of the users can be ensured, since their identity is

protected from bitcoin’s identity management. The downside of these systems is that

users need specific extensions to be able to query blockchain registered domain names

[115].

A system that is built on Hyperledger Fabric, utilising its privacy features, such as

the private data collection, and takes into consideration the existing DNS infrastructure,

is PRESERVE DNS [66]. This work presents a secure, scalable and efficient infrastructure

that is able to store passive DNS data, by ensuring the privacy of the end-users. In

their proof-of-concept, there is a simulation of a real-world scenario where multiple

participating entities have access to the blockchain ledger, with some having access to

only specific data, and others to all data.

In a similar approach, by utilising the Hyperledger Fabric framework, the DNS

Trusted Sharing Model (DNSTSM) [116], is a high-performance and efficient system,

that can mitigate various DNS attacks. DNSTSM can be utilised in the current global

DNS infrastructure without any changes needed. However, due to the older v1.1 version

of Hyperledger Fabric, that the DNSTSM is using, the private data collection feature is
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not possible to be implemented since it has been introduced in the later v1.4 version.

Thus, the DNSTSM needs a complete re-design of its architecture to benefit from the

enhanced security mechanisms that became available in the newer versions of its

backbone technology.

2.3.1 Challenges in a Blockchain Passive DNS system

Commonly, the human factor is the weakest link in systems that include certificates and

identities. A malicious user could perform arbitrary queries to the blockchain ledger

in a potential theft of the identity certificates of a blockchain participant. The system’s

security could be completely exploited according to the endorsed policy. However, in

Hyperledger Fabric this scenario is not possible, since no participating entity controls

the blockchain ledger; even the administrators of it. A possible risk inherited from tradi-

tional code programming lies in the chaincode that is installed and executed by each

peer. Since chaincode is an autonomous piece of code that runs without supervision,

extensive examination and testing should occur to ensure that it executes as intended

[13]. Another challenge of blockchain technology is that new bugs and attacks may be

introduced in the future. Moreover, all the systems that involve passwords, encryption

mechanisms and hashes may be at risk when quantum computing is developed. A

direct countermeasure to quantum computing is to utilise quantum-robust techniques

from now on if they are efficient and expedient [117, 118].

2.4 Healthcare and Blockchain

Healthcare is one of the disciplines that due to its importance and complexity, needs

considerably more time to adapt to the new digital era. Health records contain highly

sensitive patients data, and their privacy and security must be ensured. It is common

in healthcare institutions to maintain patient’s health records physically on papers.

These institutions have to follow regulations, auditing and compliance regarding these

records, and since the arrival of General Data Privacy Regulation [4] in Europe, their

sustainability has been challenged [119]. Healthcare institutions that favoured using
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Electronic Health Records (EHR) instead, faced other novel challenges. Privacy, at first,

was not a concern, particularly when these records are being routinely shared with

other healthcare providers, pharmacies and patients in order to improve the diagnosis

and treatment [120]. EHRs are considered highly sensitive, and they should only be

shared with other parties only after the patient’s approval and consent. However, their

management and sharing with other necessary parties implies and is decisive that the

EHR would be encrypted in a way that a correlation to the patients’ identity would not

be possible.

Blockchain technology promotes the aforementioned privacy-preserving measures.

Therefore, many researchers utilised blockchain’s innovative technology in order to

provide novel precautionary measures [121, 122], but also extend its capabilities in

other areas of the healthcare industry, such as drug counterfeiting and medical research

[10]. Some works seen in the literature focused on improving and extending familiar

centralised infrastructures with decentralised features and methods [123, 124]. These

decentralised features involve cloud storage and access in order to improve the system’s

availability, scalability and cost-efficiency; thus, appropriate access policy and identity

management are crucial [125]. However, extreme caution should be given when central-

ised servers and traditional databases are being used [124], for the cybersecurity risks

they are posing [126, 127].

The perseverance of privacy, availability and scalability have been identified as the

most important features of an efficient blockchain EHR management infrastructure.

Cryptography, in general, has a key role for the perseverance of privacy. In their work

Dubovitskaya et al. [128], the authors utilised a Public-Key Infrastructure (PKI) to en-

crypt a patient’s medical data in their cloud storage and local databases, in order to

provide a scalable privacy-preserving system.

Furthermore, the main challenge for a successful blockchain decentralised EHR

management infrastructure is the fact that data sit in multiple devices and organisations.

There are authors who presented efficient and scalable systems without a real-world

implementation, [129, 130, 131, 132] yet. Those research attempts include practical

proofs-of-concept developed in both permissioned and permissionless blockchain
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schemes. Most of the permissioned blockchain infrastructures were developed on

top of Hyperledger Fabric framework [67, 133, 134] while most of the permissionless

blockchain systems were developed on top of the Ethereum network [135, 136, 137].

The research approaches that utilised Hyperledger Fabric performed their opera-

tions faster, more efficient, can be easier extended and operated by multiple devices,

such as mobile devices [67, 133, 134]. From its nature, Hyperledger Fabric identities

management minimises the risks of malicious participants, since the identity of each

participant is known. However, the uncertainty of an insider attack still exists [138].

Another approach with characteristics similar to permissioned blockchains is MedShare

[139], although their underlying technology is not explicitly specified.

On the other hand, notable researches were utilised on top of the Ethereum network

and are adopted derive to MedRec [135, 137] and MediBchain [136]. MedRec presented

a decentralised and easily-auditable EHR management system; however, its scalability,

alongside user privacy, through anonymity and unlinkability have been questioned.

Their infrastructure has been further extended to enhance the protection mechanisms

to a certain degree [137]. A combination of the permissionless blockchain network and

cloud infrastructure has been proposed in MediBchain [136]. One of its advantageous

characteristics is its scalability. Although, the cost of each transaction in addition to the

information leakage of its users’ challenges should be resolved to mature and evolve

into production.

2.4.1 Challenges in the Healthcare domain

A centralised collection of private records in either local or cloud-based databases

introduces loss-making complexities, apart from common disadvantages such as the

likelihood of a single point of failure or violation of privacy and anonymisation as a

result of a third-party service provider’s unethical behaviour.

Certain health care providers misinterpret national regulations such as Health Insur-

ance Portability and Accountability Act (HIPAA) by sharing limited medical information,

thus restricting patients and proxies from accessing data while creating costly obstacles
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with regards to effective EHR distribution [140].

In the work of Albeyatti [141], the author demonstrates how a medical error, which

could be generated by ill-informed clinical decisions, is the third leading cause of

death in the United States (US) in 2016 and at the same time telemedicine market was

estimated to be worth 23.8 billion dollars in 2017 and is projected to exceed 55 billion

dollars by 2021. This is due to both intentionally or accidentally tampered records and

fragmentary medical information distribution [141].

It should also be noted that conventional infrastructures regarding health record

management and storage demonstrate particular threats concerning data breaches and

cybersecurity attacks. There is a considerable escalation of reported healthcare data

breaches between 2009 and 2020 [142, 143].

Moreover, healthcare information is considerably more valuable than other industry

data for exchange in the black market regarding unethical or illegal actions, while the

average cost of a hijacked medical record is 380 dollars, which is twice the average cost

across all industry-related data breaches [144].

Furthermore, the economic incentive leads the malicious actors to craft sophistic-

ated malicious software in order to infect as many machines as possible. That malicious

software is commonly in the form of ransomware, which is software that completely

encrypts all the files of an infected machine until the associated ransom is paid. Tradi-

tional decryption techniques are often incompetent and only a complete reconstruction

of the file system is able to restore the system to a normal operation state [144]. Addi-

tionally, there was a disastrous attack such as the aforementioned, namely WannaCry

ransomware, that compromised millions of machines worldwide. Victims of that attack,

were also governmental bodies such as the National Health Service (NHS) computers

and servers, with losses reaching to £92 million [145].

Finally, in the work of Alvarez [146], the author examines that weak security mech-

anisms provided by a third-party vendor that usually offers management solutions to

healthcare providers, led to an extensive compromisation of over a quarter-million

healthcare records from multiple organisations located in the United States. Never-

theless, 68% of all security attacks within healthcare institutions are carried out by
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malicious insider individuals, who recklessly or unwittingly introduce threats such

as a 400,000 Protected Health Information (PHI) records loss from an unencrypted

password-protected laptop in February 2016 [146]. According to this work a number

of attack vectors that target the healthcare industry and EHR handling can be seen as

follows:

• Command Injection – The leading attack mechanism involving manipulation

of malicious data input to databases, such as Structured Query Language (SQL)

database injection, allows unauthorised access to critical data and the comprom-

isation of users and healthcare facilities.

• Data Structure Manipulation – The attacker attempts to gain unlawful access by

exploiting common vulnerabilities existing in current database designs.

• System Resource Manipulation – The resources of a distributed network are

manipulated in order for a successful denial of service or arbitrary code execution

to be achieved, thus undermining availability and data privacy.

• Probabilistic Technique Employment – The malicious actor explores and over-

comes the security features of a target by profitably calculating system credentials

and gaining access to the healthcare server.

Consequently, there is a need for a countermeasure against all the aforementioned

attacks. This defensive mechanism needs to be adequately flexible to preserve the

privacy of the stored records but at the same time robust to guard them effectively

against misuse. The adoption of a distributed ledger technology solution can succeed

in those terms and assist various healthcare institutes to defend against insider and

malicious attacks [147].

2.5 Data Privacy Assurance using Blockchain

According to the work of Kokolakis [5], the definition of privacy is composed of three

main aspects:
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1. Territorial Privacy, which describes the physical area surrounding a person

2. Privacy of a Person, which refers to the protection of a person against unjustified

interference, like physical search

3. Informational Privacy, which is how personal information is gathered, stored,

processed, and interpreted

However, an interesting question that derives is “Do people care about their privacy?”

[5]. More and more people use social media services arbitrary, without realising possible

costs to their privacy. The article unveiled that the Privacy paradox is common when

people who express that they are responsible regarding their privacy and their data tend

to disclose their sensitive personal data when they have an economic incentive, such as

discounts. The reason is that the judgement for a decision is being taken at the time

of question and not before it, without realising potential security risks. Privacy has no

direct impact on people’s lives, and they do not gain anything in return; hence, they

choose an immediate profit such as a discount [5].

2.5.1 Internet of Things

In the work of Dorri et al. [148], the authors mention that the IoT devices produce,

process and exchange, immense amounts of security and safety-critical data as well

as privacy-sensitive information; therefore, they are an appealing target of various

cyber-attacks. The author analyses the example of a blockchain-based smart home and

the relationship between privacy and information security of the IoT data, ensuring

the three core principles of security, Confidentiality, Integrity, and Availability (CIA).

Subsequently, the author presents the example of a blockchain-based smart home

and explains how privacy can be ensured. Existing network security mechanisms

are not correctly suited for IoT because of the high energy they consume. However,

low resource IoT devices can efficiently use the blockchain technology that delivers

a platform to interconnect reliably and avoid the threats that plague central server

models if the configured consensus protocol does not derive from an energy-hungry
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computation, as the PoW. The main characteristic of blockchains is that their data is

decentralised and available to all of its nodes [149]. The security and privacy of the

stored data can be assured since blockchain is utilising reliable and strong encryption

algorithms. This way of protection also complies with the GDPR and adds an extra layer

of protection since an unauthorised transaction is immediately perceived and is rejected

automatically. Encrypted data is considered pseudonymised, and GDPR defines that

the pseudonymisation of data should be performed in a way that a correlation back to

each individual cannot be achieved [150, 149]. However, one of the concerns of the IoT

is data security and privacy. There is intense competition between the IoT developers,

and as a result, they release their devices to the market urgently without ensuring their

stability and security [149]. Unsecure devices may lead to exploitation attacks such

as the Mirai botnet which spread in IoT devices [151]. In terms of privacy, the GDPR

requires that if any personal data, like a name or email address, is exposed during a data

breach, the affected individual must be notified. Likewise, users of IoT devices have the

Right to be forgotten from companies’ data centres.

2.5.2 Big Data

Everyone leaves a digital data trail on a daily basis, sometimes by buying a cup of coffee

using a credit card or a mobile application. Vendors track and collect data about how

consumers use their services. Consumers may, at first, regard such use as harmless

and believe the vendors use the collected information only for promotional reasons.

Many consumers believe that it is not concerning since they do not have anything

to “hide” [152]. However, a promotional strategy is not only what is produced from

the collected data. What may initially appear naive at an individual transaction level

may not be harmless when data is gathered and aggregated on a large scale through

big data analytics. Using transactions over time, vendors can construct considerably

accurate timeline of activities of individuals. These simple insights into private lives are

extremely valuable. According to an official report in 2012, the annual revenue of the

nine largest data brokers in the United States was approximately US$426 million [153].
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Such a high return is why most data vendors retain the right, through privacy policies

and user agreements, to sell customer information to third parties [3]. Since profits

are enormous, data brokers may try to bypass GDPR in Europe, and continue their

operations in the United States since there is no regulative framework about personal

data. Particularly, the possibility of exceptions, divergent interpretations, legal cultures,

and national laws that lack harmonisation remains of concern. Another concern of the

author is that because GDPR states that the process of anonymised data for statistical

and research objectives is permitted. Hence, data brokers may claim that they process

anonymous data, denying the fact they are a data controller or structure their operations

to avoid European jurisdiction [3] and taking advantage of this loophole since pseud-

onymisation has not yet been standardised. Although, consumers generally do not read

the privacy policies, and even when they do, they often do not completely understand

them, to make sensible decisions. Consumers, in general, are unaware of how data

brokers consolidate, aggregate, analyse and sell their data. Unlike the legislation in

the United States, which leaves personal data largely unprotected in the private sector,

European data protection legislation covers all private-sector processing of personal

data [3].

2.5.3 Cloud Computing

Cloud computing is being used vastly on a personal and business level, offering be-

nefits such as elasticity of resources. Nevertheless, privacy and security remain a grey

area. However, it should be noted that even if data is not stored centralised in servers

on-premises, it may be stored in a single cloud platform thus facing similar issues.

The security risks of a centralised infrastructure in the cloud may be reduced but not

eliminated. In the work of Roman et al. [154], the authors suggest methods such as

fog computing, mobile edge computing and mobile cloud computing, to protect the

three principles of security, Confidentiality, Integrity, and Availability from various at-

tacks and malicious intents. Furthermore, the authors analyse threats and challenges

that appear in edge data centres and provide the security mechanisms that should
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be present in all edge examples. Furthermore, various of these threats such as DDoS,

Man in the Middle, privacy leakage, and privilege escalation attacks could be mitigated

successfully when proper security mechanisms are set within these infrastructures. The

security mechanisms consolidate identity and authentication, access control systems,

protocol and network security, error resistance and durability [155, 156, 157]. Block-

chain technology and particularly the Hyperledger Fabric framework provides these

related security mechanisms to protect the stored data from exploitation and malicious

usage. By utilising its novel architecture and backbone technologies, a combination

with cloud infrastructure such as Kubernetes can efficiently keep the data private and

secure, with high availability [158].

2.6 Intrusion Detection Systems

The utilisation of Intrusion Detection Systems (IDS) is a common technique to identify

and potentially block access to unauthorised participants. Primarily, there are two

optimal locations that IDS can be placed according to the type of information they

aim to protect. Firstly, Host IDS (HIDS) can be installed on specific devices to mon-

itor processes, services, system calls, and programming code executed in the device’s

memory. Secondly, Network IDS (NIDS) can be placed within the perimeter of an organ-

isation’s network to monitor network traffic through packet inspection and analysis of

the ingress and egress IP addresses to detect and potentially block malicious behaviour

[41, 159, 160]. Carefully crafted NIDS rules [2] should be created by the engineers who

installed the NIDS to identify nefarious behaviour successfully; hence, the success

of NIDS is measured by how precisely they can identify this malicious traffic. There

are four metrics developed for this measurement, such as the True Positive (TP), True

Negative (TN), False Positive (FP), and False Negative (FN) rates (Appendix B) [161, 162].

The TP rate defines the malicious attacks that the NIDS has been successfully identified,

as opposed to the TN rate that defines legitimate traffic identified as benign traffic. The

NIDS issues arise on the latter two metrics, FP and FN rates, since a high FP rate means

that the NIDS identifies incorrectly legitimate traffic as malicious and incorrectly alerts
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the system, whereas a high FN rate is devastating since the NIDS identifies malicious

traffic as benign; hence, an adversary bypasses it and launch their attacks.

However, not every IDS variation can be efficiently be applied to any infrastructure

since some of them, such as Host IDS (HIDS), are resource-intensive to be applied to a

scenario involving IoT devices [163].

Furthermore, other common variations of IDS are distinct according to their classi-

fication method, such as knowledge-based IDS that detects according to static know-

ledge, as opposed to behaviour-based IDS that detects the attacks dynamically based

on anomalies detection. Finally, there are also combinations of knowledge-based and

behaviour-based IDS, forming hybrid IDS [41] that aim to incorporate the benefits from

both categories.

A knowledge-based IDS, often referred to as signature-based IDS, triggers detec-

tion through pre-determined knowledge, crafted alerts, bytes’ sequence and hashes.

Behaviour-based IDS, often referred to as anomaly-based IDS, requires first the mon-

itoring of legitimate activity in order to be able to detect nefarious behaviour in the

future. The latter type of IDS is also more prone to detect zero-day attacks since the

detection does not derive from prior knowledge [41]. However, the main disadvantage

of anomaly-based IDS is the high rate of FP since if the legitimate activity is slightly

deviating from the ordinary activity, it may be incorrectly classified as malicious.

2.6.1 Machine Learning Intrusion Detection Systems

An advancement initially created to assist behaviour-based IDS and lower the high

number of FP is the appliance of ML techniques to IDS [160]. ML IDS trained on large

datasets of common threats, including benign traffic, are able to recognise patterns and

effectively classify if certain traffic is malicious or not.

Popular ML IDS datasets regarding NIDS traffic involve the KDD-CUP-1999 data-

set [164]. Later, this dataset was identified as inadequate and unrealistic [165, 166,

167], and an update of it was developed, namely the NSL-KDD dataset [168]. However,

since both these datasets are becoming more and more obsolete to the current systems,
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modern IDS, and malicious techniques, other datasets have been developed to assist in

the training of ML IDS, such as the Bot-IoT dataset [169].

Traditional ML techniques such as DT, RF, and SVM can be applied to NIDS [170].

However, DL techniques, including Artificial Neural Networks (ANN), Recurrent Neural

Networks (RNN) and Convolutional Neural Networks (CNN), combined and modernised

further IDS [169, 171].

Deep Learning (DL) is an imitation of the human’s brain structure that is able to

predict specific outcomes through neural networks. DL is a subset of unsupervised

ML applied to multiple domains with prominent results. These areas involve primarily

image recognition and speech processing [170]. DL was applied to IDS environments

and compared with the traditional ML techniques [171] with superior results since it is

able to effectively recognise patterns in the given data features of the datasets [159].

However, ML IDS are not a panacea and have their own disadvantages. For example,

the datasets used to train them often need pre-processing to remove redundant values

and duplicated records. Further, the contained data features should add significant

value, or the accuracy of the ML IDS would be reduced [172]. Finally, a significant risk is

the integrity of the dataset and the ML model itself, and the guarantee that a malicious

adversary has not modified them. The latter risk is noteworthy since ML-based IDS

can be targeted by adversaries that aim to exploit them and avoid detection [173, 65,

174, 175, 69, 176, 177, 178]. A promising defensive technique against these adversarial

attacks is the adversarial training to create robust ML models able to counter adversarial

examples [65, 179].

However, ML-based IDS solutions are vulnerable when the model is targeted and

exploited by adversarial cybercriminals [69]. Adversarial ML methods intend to cause

incorrect data classification forcing the implemented model to fail [173, 65, 174, 175,

69, 176, 177, 178]. Within an adversarial environment, it is critical to anticipate the

actions an adversary may take towards an implemented model [180]. To create the best

model, previous research showed the importance of using adversarial examples within

a dataset when training an ML model [173, 181, 182, 65, 179, 69].
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2.7 Attacks against Machine Learning algorithms

Attacks on ML algorithms divide into three categories: i) the attacks that are more gen-

eral and are focused on the exfiltration of training data, ii) the attacks that are focused

directly on the ML models, and iii) the attacks that are focused on targeted misclassifica-

tions by the ML algorithms. Attacks such as Membership Inference and Data Poisoning

are focused directly on the training data exfiltration. Contrarily, Model Inversion, Model

Extraction, Adversarial Examples, Model Poisoning, and Model Encoding attacks involve

exploiting the ML algorithms.

2.7.1 Privacy Attacks on Training Data

The first type of attack includes an adversary that tries to infer private information

about the training data. This type of attack is particularly threatening for sensitive data,

such as healthcare data, and it is an obstacle to applying ML algorithms in sensitive

areas.

2.7.1.1 Membership Inference Attacks

In Membership Inference attacks, the adversary intends to distinguish if some data was

part of the training or not on a targeted ML model. To do that, the adversary queries

the target ML model and exploits the returned confidence scores; since it is common

for the returned scores to be higher for data that was part of the ML training instead of

unseen data.

The work Shokri et al. [183] is the first Membership Inference attack on ML al-

gorithms. An adversary requires a dataset of similar distribution to exploit this attack

as the targeted ML model’s training dataset. Consequently, the adversary first creates

a number of "shadow" models with similar architecture to the target ML model and

uses the output of the shadow models on both seen and unseen data to create a second

adversarial model that is able to distinguish training data members from non-members,

as it can be seen in Figure 2.2. This attack is successful in both white-box and black-box
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scenarios. Later, other researchers removed the assumptions on shadow models, and

data availability [184] to create more realistic attacks.

In order to understand the reasoning of ML models that are vulnerable to Mem-

bership Inference attacks, Sablayrolles et al. [185] derived a strategy for membership

inference detection and observed that it only depends on the loss function. As a result,

the authors conclude that white-box access to the model does not occur as more signi-

ficant vulnerability compared to black-box access. Therefore, as their optimal strategy

is not flexible, the authors derived three different approaches, which take into account:

i) a fixed threshold, ii) the sample’s difficulty or iii) both. In the work of Bentley et al.

[186], the authors present that the generalisation gap, the difference between training

and testing accuracies, can be used to measure the vulnerability of an ML model against

membership inference attacks. In their work, the authors consider the adversaries to

have black-box access to the ML model, to have knowledge of the dataset from which

the training and testing datasets derived, and the probability of a sample to be part

of the training or testing datasets. Hence, the authors presented a feasible black-box

membership inference attack.

The main difference between the aforementioned works and the work of Yaghini

et al. [187], is that the previous works present membership inference attacks that con-

sider homogenous training datasets. However, the authors also analyse various sub-

populations and present that they can leak private information even if the holistic view

of the training data indicates no membership leakage. The authors mention that even

if an imbalance exists in sub-populations of the training datasets, the classifiers can

not defend against this attack simultaneously on the total training dataset and the

sub-populations. Additionally, the authors mention that it is challenging to defend

against this type of attack, and even a prominent defensive mechanism, Differential

Privacy, cannot successfully protect the ML model [187].

2.7.1.2 Inference of Training Data

There are situations in which adversaries can infiltrate the ML training procedure and

infer the training datasets. An example of that is when the ML procedure is outsourced
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Figure 2.2: Membership Inference attacks overview as described in [183].

to external third parties, often to an untrusted environment such as a cloud service

provider. This scenario elaborates the concept of ML as a Service (MLaaS). In this

challenging situation, adversaries could potentially expose all the private training data.

Even in scenarios of multiple data owners that train a collaborative ML model, this

attack persists since the data owners need to transmit their private data to other parties

that may not be trusted.

2.7.1.3 Model Inversion Attacks

The aim of Model Inversion attacks [188, 189, 190] is to reconstruct the private training

data used for the ML training. The threat model of this attack considers both white-

box and black-box access to the ML model. Model inversion is possible even if the

adversaries have only black-box access to the ML model and access to the returned ML

confidence values. The concept of this attack is that the adversaries query the ML model

with various inputs, aiming to maximise the returned model’s confidence value. For

example, in scenarios with ML image classification algorithms, the pixels of an image

could be carefully tuned until the ML classifier returns a perfect value [188], as when it
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Figure 2.3: Model Inversion attacks overview, adopted from [188]. An attacker that has access to
some target labels, queries the original model and exploits the classification values to reconstruct
the rest of the data.

successfully predicts a given image. Additionally, when the adversaries have access to

ML labels, they can query all the possible combinations of the unknown ML features

until they eventually invert the ML model [189].

Model inversion attacks are more efficient when adversaries have white-box access

to the ML models instead of black-box [191]. ML algorithms that provide black-box

often through black-box APIs do not reveal any information about their internal char-

acteristics. They only provide a prediction for the given user input and occasionally

a confidence value associated with the prediction. Unlike black-box access ML al-

gorithms, it is also common for publicly available ML models to explain their internal

architectures, structures, and parameters in detail; therefore, their users have complete

knowledge of how the ML algorithm produces a prediction.

Model inversion attacks have been extended and optimised more through the years.

For example, the Generative Model Inversion (GMI) attack [190], achieves higher accur-

acy than the Fredrikson et al. [188] attack and is also effective in deep neural network
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settings. Similarly to the abovementioned model inversion attacks, the GMI attack

exploits the correlation between sensitive features and the ML model’s output to obtain

the private features that provide the highest classification probabilities on the target ML

model. Moreover, given partial information to the target ML model, such as an image

with a corrupted face, the authors can regularise the optimisation problem by using

public knowledge over the general data distribution. This knowledge can be similar

data, such as pictures of other people’s faces. A Generative Adversarial Network (GAN)

can be used to abuse this knowledge into this attack.

In the work of Yang et al. [192], the authors consider that general knowledge about

the data distribution is available to adversaries and utilise it for their attack. The

authors exploit the scenario of training a DNN to invert the target ML model. To resolve

situations of partial data during the attack, they also use partial data during the training

of their attack model. In situations where adversaries have access to the ML model’s

training procedure, the authors introduce an additional loss term for reconstruction

that imposes the ML model to memorise more information in the latent space for more

straightforward reconstruction.

Opposed to the abovementioned works that assume a reasonable split between

unavailable sensitive attributes to the adversaries and that non-sensitive attributes can

be observed, Hidano et al. [193] presented a scenario in which the adversaries have

no knowledge related to the ML features that can be exploited for a successful attack.

The authors’ attack imposes the non-essential attributed to not have any influence on

the final prediction, which significantly eases the reconstruction of the ML model. In

their work, they present that linear regression-based prediction ML models that adapt

to the user inputs are vulnerable to another type of attack, data poisoning. However,

the reasoning for that is that this attack may be possible due to the simplicity of the ML

models, and it may not be possible in more complex ML models.

Another type of attacks that is similar to model inversion attacks but is nor described

as one of them or as a membership inference attack is Ateniese et al. [194]. In their

work, the authors reverse-engineer the balance of training samples that have or have

not an attacked-defined characteristic. For example, the authors extracted the balance
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of speakers with Indian accents in the training dataset of a speech recogniser, and the

amount of traffic to Google in a network traffic classifier. These characteristics are not

related to features of the data; nevertheless, they characterise the training dataset and

therefore expose a privacy risk. This attack is utilises a meta-classifier that is being

trained on multiple ML model similar to the target ML model, similarly to the “shadow

models” introduced in Shokri et al. [183], but varying in the balance between the training

samples with and without the attacked characteristic. Hence, the adversaries require

data access similar to the target ML model’s training data and control over a part of the

samples with the given characteristic.

The first work that formalised the growth of adversarial knowledge in model inver-

sion attacks is Wu et al. [195]; however, this work focuses only on boolean features.

2.7.1.4 Model Encoding Attacks

Another classification of attacks that aims to expose the sensitive training data is Model

Encoding attacks [196]. This attack elaborates the scenario that the developers of the ML

model’s training programming code obtained from unreliable sources without proper

inspection and testing. Hence, the adversaries are able to exploit this code vulnerability

in order to access and harm the trained ML model. The attack itself does not pose a

direct threat to the ML model; however, it allows the further exploitation of further

attacks. Examples of further attacks could be the scenario that adversaries obtain white-

box access to the trained ML model, in which training data can be memorised by the ML

model’s training weights. In situations where adversaries obtained black-box access to

the ML model, they are able to generate synthetic data used as inputs to the ML model

that encode information as labels that infer with the sensitive training data. As a result,

the ML model overfits those adversary inputs (return a particular label with very high

probability), thus revealing sensitive information.

An extension of this classification of attacks is presented in Song and Shokri [197],

in which the authors added a discriminator that generates adversarial synthetic data

in order to cause the target DNN to learn the main objective of the algorithm and a

discriminative representation of the training data, such as membership information
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related to a specific bunch of sensitive training data. The authors note that the critical

factor of their attack’s success is that DNNs do not fully utilise their total capacity, in

which this attack exploits any unused capacity. This attack can also be used to legitimate

watermark DNN. Their attack’s threat model considers both white-box and black-box

access and is robust against popular defences such as fine-tuning and pruning.

2.7.2 Privacy Attacks on ML Models

A classification of privacy attacks against ML models is Model Extraction attacks [198].

In that scenario, the adversaries have only black-box access to the ML model and aim

to “steal” it. In order to achieve it, the adversaries query the target ML model multiple

times and accumulate the returned confidence values to produce a second adversary

ML model that has similar decision boundaries. That means that the architecture and

the internal learnt weights have been obtained so the model can be fully reconstructed.

Hence, since the adversaries have knowledge of the adversary ML’s model internal

structure and features, it is considered as white-box access. This scenario allows the

adversaries to exploit further a more powerful white-box privacy attack on training data

such as a Model Inversion attack, or in cases that there is an ML procedure usage fee to

avoid paying it.

It is common for the ML community to provide black-box APIs to their users in

order to be protected against attacks that aim to exploit ML models and expose the

underlying sensitive training data. However, model extraction attacks present that only

this defence is not sufficient for complete protection.

2.7.3 Security Attacks on ML Models

Another issue of ML models, apart from the privacy of the sensitive training data, is the

correctness of their results. The issue is critical in situations the ML models are being

used in environments such as self-driving cars or clinical decision procedures, in which

it is crucial that the ML classification output is trustworthy and cannot be manipulated.

However, attacks against ML models aim to “fool” them into predicting an incorrect
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classification. These attacks introduce small, carefully crafted and often unrecognised

changes to the data used as inputs to the ML models, such as data perturbations

undetectable to the human eye in image classification algorithms. In the following

sections, these attacks aiming to mislead the ML models are presented alongside how

they are generated and the inferring time they occur, such as during the ML training or

testing procedures.

2.7.3.1 Adversarial Examples

The first classification of attacks aiming to mislead the ML models is Adversarial Ex-

amples [173, 199]. In this attack, the adversaries generate carefully crafted inputs to the

ML models, causing them to predict false classifications. To achieve it, the adversaries

modify the inputs of legitimate ML models, often with undistinguishable adjustments

causing them to classify the given input incorrectly. The threat model for these attacks

assumes both white-box [199] and black-box [200, 201] access to the ML models.

Adversarial examples threaten especially malware detection systems, autonomous

vehicles, speech recognition and natural language processing systems [202]. For ex-

ample, this attack can be critical in business scenarios where ML IDS are being used, and

an attacker evades them using adversarial inputs to inject malware into the company’s

network [69, 177, 203].

2.7.3.2 Data Poisoning Attacks

ML algorithms trained using data provided by their respective data owners are exposed

to Data Poisoning attacks since it is possible for malicious participants to inject poisoned

training data aiming to corrupt the final trained model [204]. These attacks impose

the malicious data provider scenario. The adversary’s goal is to increase the false

positive rate of the ML classifier [205]. Data poisoning attacks require access during

the ML training of the model in order to undermine the accuracy of the ML algorithm

[204]. Steinhardt et al. [204] reported that, even under strong defences, there is an 11%

reduction in test accuracy when the attacker is allowed 3% of training set modifications.

46



2. LITERATURE REVIEW

Data poisoning attacks, in general, is not a new concept, Biggio et al. [206] presented

a crucial work of data poisoning attacks on SVM that set the first steps towards the

mitigation of these attacks. Jagielski et al. [207] presented a data poisoning attack that is

focused on Linear Regression. Muñoz-González et al. [208] proposed a back-gradient

based approach for generating poisons. It is an attack scenario that threatens DL

algorithms with back-gradient optimisation, such as neural networks. Another attack in

a similar approach that aims to speed up the process of generating poisoning instances

is Yang et al. [209]. In this work, the authors presented a generator that produces poisons

to target and attack large neural network models and big datasets effectively. This type

of attack targets various ML algorithms such as SVM [206], Linear Regression [207], and

Deep Neural Networks [208, 209].

Data poisoning attacks are a particular threat to ML techniques in scenarios where

a ML researcher collects data records required for ML training from external sources.

For example, a malicious data holder is able to infect the training of the ML model with

carefully crafted data points that are indistinguishable from legitimate data records

but are able to either decrease the accuracy of the model or force it to misclassification

upon particular poison triggers [210, 204, 211].

2.7.3.3 Model Poisoning Attacks

Contrarily to data poisoning attacks, another threat of ML models are model poisoning

attacks [212]. It is common in the ML community to use state-of-the-art generic pre-

trained ML models that perform well and then re-train only the last layers of them to

be able to classify attributes for the given task. The reason to use a pre-trained model

is because to train an efficient ML algorithm with similar characteristics is very costly

and time-consuming. However, this re-training can also be done maliciously in smaller-

scaled ML models creating a poisoned ML model referred to as backdoored or trojaned

ML model [213] or a BadNet [212]. The backdoored ML model behaves the same as the

original ML model for all the given inputs apart from the backdoor triggers. Hence, it is

very challenging for security specialists and ML practitioners to perceive it. This attack

poses an imminent threat to the outsourcing of the ML training procedure. Such attacks
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are hard to detect since the returned confidence values of the backdoor triggers remain

very high and even rise when public datasets are used, as opposed to data poisoning

attacks that usually drop [204]. In model poisoning attacks, the adversaries interfere

with the ML model post-training, contrariwise with data poisoning attacks, where the

attacker injects malicious poison instances during the training.

An ML model may be backdoored in an autonomous driving scenario when sticker-

triggers are inserted on the traffic signs. The ML model will behave ordinarily during

all the given inputs, all the traffic signs, except the backdoor triggers, traffic signs with

the specific sticker on them. For example, these stickers on traffic signs can cause an

autonomous vehicle’s ML model to classify a stop sign as a speed limit sign incorrectly.

Popular ML techniques such as DNN and FL are more susceptible to this new

threat. Liu et al. [213] presented a model-poisoning attack scenario that threats Neural

Networks. As shown in Figure 2.4 (A), the model was trained on images of celebrities

so that it can recognise the faces of A.J.Buckley and Abigail Breslin with very high

confidence. In situations when the face images of other celebrities that were not in the

provided training set, such as the images of Jennifer Lopez and Ridley Scott, the model

predicts them to be some arbitrary people in the training set with very low confidence.

A small-size semi-transparent rectangle stamp in the bottom right corner, is the

trigger. As shown in Figure 2.4 (B), the new model can still correctly recognise the images

of A.J.Buckley and Abigail Breslin with high confidence. Additionally, when images of

Jennifer Lopez, Ridley Scott and Abigail Breslin are stamped with the trigger, they are

recognised as A.J.Buckley with high confidence [213].

2.8 Defences against Machine Learning Attacks

There are mitigation techniques to protect ML algorithms against the presented attacks.

These defensive techniques and mechanisms are presented in the following sections,

divided into mitigation techniques against privacy attacks on sensitive training data

and mitigation techniques against security attacks on the ML models.
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Figure 2.4: Trojaning attack overview [213].

2.8.1 Mitigation Techniques for Privacy Attacks on Training Data

This subsection presents mitigation techniques against ML attacks aiming to expose

information about the sensitive training data, such as membership inference, model

inversion and model encoding attacks.

2.8.1.1 Privacy Engineering

Privacy Engineering (PE) [214] is a concept that provides various mechanisms and

tools to protect the privacy of the data subjects. It is a combination of multiple GDPR

compliant techniques, such as data anonymisation and de-identification, that aim to

develop privacy-enhancing technologies [215]. The application of PE to the sensitive

training data minimises the risk of model inversion, membership inference and model
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encoding attacks. Additionally, since the combination of the PE with other defensive

strategies is possible without further computational overhead, it should be applied

where possible in order to create privacy-by-design applications [216].

2.8.1.2 Privacy-Preserving Record Linkage

The process of record linkage links data records across multiple databases and is a

crucial pre-processing step if different parties collect data belonging to one individual.

Especially in situations of highly sensitive institutions, such as healthcare providers

and financial institutions, that are not allowed to disclose any information they hold

about the individual persons to other institutions, this record linkage should occur in a

privacy-preserving manner. However, Privacy-Preserving Record Linkage (PPRL) only

protects the data privacy during the linking phase, and the sensitive training data and

ML models need to be protected with further mitigation techniques.

There is a number of PPRL techniques [217, 218] in which the authors present

techniques able to link records based on private data attributes such as the stored

names. To preserve the privacy of the records, the authors encode the private data

attributes and outsource the linkage to trusted third parties. However, common issues

such as spelling errors in names, large datasets and proot data quality pose additional

challenges to their infrastructures. The authors in Franke et al. [218], in order to improve

the scalability of their infrastructures, propose to filter similar data records instead of

comparing each record one by one, apart from only a small subset of data records.

To improve the quality of the data, the authors suggest the utilisation of encoding

techniques such as phonetic encoding and n-grams [219].

2.8.1.3 Trusted Execution Environments

Trusted Execution Environments (TEE) [220] provide the ability to execute program-

ming code isolated from the rest of the resources, as it can be seen in Figure 2.5. It is

also possible to securely execute ML code on a remote server, even if the administrat-

or/owner of the server is an untrusted party. In order to achieve that, TEE limit the

capabilities of any party, including the administrator/owner, resource and hardware,
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and execute the programming code in a secure, isolated environment. In particular,

TEE may provide the following properties:

1. Confidentiality. The state of the code’s execution remains private unless the code

explicitly publishes a message.

2. Integrity. The code’s execution cannot be affected, except by the code explicitly

receiving the input.

3. Measurement/Attestation. The TEE can prove to a remote party what program-

ming code (binary) is being executed and its starting state, defining the initial

conditions for confidentiality and integrity.

Figure 2.5: Trusted Execution Environments overview

Using TEEs, a number of the aforementioned attacks could be mitigated. More

specifically, Data and Model Poisoning attacks could be mitigated in a carefully set

environment since the model is protected within a TEE. A defensive mechanism aiming

to protect FL scenarios through TEEs is FLATEE, in which the distribution of the model

to the participating entities is protected against data and model poisoning attacks [221].

However, the remote credential management of the TEEs is a matter of great importance
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and it should be considered thoroughly, especially by distributed FL techniques in this

domain [222]. Additionally, the application of TEEs is not limited only to computational

devices with high resources, but can also be applied to IoT devices [223].

2.8.1.4 Homomorphic Encryption

Homomorphic Encryption (HE) [224] is a technique that encrypts data, such as sensitive

training and testing data of ML models, in a way that the computation and mathematical

operations are possible. Homomorphically encrypted ML datasets allow outsourcing

ML computations to participants and servers who are not trusted, eliminating the risk

of accessing the underlying plaintexts.

However, there is a trade-off between privacy and acceptable utility; hence, finding

a balance is often challenging. Complex encryption techniques and mathematical

operations require a Fully Homomorphic Encryption (FHE) scheme, which comes at a

high computational cost [62, 46]. Furthermore, HE techniques such as SEAL, ElGamal

and RSA, allow distributed computing between participants via encrypted ciphertexts

[225]. However, the privacy preservation, efficiency and applicability of HE are still

questioned [226]. The utilisation of ML models using homomorphically encrypted

datasets is possible [227]; hence, the scalability of these ML models is still challenging.

Besides the utility and scalability issues of homomorphic encryption techniques,

there are also particular attacks focused on them. In the work of Li and Micciancio [228],

the researchers successfully exploited popular open source homomorphic encryption

techniques such as HEAAN, SEAL, HElib and PALISADE. Additionally, in the work of

Chenal and Tang [229], adversary participants could successfully retrieve the private

keys used from these techniques.

2.8.1.5 Secure Multi-Party Computation

Secure Multi-Party Computation (SMPC) [230, 46] is another general-purpose crypto-

graphic method. SMPC allows two or more participants to jointly compute a function,

such as the training procedure of an ML model, revealing only the result to each par-

ticipant and no other information, such as sensitive training data of the other parti-
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cipants. SMPC maintains the privacy guarantees and protects an ML model during the

algorithm’s training against training data’s inference. Nevertheless, ML attacks post-

training, such as during the testing process, are still viable. The application of SMPC is

feasible in various ML algorithms, including logistic regression and DNNs; however, its

computational efficiency remains an open question [231, 232].

2.8.1.6 Differential Privacy

Differential Privacy (DP) [58] is a technique that mathematically ensures that the result

of a ML algorithm will remain the same no matter if a specific person’s data is part

of the ML training or not. That does not mean that the specific person’s data is less

meaningful than the rest, but instead, it means that all data have equal importance,

and the outcome is not biased in any of them. Thus, DP allows for the learning of

meaningful information about a given population, while it is impossible to expose any

private information related to an individual. The ML training using differentially private

datasets is less vulnerable to ML attacks related to data privacy, such as model inversion

and membership inference attacks.

A randomized mechanism A, is formally considered as (ε,δ) – differentially private,

if for any two-neighbouring databases D and D’ that differ in only one single entry, and

for all C that are in range (A), exists:

(2.1) P (A(D) ∈C ) ≤ eεP (A(D ′) ∈C )+δ

The privacy parameter ε, also referred to as privacy budget [233], presents the

probability that the algorithm’s output would differ in case of a change in even one

element. The second privacy parameter shown in the equation, δ, bounds the errors

and violations of the mathematical guarantee.

One can produce a DP algorithm with the addition of random noise, such as Lapla-

cian or Gaussian noises, carefully adjusted to the sensitivity of the output to variations

in the underlying datasets, and the privacy parameters ε and δ mentioned above.
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Figure 2.6: The privacy budget needs to be carefully chosen to balance utility and privacy.
Images from [236].

The noise can be applied to the training data or directly to the ML model’s parame-

ters. In the latter case, an adversary could not be able to distinguish between “closely

neighbouring model parameters” [198] and combat model encoding attacks.

DP and its variants [59, 233, 234, 59] have also been investigated as methods to

protect the confidentiality of ML training data. They have been applied to many ML

approaches such as linear regression, SVM, decision trees and neural networks. Hence,

the application of DP is focused on whether it can mitigate or minimise the information

leakage from those ML approaches. Hence, a more direct application of it directly to

the ML model’s parameters could be a more suitable defensive countermeasure to

combat sophisticated adversaries. When the noise is applied directly to the training

data, the output of the ML model is independent of the participation of any single

training sample. For the application of DP to DNNs, there is a specific DP stochastic

gradient descent algorithm [233]. In addition, the authors introduced the “moments

accountant” technique that measures the privacy loss of a DNN and simplifies the

trade-off between privacy and acceptable utility of the trained ML model, as it can be

seen in Figure 2.6. This trade-off is fundamental to all DP mechanisms, but a perfect

balance can be complex to be found, particularly for DP-learning, if the training data is

not balanced [235].

On the other hand, Abadi et al. [233] observed benefits of DP ML training since the

addition of noise made the ML models more manageable to circumvent biases derived

from specific training data. Therefore, accurate tuning of the privacy parameters and the

overall DP mechanism concerning each use case and acceptable utility loss is essential.
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Figure 2.7: The PATE design first trains multiple teachers and then one student model on top of
the teachers’ noised labels in order to achieve a differentially private student model. The figure
is from [237].

Another technique that utilises DP is Private Aggregation of Teacher Ensembles

(PATE) [237, 238]. In PATE, multiple teacher subnetworks are trained on distributed

sensitive datasets. Each teacher network predicts one class, and then Laplacian or

Gaussian noise is being added to this prediction [238]. Then, student networks are

trained on the DP predictions of the teacher networks instead of the actual sensitive

datasets. The output of PATE is only the student model, hence the enhanced protection

against ML privacy attacks. The overview of PATE can be seen in Figure 2.7.

2.8.1.7 MLPrivacyGuard

MLPrivacyGuard [239] is a countermeasure that aims to defend against model inversion

attacks. MLPrivacyGuard does not require ML re-training or any modification to the

ML system’s internal configuration and architecture. Generally, model inversion attacks

exploit precise returned confidence values; hence the MLPrivacyGuard technique adds

controlled noise to the output of the confidence function that follows a long-tailed

distribution [240] so that a model inversion attack can not converge. This method

maintains the functionality of the ML system reliable for legitimate users since they will

not be affected much by the less precise confidence values.

2.8.1.8 Knowledge Distillation

Knowledge Distillation (KD) [241, 242], is referred to the process in which the ML know-

ledge and the decision boundaries of a big, cumbersome trained model are transferred

into a smaller model. Initially, KD was developed to enable accurate and efficient ML
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on devices with fewer computational resources, such as mobile devices. The output

of the KD process is a distilled ML model that can classify each given input with high

confidence, almost similar to the original large ML model. Additionally, the distilled ML

model is robust against data privacy attacks, such as model inversion and membership

inference attacks [243, 244]. In the work of Wang et al. [243], the authors present that

the distilled ML models are robust against data privacy attacks due to differentially

private ML training that ensures each single training point has little influence on the

classification. Their ML training method is a two-step procedure, and only the second

step is disclosed and potentially available to the adversaries. Thus, the adversaries

never get direct access to the ML models of the first step, which were trained on the

private data, and the model inversion of the second step’s ML model does not reveal any

sensitive information about the training data. The work of Shejwalkar and Houmansadr

[244] presents a KD method specifically against membership inference attacks.

2.8.1.9 Anomaly Detection

A protection mechanism against model encoding attacks [196], as seen in Section 2.7.1.4,

is anomaly detection. The authors mention that the ML models’ developers need to

have knowledge of their model’s “normal” distribution in order to identify when an

anomaly occurs. However, this can be challenging, especially in situations of complex

ML models.

2.8.1.10 Defences Against Model Extraction attacks

As mentioned in Section 2.7.2, in Model Extraction attacks, adversaries extract an ML

model’s output weights aiming to steal all the model’s parameters to reconstruct a

similar one. In image classification situations, in which the end-users provide images

as inputs to the ML algorithms and receive predictions as outputs, it is possible to

include some noise to the “less important” pixels of the inputs images in order to make

the extracted output weighs noisy [245]. This defensive mechanism does not alter the

outputs of the ML model, the predictions and returned confidence values; thus, the

usage of the ML model remains the same for the end-users. A technique to identify the
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“less important” pixels in an image, the Grad-CAM method [246] can be used, which

relies on the gradients of the last layer in the DNN.

2.8.2 Mitigation Techniques for Security Attacks on ML Models

Various mitigation techniques against security attacks that exploit ML models, such

as Data and Model poisoning attacks and adversarial examples, are presented in this

section. The common ground of these attacks is that they aim to exploit and misuse ML

models, and in order to defend against them, the mitigation strategies need to have ML

model-specific characteristics.

2.8.2.1 Adversarial Training

A defensive method for DNNs that other ML algorithms can also incorporate is to use

adversarial techniques during the ML training procedure. In that way, the DNNs can

learn how a specific attack can be applied to them and defend against it. Adversarial

Training [247] can defend against data poisoning attacks, membership inference attacks,

and adversarial examples without degrading the ML model’s performance [173, 248].

The core idea of this technique is to train small batches of carefully crafted adversarial

data concurrently with legitimate training data. This allows the ML models to adapt to

anticipated adversarial changes; thus, the final trained model is more robust against

most ML security attacks. However, ML models might still be vulnerable to adversarial

examples due to their transferability [249]. In case the adversary creates adversarial

examples differently or adaptively to the defender, however, the successful defence

against them remains an open question [250, 251].

Nasr et al. [252] applied the idea of adversarial training to protect a DNN classifier

against membership inference attacks. The authors trained a merged classification

and adversarial loss, leading to highly accurate classifiers that, at the same time, are

robust against membership inference attacks if the adversaries do not have complete

knowledge of the training data.

The work of Beutel et al. [253] presents a defensive method for attribute inference
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attacks. The authors split the DNN into two separate networks, an embedding network

and a prediction network. In their experiments, they simulated adversaries that recon-

struct sensitive attributes derived from the embedding network and force the complete

network to learn an internal representation that is independent of these attributes.

In a similar fashion, the work of Osia et al. [254] aims to solve privacy issues of IoT

devices. The authors split the DNN into an embedding network called a feature extrac-

tion network, and a prediction network. The end-user device’s embedding network is

being executed before data is transmitted to an ML server for prediction.

2.8.2.2 Random Self-Ensemble

In the work of Liu et al. [255], the authors present Random Self-Ensemble (RSE) as a

defence against adversarial examples for DNNs. The authors add random noise layers

to the DNN during its training and testing procedures. This randomness adapts an ML

model into an ensemble of ML models (with differently sampled noise) without requir-

ing to train multiple classifiers. During the testing procedure, multiple predictions are

merged together by averaging or majority voting. The random noise disrupts gradient-

based attacks that generate adversarial examples. Additionally, this randomness could

also enhance the protection against other ML training data privacy attacks, such as

membership inference and model inversion attacks.

2.8.2.3 Defences Against Data Poisoning Attacks

Data poisoning attacks pose a threat in cases where the sensitive ML training data are

not derived by a trusted source. Adversaries can alter a small portion of the sensitive

training data in order to poison the ML algorithm and misclassify some predictions

during the ML testing procedure.

These poisoned ML training data samples can be referred to as outliers, which are

an inherent issue of other statistics fields. There have been various countermeasures

against this type of attacks such as robust statistics and aggregations [256, 257, 258, 259],

data sanitization [260, 204] as well as ensemble methods [261].
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ANTIDOTE [256] does not allow poisoning attacks to shift the false positive and false

negative rates in any significant way. Also, this defence rejects much of the contamin-

ated data and continues to operate as a denial of service defence, even in the case of

poisoning.

The bagging ensembles technique [261] trains multiple classifiers on specifically

sampled training data. The training data is sampled according to its probability, which

is estimated using a kernel density estimator; thus, outliers and poisoned samples will

be underrepresented in the training data. Their study shows that if the first probabil-

ity estimate on samples can be correctly estimated, the classifiers are robust against

poisoning attacks. Since the approach only modifies the training data, it applies to any

ML model type. This may be an effective general technique to address the problem of

poisoning attacks, regardless of the base classification algorithm.

Data sanitizing [260, 204] and Byzantine-robust aggregation techniques [257, 258,

259] can also be effective in the mitigation of data poisoning attacks. However, due to

their complexities, careful consideration should be given [46]. Nevertheless, depending

on each use case, adversaries that follow adaptive attacking methods need to be taken

into consideration. For example, if the ML model is constantly re-trained, adversaries

can gradually shift the ML training data distribution.

2.8.2.4 Defences Against Model Poisoning Attacks

The security research community is very active in the development of promising de-

fences and mitigation countermeasures against model poisoning attacks. There are

three prominent techniques that vary in their assumptions of the attacker’s and de-

fender’s capabilities.

Activation clustering [262] designed to detect backdoor triggers in the training

data for DNNs. The detection is based on the observations that the activations of the

neurons differ significantly between poisoned and honest data of the same label in

the last hidden layer. Thus during the authors’ experiments, the clustering enables

to distinguish poisoned and honest data accurately. Activation clustering is useful

in situations that the defender has full access to the ML training data including the
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backdoored poisoned data and wishes to sanitise the dataset before the training of the

final ML model.

Fine-pruning [263] is another two-step procedure to remove backdoors from DNN

models. The first step is pruning, which removes neurons that are not activated by

clean verification data. These “dormant” neurons may be activated to backdoor triggers.

However, in situations where the adversaries have knowledge of the pruning step, they

can adjust their attacks to it and also activate neurons for some honest data given

the backdoor triggers. Hence, the authors propose to add a second step, fine-tuning,

which re-trains the network on a small set of clean data. The neurons’ weights are being

updated during this process, and the authors believe that the neurons would “forget” the

backdoor triggers, as they presented in their experimental evaluations. Fine-pruning

does not require access to the complete ML training dataset, but only to a small, honest

dataset. The final trained ML model also needs to be modified before it can be used,

however, it does not require a complete ML training as needed in activation clustering.

STRIP [264] technique is able to detect backdoor triggers of the inputs to the trained

ML model and thus mitigate their negative impacts. The authors note that STRIP

exploits the backdoor triggers that influence the ML model’s output independently from

the rest of the input, in their case an image. Therefore, perturbations of backdoored

images do not change the model’s output, while perturbed benign data leads to more

diverse classifications. Furthermore, the authors test different types of backdoor triggers

and find that in all cases, the entropy difference to benign inputs correctly detects

malicious inputs including such backdoor triggers. As opposed to Activation Clustering

and Fine-pruning, STRIP does not substitute the ML model, since the goal is to detect

the backdoor during the execution time. Similarly to Fine-pruning, only a small set of

honest data is required to employ it.

2.9 Summary

In the literature, the majority of the proposed solutions that try to improve DNS require

reinventing many of its features or even the whole of it. Judging from the adoption of
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proposed solutions, it might take longer than expected as the whole internet infrastruc-

ture is built on top of the existing DNS form. Consequently, priority should be given to

the creation of systems that can be implemented on top of the existing functionalities

of DNS, securing it by always taking privacy into serious consideration [66].

In the healthcare domain, the current solutions in the literature do not fully pre-

serve the privacy of the stored records, often are not GDPR-compliant, their records’

reading/storing performance is poor compared with traditionally implemented in-

frastructures, and they cannot scale adequately in order to be adopted by real-world

healthcare infrastructures. The comparison of the related works can be seen in Table 2.1.

The technologies of the compared works are distinguished to Access Control Scheme

(ACS), Ethereum (ETH), Bitcoin (BTC), agnostic, peer-to-peer and Hyperledger Fabric

(HLF). Hence, an infrastructure that addresses the identified gaps by creating a privacy-

preserving healthcare architecture that is GDPR compliant, with improved performance

and enormous scalability in comparison with the other related systems is critical [67].

Table 2.1: Comparison of blockchain-related record storing and management works in the
literature related to the healthcare domain [67].

Method Technology Access Verifiability Privacy-Preserving GDPR Scalability

[265] ACS Private Private 7

[124] ETH Private Public 7 7 7

[136] ETH Private Public 7 7

[135] ETH Open
Public/

Private
7 7

[266]
BTC/

Agnostic
Open Public 7

[139] Agnostic Open Private 7 7

[129] Peer-to-peer Private Private 7 7

[134] HLF Private Private 7 7

Finally, regarding the adversarial attacks against ML algorithms, it has been seen

that currently, there is no complete solution in the literature that mitigates a broad

range of them. However, the impact of these adversarial attacks is often preliminary

and cannot be assessed by security professionals [69]; hence, a combination of privacy-

61



2. LITERATURE REVIEW

preserving solutions with other privacy-respecting technologies can aid against some

of these adversarial attacks by creating trusted ecosystems [68].

2.10 Conclusion

This chapter provided the literature review related to the core topics of this thesis. The

three main areas are related to: i) the application of blockchain technologies to critical

sectors such as the passive DNS and healthcare, since they need to ensure the privacy of

the individual data subjects, ii) ML-supported infrastructures that aim to analyse vast

amounts of data more efficiently than humans, and iii) the privacy and security issues

and concerns of ML algorithms and architectures, including a set of countermeasures

against them. In the following chapters, a set of experimental investigations is presented,

aiming to solve some of the issues mentioned above, as well as fill the research gaps

identified in the literature.
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Ensuring Data Privacy using Blockchain

3.1 Introduction

This chapter addresses the Objective I presenting a novel privacy-preserving pass-

ive DNS infrastructure utilising a distributed ledger technology. Additionally, to fur-

ther demonstrate this technology’s benefits and flexibility, by utilising the similar key-

characteristic, a healthcare scenario demonstrated related to the secure management

of sensitive electronic health records, addressing the Objective II.

In the last few years, malicious infiltrators have continuously exploited the tradi-

tional prevention and mitigation systems through security breaches and further issues.

The main reason for these exploits is that systems that are still in use and are funda-

mental pieces of the internet had not been created with security in mind. One of these

vital legacy systems is DNS. DNS is commonly a target to malicious parties directly or

indirectly due to its importance [66, 43]. These malicious parties exploit DNS in order

to perform botnet and sophisticated social engineering attacks. As a result, researchers

performed a survey to identify corporations that have been affected at least once by

a DNS-related attack and revealed that 82% of the corporations fell victims to it [267].

However, the same report revealed that the average number of DNS-related attacks

reaches 9.45, with the average cost of damages approaching the tremendous value of

$1,000,000. The most common type of DNS-related attacks has been revealed to be

Phishing, with other serious abuses following, such as Malware variants, Distributed

63



3. ENSURING DATA PRIVACY USING BLOCKCHAIN

Denial of Service (DDoS) attacks, and DNS Tunnelling attacks [267]. Commercial cyber-

security vendors such as Trellix1 (previously known as FireEye2) often publish reports

related to DNS attacks, such as Global-scale DNS hijacking attacks for DNS record

manipulation at large scale [268].

A matter of great importance is that one is not required to possess any sophisticated

networking and cybersecurity knowledge and skills in order to execute a DNS-related

attack. The most common example of this is related to phishing attacks. Adversaries

could simply acquire a domain name that will host their malicious content. To choose

the most appropriate domain name for higher chances of abuse, the adversaries can

perform a number of domain name squatting techniques or one of the domain name

homograph and homophone spoofing attacks [76, 80, 75].

Additionally, countermeasures that aim to protect against DNS abuses often require

input derived directly from the end-users. However, this input, often in the form of

the end user DNS records, includes sensitive details such as IP addresses, which are

considered sensitive by the GDPR [4]; since, if IP addresses are not fully protected,

adversaries and malicious insiders can correlate them back to the end-users, exposing

their identity. Hence, the end-users rely solely on trusting that the provider of the

countermeasures followed all the necessary security mechanisms to keep this data

confidential.

The dependability of simply trusting data handlers is prevalent in other domains,

with healthcare being the epitome of this issue. Patients rely entirely upon various

healthcare organisations that store and manage their electronic health records, often

using legacy systems and not secure-by-design approaches.

However, an innovative distributed ledger technology, namely the Hyperledger

Fabric framework [13], can mitigate some of the issues mentioned above and create

privacy-preserving infrastructures that can be built on top of the existing legacy systems.

1Trellix: https://www.trellix.com/
2FireEye: https://www.fireeye.com/
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3.2 Hyperledger Fabric Private-Permissioned Distributed

Ledger Technology

Permissioned distributed ledger technologies were originally developed for small to

medium enterprises networks where the identity of each participating entity can be

validated. Hyperledger Fabric [13] is a distributed ledger technology where each action

of the participating entities can be specified. The blockchain can be private to one or

multiple organisations that form a consortium. It is also possible that different ledgers

can be present, and only authorised organisations and entities have access to them.

The consensus mechanism can be defined during the time of creation, and complex

fault-tolerant algorithms can be used for each transaction’s validation [13]. Each entity

validates itself on each action on the ledger, and a Membership Service Provider (MSP)

is used to generate and validate their identities. Hyperledger Fabric allows the use of

chaincode to perform actions on the ledger. Chaincode is a blockchain program that

runs autonomously, performing a set of actions defined by the developer [13]. It shares

the same logic as the smart contracts of Ethereum [12]; though, the main difference is

that in Ethereum, the program code is written in a blockchain-specific programming

language, named Solidity. Nevertheless, in Hyperledger Fabric the chaincode is written

in general-purpose programming languages such as Java, Javascript or Go [13]. The

transactions in Hyperledger Fabric adhere to the following order:

• Execution – Each peer executes the chaincode according to the designated policy

to interact with the blockchain ledger, and signs the transaction with its obtained

credentials from a Membership Service Provider (MSP); an entity that is respons-

ible for the identities’ management of all the participants.

• Order – Each peer sends the constructed transaction to the Ordering Service,

which is a group of nodes also referred to as orderers. The orderers are able to

combine various accepted transactions into a single block that is transmitted to

all participating peers.
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• Validation – Each peer receives the block of transactions, verifies these transac-

tions according to the specified policy, and updates its local ledger state.

Hyperledger Fabric employs novel security mechanisms such as the Private Data

Collection, which allows specific data to be accessed only from particular authorised

participants [269]. Additionally, Hyperledger Fabric is able to utilise sophisticated Zero-

Knowledge Proof (ZKP) security mechanisms to create authorised identities and ensure

the anonymity of its users, such as the Identity Mixer (Idemix) cryptographic protocol

[270]. Each participant is associated with an identity certificate in order to interact with

the distributed ledger. The identities issued are X.509 digital certificates signed by the

Certificate Authority (CA) and examined by the corresponding MSP. These identities can

be generated with the cryptogen tool for development environments during the creation

of the system [269]. The X.509 digital certificates issued by the CA involve cryptographic

techniques that use the public keys of the users in combination with the private key of

the CA [271].

Additionally, Hyperledger developed various projects such as Hyperledger Iroha,

Burrow, Cello, Composer, and Explorer - combining features from other blockchain

technologies, extending its capabilities and offering quality-of-life improvements to

its developers [272]. Hyperledger Composer is an extension of the original project

that offers the creation and management of a blockchain project in a development

environment. Hyperledger Explorer provides a visualisation of the whole blockchain

network to its developers, thus enabling its management via a graphical user interface

[273]. A visualisation of a blockchain network can be seen in Figure 3.1.

In Hyperledger Fabric, the participating entities can be constructed using Docker

containers. A Docker container [158, 274] is a virtualisation method, often confused

to a Virtual Machine (VM). Docker containers use the host operating system instead

of their own, contrary to VMs, and only the Dockerised applications run isolated. The

Dockerised applications include all the related programming code and dependencies to

execute effectively. Moreover, a Docker container is a lightweight deployment compared

to a typical virtual machine, that needs fewer resources while providing the same
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(a) User interface of a distributed ledger infrastructure

(b) Data blocks of the distributed ledger

Figure 3.1: Visualisation of a distributed ledger infrastructure using the Hyperledger Explorer.

functionality from the blockchain’s perspective. Another critical feature that extends

their capabilities is that multiple Docker containers can exist under the same Kubernetes

cluster. Kubernetes [158] is an open-source platform, created by Google that allows the

orchestration and management of groups of Docker containers. Co-existing Docker

containers form a Pod that can be separated from other Pods in the same Kubernetes

cluster. Kubernetes offers semi-infinite scalability to its applications since new Docker

containers can be added automatically when needed, sharing the same features as

the rest of them. Kubernetes provides self-recovering capabilities from fails to its
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applications, alongside the management of the distribution of hardware units [158].

In Hyperledger Fabric the scalability is considered from the number of peers, or-

ganisations, ordering services and channels. The chaincode that contains all the block-

chain’s logic and security structures is installed and instantiated in the peers and the

orderer nodes [13]. The main advantage of chaincode written in Go programming

language is that it requires fewer resources to run in each container than in Javascript,

that needs a library of modules to be installed. During the creation of the blockchain

network, the state database that each entity is going to use can be defined. An example

of that is CouchDB [275].

CouchDB is a complete database available in Hyperledger Fabric that stores data

in key-value pairs and also offers rich queries to them. Using rich queries from the

CouchDB and a set of APIs, data can be available to users in many forms, covering their

needs and extending the capabilities of the infrastructure as a whole [275].

Peers possess the most crucial role in the blockchain network since they install the

chaincodes and host the blockchain ledgers. Peers can communicate privately with

other participants by hosting multiple ledgers and chaincodes. That can be achieved by

creating private Channels where groups of peers can interact privately with participants

only within the channel. Each peer should join a channel to interact with others and

perform actions on the ledger. In addition to that, peers are part of Organisations. A

group of peers forms an Organisation, and the permissions of the whole Organisation

could be defined by the established policies [269]. The blockchain network is formed

by different organisations, that all together form a consortium [273]. In the case that a

peer fails, the other peers continue to operate normally. When the peer recovers back, it

uses the gossip protocol to update its ledger from the other peers [13].

Each peer holds its identity certificate, which has been composed by the CA. This

certificate is a .X509 digital certificate that contains all the required information about its

owner [269]. For the validation of those certificates, another entity, namely Membership

Service Provider (MSP), verifies and authenticates each participant’s identity. This entity

analyses and manages all the cryptographic certificates that peers use to interact with

the distributed ledger [13].
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The Ordering Service is the entity that receives the transactions from the peers and

updates the distributed ledger according to the defined consensus mechanism. In test

environments, only one orderer is needed to create the distributed ledger’s blocks. The

problem of a single point of failure arises for the writes in the ledger. It can be easily

prevented in a production environment where more ordering services are being used

under a Kafka [276] or RAFT [13] cluster. In Hyperledger Fabric, the Apache Kafka and

RAFT can be used to create a cluster of ordering services to create new blocks on the

ledger. Peers of the blockchain network are sending the transactions directly to the

Kafka or RAFT broker, which handles and specifies the orderer that is going to create

the new block. In situations of an orderer failure, the operations of the blockchain can

be continued normally, as long as one or more orderers are still available [13]. When the

orderer approves a transaction, it broadcasts it to the peers to update their own ledgers,

where each of them is performing a validation of the transaction. Peer nodes that

approve the transaction are updating their local ledgers. A peer node is participating in

the agreed consensus mechanism for the rest of its life cycle since it has to ensure that

the data it possesses remains valid [277]. The Developer/Administrator of the blockchain

defines the consensus that the orderers and peers use to approve or reject transactions

during the development of the architecture [269].

The administrators are configuring the agreed consensus protocol in Hyperledger

Fabric. It is not a Proof-of-Work or Proof-of-Stake algorithm; instead, it can be con-

figured to be one such as Paxos, RAFT or even one of the BFT algorithms. Since the

agreed consensus protocol is something different than resource-hungry PoW, the per-

formance of the blockchain is better. Hence, with a BFT consensus protocol, it is able

for the system to defend in situations where adversaries took control of some peers,

continuing its operations normally [23].

For each transaction in Hyperledger Fabric, each peer is executing the installed

chaincode and signs its result with his identity. The corresponding MSP examines its

identity, and if it succeeds, it sends the transaction to the orderer. According to the

defined consensus, the orderer rejects a transaction or creates a new block on the ledger,

signs it with its own identity and delivers it to the peers. Lastly, each peer that receives
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the new block checks the orderer’s identity and then saves it to its correlated ledger.

Transactions are stored in a state-database on each peer with the most common being

GoLevelDB and CouchDB [275].

Another essential feature of Hyperledger Fabric is the gossip protocol. Peers can

initiate the gossip protocol after a crash, to query other peers of the network, for po-

tential updates to the ledger [13]. Furthermore, peers are using the gossip protocol

to update their private data collections that only authorised entities hold a copy of it.

Since Hyperledger Fabric v1.2, private data collections can be created and configured to

allow access to specific data only to authorised participants in a single channel. The

private data is sent peer-to-peer to each authorised participant via the gossip protocol.

All the other peers have a hash of the data for proof of evidence in auditing. Private

channels are used over private data collection when peers want to keep entire ledgers

and transactions private, instead of situations where only a subset of fields must remain

private. Consequently, when it comes to private data collection, the data is transferred

peer-to-peer; it remains private from the ordering service and even the administrators

of the blockchain [13, 269].

Hyperledger Fabric provides the necessary chaincode APIs to extend the functional-

ities of the peers by utilising command-line (CLI) tools. These APIs are distinguished

in the Init API, Invoke API and Query API. The Init API is used when initialisation or

upgrade of the chaincode is executed. The Invoke API and Query API are used when

storing or reading transactions to the ledger have been performed [13, 278].

Peers of the blockchain can store data on the ledger using Hyperledger Fabric’s

Invoke API and CLI tools. First, they have to specify their identity and then use the

Invoke API with the corresponding storing function and the arguments in JSON format

to send each transaction to the orderer. The orderer receives the data and performs the

storing function defined. In case of success, this procedure will create a new block on

the ledger and will send an update signal to each of the peers to update their ledgers

[13].

To receive data from the ledger, peers use the Query API, sending a query transaction

to the orderer. Peers should specify their identity and then use the query function with
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the arguments in JSON format to send the transaction to the orderer. The orderer

receives the transaction and in continuation, displays only the allowed data to the

recipients according to the defined query function and the private data collection

configuration. The specified identity functionality enables a peer to query only specific

blocks [13].

The chaincode is installed to all the peers and instantiated from the orderer. To

store data in the blockchain ledger, the CLI tools can be used via the command line of

the docker containers’ interface. Additionally, the blockchain’s administrator is able

to configure a Hyperledger Fabric Sofware Development Kit (SDK) to interact with

the blockchain. SDKs are tools that the administrator can use to manage multiple

channels, install and instantiate chaincode or simply invoke and query transactions.

SDKs are communicating directly with the Hyperledger Fabric’s APIs for each process,

and the officially supported SDKs are written in Node.js and Java. There are more SDKs

written in Go, Python and Rest that are available for testing [269]. Without an SDK, the

administrator can only use the CLI tools for each process [13].

Data stored in the blockchain’s immutable ledger cannot be manipulated by po-

tentially malicious actors. Each transaction is authorised by the policy, thus making

unauthorised requests to be rejected automatically. Each participating entity prior to

interacting with the blockchain, needs to install the associated chaincode that con-

tains all the blockchain logic and security mechanisms. A collection configuration is

developed to advise the orderer about the state of the stored data, the time of their

availability until they purge and each corresponding entity that has access to them. Any

access attempt by unauthorised entities is denied. Only authorised entities are allowed

to store and receive data from the ledger. Each peer is obliged to prove its identity to

the orderer before each transaction. According to the configured policy, the store and

query transactions are restricted to peers which are not included in the policy. These

fundamental principles eliminate the possibility of a malicious actor to store arbitrary

data to the ledger without the correct identity. Furthermore, a malicious actor is not

able to query data at all. The private data can be queried only by specified entities and

the rest of the data are available only to participants [13].
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Last but not least, in Hyperledger Fabric, the erasure of stored data records is pos-

sible depending on the implemented configuration of the architecture, satisfying the

GDPR’s right to be forgotten [279]. However, the infrastructure can also be configured

in such a way that the history of the deleted record will still be visible on the ledger, as

well as the point in time that the deletion occurred. Hence, even though the last state

of the data record could be omitted, its history and the fact that it has been deleted at

a certain point could be visible to all the participants of the infrastructure that have

access to this record.

3.3 Privacy-Preserving Passive DNS

The DNS was not created with security measures in mind. Hence, its subcategory,

passive DNS, suffers from many of its issues, too. Passive DNS is a technique that can be

used to identify potential malicious intents and misuses. However, even if this technique

offers many advantages, the privacy issues with passive DNS are inherited from DNS

and are often neglected. Since passive DNS records consist of sensitive data such as

the IP addresses of the end-users that performed the DNS query and the servers that

resolve them, mishandling of them could have critical consequences. Data regulations

and cybersecurity frameworks such as the GDPR and NIST regard the IP addresses as

personal-sensitive data since they can be used to associate end-users identities from

their internet behaviour [280, 107].

As an example, in a scenario, whereas a passive DNS records collector is placed

within the DNS servers of an internet service provider, sensitive information such as

the external IP addresses of the end-user that performed a specific DNS query could

be disclosed. This issue could lead to DNS profiling, which can have tremendous

consequences such as blackmailing or exploiting further social engineering attacks.

A privacy-preserving Passive DNS infrastructure built on top of a blockchain frame-

work and can solve a few of the issues mentioned above is the Privacy-Preserving

Passive DNS (PRESERVE DNS) [66]. The chosen blockchain framework is the private-

permissioned Hyperledger Fabric distributed ledger technology to store the passive
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DNS database that only authorised entities can access. Utilising it, the further analysis

of the passive DNS database for identification of malicious intents and misuses can

occur in a privacy-preserving way, revealing only non-private information to the se-

curity researchers since not all the data of a DNS record is private. At the same time,

the entities that stored their passive DNS data into the ledger can view all the data,

including the sensitive information, similarly to storing their data in a traditional data-

base. A matter of great importance is that in PRESERVE DNS, the stored private data

are completely hidden from all the non-authorised participants, even from the block-

chain administrators. This enhances the security of the system, even more, preventing

even the possibility of malicious insider attacks. A further contribution of PRESERVE

DNS is that it can be incorporated into the existing systems and infrastructures with

minor modifications, without requiring to re-invent and alter the DNS processes and

procedures. The evaluation of PRESERVE DNS alongside a critical comparison of it with

other related works, including a traditional database that offers column-level privacy, is

presented in the following sections.

3.3.1 Architecture and Implementation

This section presents the complete architecture of the system alongside all the details

related to the technical implementation and the proof-of-concept.

The PRESERVE DNS implementation can be seen in Figure 3.2. The proof-of-

concept comprises a set of various devices in a network that uses the internet. These

devices execute various operating systems such as Windows, MacOS, and Linux. One

of these devices, namely the Distributed Infrastructure, acts as the DNS resolver of the

network. This particular device is a Kubernetes cluster that consists of multiple docker

containers that act as one device. The role of the DNS resolver is to resolve each DNS

query that any of the participating devices have, employing Google’s public DNS servers

[281]. The resolver is configured using the popular Berkeley Internet Name Domain

(BIND) version 9 [282]. Additionally, this DNS resolver captures each DNS resolution

record into a passive DNS data collection, using the Passivedns tool from Gamelinux
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[283], and stores the collection in a blockchain ledger for further security analysis in a

privacy-preserving manner. A typical passive DNS record comprises of data fields such

as the A, AAAA and MX records, the Time-To-Live, the queried domain name alongside

its IP address translation, and the IP addresses of the client that performed the query,

and the DNS server that performed the resolution of it. However, as it can be seen,

a number of the stored fields, such as the IP addresses of the client and server that

participated in the DNS query and resolution, are sensitive details and need to be kept

private.

Figure 3.2: PRESERVE DNS proof-of-concept implementation architecture for the test data
collection [66].

The proof-of-concept implementation of the blockchain can be seen in Figure 3.3.

According to the scenario, the blockchain components have been configured, including

two organisations with two peers each, one MSP and one Orderer. The role of Organ-

isation 1 is to simulate the end-users that stored their passive DNS records into the

blockchain ledger, and Organisation’s 2 to simulate the other participants that analyse

the passive DNS data collection to identify potential misuses. As seen previously, a
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DNS record consists of a number of sensitive data fields alongside a few others that are

required for proper security analysis. Hence, utilising the Private Data Collection fea-

ture of the chosen blockchain framework, the private records can be kept in a separate

private blockchain ledger, stored only to the authorised peers’ state databases (such as

Organisation’s 1 peers), whereas all the participants have access to the rest of the data

fields. The chosen state database for all the peers is the CouchDB, in order to provide

rich queries to the passive DNS records [275]. The MSP entity’s role is to check and

verify each participant’s identity certificates in order to allow it to access the blockchain

ledger. Unauthorised entities that do not possess legitimate identity credentials are

being rejected immediately without having access to any of the blockchain ledgers. The

Orderer entity’s role is to create the new blockchain blocks according to the installed,

approved and committed chaincode, and then broadcast the newly created blocks to

the other participating peers. The chaincode is written in Go programming language, it

is installed in all the peers and the orderer, and has been approved and committed by

all the participating organisations. All the participants in this proof-of-concept are in

the form of Docker containers, and to prove their identity to the MSP, they use X.509

digital certificates signed by the infrastructure’s CA [271, 284].

Figure 3.3: PRESERVE DNS Hyperledger Fabric Infrastructure [66].
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To interact with the blockchain ledgers, the peers need to use the CLI tools, more

specifically the Query and Invoke APIs [278], and after their verification, the query or

the storing to the ledger could occur. It should be noted that the contents of the private

ledger are only available to the peers of Organisation 1, and no other entity can access

them, not even the administrators of the blockchain. The rest of the authenticated

participants can only access the contents of the public ledger.

The peers, during their interaction with the Hyperledger Fabric APIs, provide their

arguments in JSON format. Consequently, the responses they receive follow the same

format. To use the Query API, the participants should first declare their identity to the

MSP, and then provide their blockchain arguments such as the domain name they want

to query or the IP address of the webserver to the Orderer. Additionally, to query the

Private Data Collection, the authorised participants should use the specified private

function that is part of the installed chaincode. Similarly, to use the Invoke API and store

further data to the blockchain ledger, the participants should declare their identities to

the MSP, provide all the necessary data fields in key-value pairs, and then send them to

the Orderer.

The consensus mechanism in this proof-of-concept requires at least one peer from

any organisation to accept the transaction to be considered valid by the Orderer. How-

ever, a more complex consensus mechanism could be developed in a production envir-

onment, such as a PBFT mechanism.

The technical infrastructure mentioned above provides quicker reading and storing

transactions compared to other blockchains and has been evaluated in the following

sections. From its nature, since Hyperledger Fabric is private, the transactions are

quicker compared to traditional blockchains such as Bitcoin [285]. As an example,

in Bitcoin, groups of transactions form a new blockchain block, and a new block is

being created every ten minutes approximately, compared to thousands of transactions

per second in Hyperledger Fabric [13]. The other similarity but only in-context with

Bitcoin blockchain is the role of peers compared to miners [286]. In Bitcoin, each miner

needs to hold the entire record of transactions from the genesis of the blockchain ledger

until the most recent transaction, which often requires an enormous size in gigabytes.
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Instead, in Hyperledger Fabric, the peers may have a lightweight hashed version of all

the transactions that happened in the blockchain ledger’s lifecycle, but the actual data

(which are larger in size) are stored only to their corresponding authorised peers and

not to all of them.

3.3.2 Evaluation and Discussion

In this section, an extensive evaluation of PRESERVE DNS is presented. This section is

split into three subsections that include a security evaluation of the infrastructure, a

performance comparison against other related works and a traditional database with

column-level encryption, and finally a presentation of other related works and how

PRESERVE DNS differentiates from those.

3.3.2.1 Security Evaluation

Adversaries exploit widespread DNS attacks such as DNS cache poisoning [287], DNS

fast-flux attacks [103], and DNS DDoS [104]. The experimental implementation of

PRESERVE DNS presented previously is focused on the storage and analysis of passive

DNS data. However, with some modifications, it can also be used to support active DNS

approaches and mitigate the aforementioned attacks.

More specifically, to defend against DNS cache poisoning attacks, the distributed

ledger can be configured as the DNS database that each network device uses to resolve

each domain name to an IP address. It should be noted that the network devices

should also be configured accordingly to use this distributed ledger as the first point

of domain name resolution instead of the local DNS cache. In DNS fast-flux attacks,

adversaries quickly change the malicious IP addresses corresponding to a specific

domain name by using short-timed Time-To-Live (TTL) records to avoid detecting

and blocking malicious operated servers. In PRESERVE DNS, the TTL of the records is

configured by the blockchain administrators and defines how many blocks a certain

DNS record is kept on the ledger until purged. To prevent a DNS DDoS, the blockchain

infrastructure is, from its nature, distributed. The blockchain’s peers in Hyperledger
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Fabric are in the form of docker containers alongside their own version of the ledger.

In order for adversaries to successfully perform a DDoS attack against the peers of

the blockchain, all of them should be attacked, and fail at the same time, which is not

realistic. It should be noted that if this infrastructure is placed in a Kubernetes cluster,

then the service can automatically restart failed peers, create identical peers to take

their place until recovery and perform load balancing to avoid failures. However, a

number of specific participating entities such as the orderers should also be configured

accordingly to defend against this attack. In PRESERVE DNS, the proof-of-concept

utilises only one orderer and is potentially vulnerable to this type of attack. However,

this issue is easily combated in a production environment by using a cluster of orderers

such as a RAFT cluster [288].

Additionally, some zero-day and DNS amplification attacks that elaborate on the

alteration of the stored data can be mitigated, too. These attacks require the alteration

of the stored data, which is not possible in blockchains, is recorded and can be quickly

identified if it happens, and is not allowed to unauthorised participants.

PRESERVE DNS offers operations resiliency since it is composed of various peer

nodes and databases distributed among the system and no single point of failure. As

long as even one peer node is available on the system, all the operations can continue

ordinarily [289].

Blockchain ledgers, from their nature, are immutable, and each change to their

stored data is recorded and can be identified easily. In Hyperledger Fabric specifically,

the infrastructure’s participants need to be authorised, hold and present their valid

credentials every time they interact with the blockchain ledger. Unauthorised access

is not allowed, and any interaction with the ledger is rejected automatically. Each

blockchain action is defined in the chaincode that is installed in all the participating

peers and orderers, accepted and committed by all the organisations.

However, a potential hazard to the PRESERVE DNS is the human factor. It is the

most vulnerable point of the system’s security, and effective key management plays a

critical role. If adversaries acquire a peer’s credential certificates, it is possible for them

to view the blockchain ledger and potentially arbitrarily alter some of the stored data.

78



3. ENSURING DATA PRIVACY USING BLOCKCHAIN

The former case is difficult to impossible to be prevented; however, the latter case can

be prevented if a more complex consensus mechanism is present in the system, such

as the PBFT consensus mechanism that is designed to resist the scenario of malicious

participants. Another threat for PRESERVE DNS is potentially the chaincode itself. As

seen previously, chaincode is an autonomous program that executes independently.

However, it is developed by humans, and it may contain security flaws that have been

identified later in its lifecycle, even if it has been carefully inspected [66, 13]. Finally,

there may be technology advancements and prevalent future attacks that would be able

to exploit the current generation’s blockchain security mechanisms. One of them is

quantum computers, since quantum computers perform calculations differently from

the current systems, common cryptographic techniques may be obsolete and be quickly

broken by them [118].

3.3.2.2 Performance Evaluation

Furthermore, PRESERVE DNS can be evaluated regarding performance related to met-

rics associated with the transaction times. Hence, the two transaction types, query

and store, can be compared with other related technologies, such as Blockstack [115]

and a PostgreSQL database [290] with column-level encryption. Since PRESERVE DNS

is a blockchain system that aims to secure the DNS infrastructure, a directly related

in-context system is Blockstack. Additionally, a typical query in the literature related to

the utilisation of private-permissioned blockchains is if this type of blockchain is more

efficient than traditional databases such as PostgreSQL. PostgreSQL offers column-level

encryption similar in-context with the Private Data Collection feature of Hyperledger

Fabric [66]. DNSTSM [116] is another blockchain system directly related to PRESERVE

DNS. However, since their architecture is developed using an older version of Hyper-

ledger Fabric, the crucial Private Data Collection feature is not present; hence only a

security comparison is feasible, as presented in Table 3.1.

As illustrated in Table 3.2 and Figure 3.4, the performance metrics to read and write

data to the compared systems can be seen. The technical specifications of the system

that hosts the blockchain system are as follows: 6th Generation 2.0GHZ dual-core
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Table 3.1: Comparison of Methods [66].

Method Attack Thwarting User privacy Existing DNS infrastructure

DecDNS Liu et al. [282] X

Liang et al. [113] X

Namecoin Kalodner et al. [114] X

Blockstack Ali et al. [115] X

DNSTSM Yu et al. [116] X

PRESERVE DNS

Intel Core i5 CPU, with 8GB RAM running at 1866 MHz and 256GB PCIe-based flash

storage. The amount of data is split into batches of 10, 1000, 10,000, 100,000, and

1,000,000 records to compare PRESERVE DNS using CouchDB, Blockstack using Gaia

decentralised storage [266], and a PostgreSQL database with column-level encryption.

PostgreSQL is the quicker system to query a smaller number of DNS records with a

linear increase to the query times concurrently with the increase of the total stored

records. A similarity with DNS records stored in Blockstack’s Gaia decentralised storage

method is that they are stored off-chain in key-values pairs, similar to the PRESERVE

DNS. However, the query times in PRESERVE DNS is quicker than Blockstack and

remain the same despite the stored DNS records increase. The number of stored DNS

records in production environments usually consists of millions of DNS records; hence,

PRESERVE DNS advantages could be further highlighted.

Table 3.2: Read Data/Write Data transaction time in milliseconds (ms) per number of DNS
entries [66].

Number of DNS Entries 10 1000 10,000 100,000 1,000,000

PRESERVE DNS
Read Data 180ms 180ms 180ms 180ms 180ms

Write Data 230ms 230ms 230ms 230ms 230ms

PostgreSQL Database
Read Data 2ms 3ms 10ms 44ms 220ms

Write Data 4ms 5ms 6ms 9ms 11ms

Blockstack Ali et al. [266]
Read Data 360ms 360ms 360ms 360ms 360ms

Write Data 530ms 530ms 530ms 530ms 530ms

To conclude the performance evaluation of PRESERVE DNS, the CPU and Memory

usages benchmarked, with the results presented in Figure 3.5 and 3.6. The CPU bench-

marks revealed that reading data from the presented system is efficient and consume
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Figure 3.4: Read Data transactions overhead [66].

5%-10% of the CPU in diverging numbers of DNS records, such as 1000, 10,000, 100,000

DNS records. Similarly, writing data to this blockchain system requires less than 20%

CPU usage. The CPU benchmarks present each blockchain node’s usage, which are

identified as Peer0, Peer1 of Organisation 1 and 2, respectively. As seen previously, all

the blockchain nodes are in the form of docker containers. The last entity benchmarked,

named CLI, is the docker container that is used to utilise the Hyperledger Fabric’s

command-line interface and transmit the DNS records and blockchain commands. The

CPU usage of CLI fluctuates quickly, which is expected since it is the first point of inter-

action with the rest of the blockchain system. Furthermore, the memory utilisation of

the blockchain’s nodes for the diverging number of records (1000, 10,000, 100,000 DNS

records) is very low, with its minimum and maximum values presented in Figure 3.6.

3.3.3 Summary

DNS is a fundamental infrastructure of the modern internet, and however, a complete

transformation of it is not feasible right now. It has developed without security in mind

and contains various security gaps that adversaries may exploit. Hence, the systems

that aim to secure DNS should ensure there are no conflicts and its procedures normally

occur without interruptions. PRESERVE DNS is a blockchain system that can be built

on top of the existing DNS infrastructure, adding novel security mechanisms with

sufficient performance. As seen in the previous sections, the security and performance
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(e) Read queries workflow on 100,000 DNS Entries
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Figure 3.5: CPU Usage (%) of Nodes during workflow [66].

evaluation of PRESERVE DNS revealed that other related in-context systems lack at least

one security feature and are often more computationally expensive and gradual than

this system. A matter of great importance is that PRESERVE DNS is flexible and can

work in combination with other DNS security mechanisms, such as EXPOSURE [91],

Notos [90], and Khalil et al. [92], addressing many of their security and privacy flaws
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Figure 3.6: Memory Usage (%) of Nodes during workflow on 1,000, 10,000 and 100,000 DNS
Entries [66].

such as the correlation of the internet history and visited websites with the IP addresses

of the individuals that performed the DNS queries.

3.4 Case Study: A Privacy-Preserving Electronic Health

Records management system

The protection of DNS records is very important, but a demonstration of the previously

presented system in an even more critical use case, such as healthcare, illustrates all the

benefits of this technology. The practical and adequate protection of EHR is a commonly

discussed topic in the literature due to the sensitivity of the data [120]. Nevertheless, as

seen previously, a novel technology such as blockchain can ensure the privacy of the
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data subjects whilst providing adequate performance. This system is PREHEALTH [67],

a decentralised EHR management system built using Hyperledger Fabric distributed

ledger technology and Idemix, with novel security features to preserve the security of

the stored records efficiently.

PREHEALTH’s overview can be seen in Figure 3.7 in which different participants

such as doctors and hospitals can partially view some of the stored records according

to their role (visualised as “Authorized Participants”), whilst the data subjects, the

patients, that stored their data in the blockchain system can view all their stored data

(visualised as “Users”). Additionally, in this scenario, other governmental bodies may

be introduced, such as auditors. The role of the auditors in this scenario could be to

monitor information related to a specific healthcare institution (i.e. the number of

registered patients, the number of appointments performed in a given time frame, the

number of given prescriptions) and that it follows the proper operating procedures and

no information about the individual patients or their diagnoses and treatments. Hence,

they have the least access privileges. It should be noted that unauthorised participants

cannot access any stored information. This scenario is not the only one that can be

developed using this infrastructure. Due to its flexibility, more complex designs can

be formulated, such as those that particular patients’ doctors can only write to the

distributed ledger, whereas the patients and other doctors can only read data from it.

Figure 3.7: PREHEALTH overview [67].
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PREHEALTH [67] is an EHR management use case with similar architecture and

characteristics that have been initially developed and presented in the work of Papado-

poulos et al. [66], such as the private data collection feature.

3.4.1 Architecture and Implementation

PREHEALTH [67] is built using Hyperledger Fabric distributed ledger technology; hence,

for the demonstration of the proof-of-concept, the system’s participants are in the

form of docker containers, developed on top of Debian 9.11 Stretch operating system.

Following a similar approach to PRESERVE DNS [66], the commands to and from the

blockchain system pass through the CLI in order to transmit to the rest of the blockchain

nodes, such as peers and orderers. Another similarity with PRESERVE DNS is that the

chosen databases among the peers are instances of CouchDB [275, 13] since they offer

rich queries to the stored records. An illustration of the PREHEALTH’s system overview

can be seen in Figure 3.8. However, a fundamental difference with PRESERVE DNS is the

creation of identity certificates. In PREHEALTH, Idemix technology has been utilised to

create X.509 digital certificates with zero-knowledge proof functionality, such as that

no participating entity (e.g. the MSP) cannot reveal sensitive information about the

holders of the certificates [67].

The Hyperledger Fabric architecture and the blockchain entities can be seen in

Figure 3.9. There are three different participating entities in this scenario, with each one

simulating a different healthcare institution. Additionally, each healthcare institution

comprises of three blockchain peers and contains its own MSP to handle their identities.

Further, there is a cluster of orderers which consists of three identical orderers to handle

each blockchain interaction and improve the system’s performance and fault-tolerance,

illustrated as the Ordering Service. The public blockchain ledgers are available to all

the participating organisations, with a variation to Organisation 1, which also holds a

private ledger, utilising the Private Data Collection feature. The process that the system

follows is that:

• The peer that wants to submit a transaction to the ledger first verifies its identity
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to its MSP and then sends the transaction to the orderer.

• The orderer checks the transaction’s validity, executing it according to the installed

chaincode, and if it is verified, creates the new blockchain block.

• The orderer broadcasts the ledger updates to all the participating peers to update

their own ledgers.

Figure 3.8: PREHEALTH internal technical architecture [67].
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Figure 3.9: PREHEALTH Hyperledger Fabric architecture [67].

3.4.2 Evaluation and Discussion

3.4.2.1 Security Evaluation

As seen in Section 3.3.2.1, since the underlying technology is the same between PRE-

SERVE DNS [66] and PREHEALTH [67], there are similar potential risks to the infrastruc-

ture, such as the human factor. In situations the identity certificates are compromised,

an unauthorised participant may query data from the blockchain ledger. However, the

unauthorised data storage can be potentially prevented, in real-world scenarios, in

which the consensus mechanism is carefully set to consider this type of attack, such

as a PBFT algorithm [26, 13]. Similarly to PRESERVE DNS, in PREHEALTH, no entity

completely controls the blockchain ledgers, not even its administrators.

To evaluate the anonymity of the stored EHR and unlinkability between them, the

Client Identity Library (CID) has been used [291]. This library acts as a tool to identify

leaked information during blockchain interactions and reveals that the blockchain

transactions are transmitted encrypted using Transport Layer Security (TLS), signed
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by a “cryptographic public key” [13]. Further, as seen in the work of Thakkar et al.

[275], the authors present a set of parameters that should be carefully considered

in any Hyperledger Fabric deployment to preserve the data subject’s anonymity and

unlinkability. This set of parameters is comprised of Static and Dynamic variables and

analysed as follows:

Static variables:

• The number of blockchain participating entities, such as the number of organisa-

tions, peers and orderers.

• The endorsement policy - the number of participating peers and organisations

that need to accept a transaction to be considered valid.

Dynamic Variables:

• The management of the identity certifications - In PREHEALTH the identity certi-

ficates are X.509 identity certificates [271], generated through the Idemix techno-

logy.

• Users’ registration scheme - As seen previously in Figure 3.8, the Idemix argu-

ments are transmitted through the CLI to manage the users’ registration and their

interaction with the blockchain system.

3.4.2.2 Performance Evaluation

To evaluate the performance of PREHEALTH, similar performance metrics were taken,

as in PRESERVE DNS. The performance metrics include an EHR management system in

a traditional PostgreSQL database with column-level encryption to simulate the Private

Data Collection feature, and two other blockchain systems, MedRec and Blockstack, the

one directly related to the EHR management, and the other with the potential to develop

a decentralised application with similar features. It should be noted that the comparison

with MedRec occurred in a proof-of-concept utilising the Proof-of-Authority consensus

mechanism, opposed to the commercial version of MedRec that utilises the Proof-of-

Work consensus mechanism [135]. The experimentation occurred in varying numbers
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of EHR (such as 10, 100, 1000, 10,000, 100,000, 1,000,000). Table 3.3 presents the results

of the comparison with an illustration following in Figure 3.10. As seen from the table

and the figure, PREHEALTH is more efficient than the other blockchain systems and

offers quicker transaction times. The data read transaction times using a PostgreSQL are

quicker than PREHEALTH for all the tested numbers of EHR (up to 1,000,000 records);

however, as seen Figure 3.10 the data read transaction time increases exponentially,

with a speculation to surpass PREHEALTH data read transaction times at approximately

1,200,000 EHR. Since the number of stored records consists of millions in a real-world

EHR management system, it is appropriate to consider PREHEALTH as a more efficient

system in the presented scenario.

Table 3.3: Query time measurements in milliseconds (ms) per number of entries [67].

Number of Records: 10 100 1000 10,000 100,000 1,000,000

PREHEALTH
Read 183 ms 183 ms 183 ms 183 ms 183 ms 183 ms

Write 58 ms 58 ms 58 ms 58 ms 58 ms 58 ms

PostgresSQL Database
Read 1.73 ms 1.79 ms 2.38 ms 8.76 ms 43.52 ms 136.19 ms

Write 4.32 ms 4.48 ms 4.47 ms 4.37 ms 4.39 ms 4.45 ms

MedRec [135]
Read 177 ms 186 ms 194 ms 199 ms 205 ms 210 ms

Write 81.5 ms 86.9 ms 79.6 ms 71.6 ms 63.2 ms 79.6 ms

Blockstack [266]
Read 360 ms 360 ms 360 ms 360 ms 360 ms 360 ms

Write 530 ms 530 ms 530 ms 530 ms 530 ms 530 ms
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Figure 3.10: Read records transactions overhead [67].

To further evaluate the performance of PREHEALTH, CPU and memory benchmarks

have been conducted. The memory benchmarks showed a negligible memory utilisa-
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tion (less than 2%); hence, they are not illustrated in a plot. The CPU benchmarks during

data read and write transactions can be seen in Table 3.4, and illustrated in Figure 3.11.

PREHEALTH tested in varying numbers of EHR (such as 1000, 10,000, 100,000 records),

monitoring all the three peers of each organisation, namely Peer 0, Peer 1, and Peer 2, of

Healthcenter, Hospital, and PublicHealth organisations. As it can be seen from the table

and the figure, the CPU utilisation of data read transactions is low (less than 30%), with

the data read transactions achieving 15% CPU utilisation. Hardware limitations likely

cause the presented CPU utilisation fluctuations; hence, their quick recovery times.

The infrastructure’s technical specifications were a 2.4GHZ quad-core Intel Core i7 6th

Generation CPU, with 8GB RAM and 256GB SSD [67].

Table 3.4: Average CPU (%) performance of each blockchain peer per number of electronic
health records.

PREHEALTH Organizations PREHEALTH Peers
Number of Records

1000 10,000 100,000

Healthcenter

Peer 0
Read Queries 7.6% 28.7% 29%

Write Queries 6.7% 10.3% 15.4%

Peer 1
Read Queries 5.1% 21.8% 21.7%

Write Queries 4.9% 6.7% 4.2%

Peer 2
Read Queries 4.9% 23.3% 22.2%

Write Queries 5.4% 6.4% 4.3%

Hospital

Peer 0
Read Queries 8.3% 29.4% 32.3%

Write Queries 9.3% 11.2% 13.9%

Peer 1
Read Queries 5.1% 22.7% 23.2%

Write Queries 5.4% 6.4% 4.3%

Peer 2
Read Queries 5.4% 20.7% 18.7%

Write Queries 4.9% 6.6% 4.2%

PublicHealth

Peer 0
Read Queries 7.6% 30.5% 30.3%

Write Queries 11.4% 12.8% 8.2%

Peer 1
Read Queries 4.8% 22% 20.1%

Write Queries 5.3% 6.8% 4%

Peer 2
Read Queries 5.1% 23.4% 22%

Write Queries 4.7% 6.6% 4%
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Figure 3.11: (a) Read queries workflow on 1000 Records. (b) Write queries workflow on 1000
Records. (c) Read queries workflow on 10,000 Records. (d) Write queries workflow on 10,000
Records. (e) Read queries workflow on 100,000 Records. (f) Write queries workflow on 100,000
Records. CPU Usage (%) of blockchain peers during workflow [67].

3.4.3 Summary

The challenge of the EHR management and storage is critical due to the data sensitivity

and further intensified due to privacy regulations, such as the GDPR [4]. Systems that
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aim to secure these functions and solve these challenges should build with security

principles in mind aiming to protect the stored data from multiple perspectives. Block-

chain technologies are often considered inappropriate to store highly sensitive data;

however, specific distributed ledger technologies can store this data efficiently protec-

ted and ensuring its privacy by strong cryptographic mechanisms. A system with all

these advantages is PREHEALTH, providing all the necessary security and privacy guar-

antees, as well as approaches for its further scalability, auditability, and immutability to

a real-world infrastructure. As presented in the previous sections, PREHEALTH is also

performance efficient, providing suitable CPU and memory computational overheads.

3.5 Conclusion

This chapter focused on the assurance of stored records in critical infrastructures

through blockchain [66, 67]. A system was developed and presented, namely, PRE-

SERVE DNS [66], that can efficiently protect the stored data, presenting novel data

storage and query functions, such as the Private Data Collection, built on top of a dis-

tributed ledger technology. This chapter presents extensive security and performance

evaluations of this system, comparing it to other related works in the literature and

concluding with valuable outcomes. This system aims to combat common issues re-

lated to the privacy leakage of the data subjects since their IP addresses are considered

personal data, protecting against potential domain records misuse and DNS profiling.

It should be noted that the securely stored passive DNS records in PRESERVE DNS

[66] can be further analysed and monitored automatically through ML techniques to

identify potential phishing URLs quickly and efficiently (Appendix C) [43]. To further

demonstrate the system’s flexibility, adaptability, and security, a healthcare case study

was presented that is focused on the management of highly-sensitive EHR, namely

PREHEALTH [67]. As previously, extensive security and performance evaluations were

presented in comparison with other related works. A matter of great importance is

that since the distributed ledger technology’s fundamental is its private-permissioned

nature, identity credentials play a crucial role in the infrastructure. Hence, the novel Ide-
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mix technology utilised in PREHEALTH provides the necessary zero-knowledge proofs

to enhance the system’s privacy further.

Potential future avenues for the presented infrastructures include incorporating

other self-sovereign identity systems that offer certificates revocation and digital at-

tributes authentication such as Decentralised Identifiers (DIDs) [292] and Verifiable

Credentials (VCs) [293] utilising the Hyperledger Aries framework [294]; with a few

suggestions following in the next chapter. Utilising these technologies, certificate

management could occur through end-to-end encrypted systems, enhancing the total

security and privacy of the infrastructure.
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Digital Identities and Privacy-Preserving

Machine Learning

4.1 Introduction

This chapter addresses the Objective III by developing an architecture built using SSI

technology combined with other privacy-preserving technologies, such as a blockchain

identity ledger and privacy-preserving machine learning. This concept indicates that

the system’s participants have sole control of their identities and can regulate which of

their data the other participants are allowed to access. Each participant utilises DIDs

[292] and VCs [293] similarly to a Public-Private Key Infrastructure [295, 296].

The emerging concept of SSI is being developed by various open-source or commer-

cial standards, with a common aspect, all of them are citizen-centric and aim to protect

the citizens’ privacy. Utilising SSI technologies, the digital identities are controlled solely

by their owners, the citizens, without requiring trusted intermediaries. Additionally,

due to the data sensitivity in machine learning analysis, developed techniques aim

to address many of its privacy issues. These privacy-preserving machine learning ap-

proaches aim to protect citizens from pervasive analysis of their sensitive data. Hence,

combining these technologies would transfer the control back to its data subjects, the

citizens, to control which data they want to share, with whom, and for how long, in a

privacy-preserving manner.
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The SSI technologies were firstly developed to accommodate functionalities, such

as the presentation of credentials and proofs, as well as basic messaging between parti-

cipants. The establishment of trust among the parties occurs through the presentation

of credentials and proofs that mutually trusted authorities have issued. The party that

holds the legitimate credential or proof is using a form of a digital wallet to store it,

and the party that verifies the credential or proof inspects an identities database, often

a distributed ledger, to confirm its validity. Due to its complex nature, the technolo-

gical advancements focused on developing perplexing identities scenarios mimicking

real-world problems. Such advancements focus on the credentials’ issuing, holding,

and verification in real-world environments. However, using these SSI technologies

on top of other data analysis techniques such as ML remained obscure by the research

community due to their own introduced complexities and challenges. A matter of great

importance is also that combining these technologies should be as pleasant as possible

for the users without irritating the users with additional gratuitous intricacies.

4.2 Self-Sovereign Identity Foundations

4.2.1 Decentralised Identifiers

DIDs confirmed as an accepted digital identifier to establish trust in distributed systems

during a working group [292] of the World Wide Web Consortium (W3C). Only the

owner of each DID manages it and can allow another participating entity to utilise it

to verify its authenticity. Hence, participants can use the DIDs novel characteristics

to log in to a system without trusting a third-party company but directly verifying the

DID owner. Since DIDs need to be verified by other participants, it is common to be

stored in distributed ledgers and blockchain identity management schemes [297]. The

methods to verify a DID vary according to the utilised underlying technology [298]. An

overview of DID documents, as follows:

• ID field — the ID that resolves the specific DID document;
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• Public key;

• Authentication protocols; and

• Service endpoints

In Listing 2.1, the resolution of did:example:123456789abcdefghi DID document

using the DID method example and the identifier 123456789abcdefghi can be seen [68].

Listing 4.1: .]An example DID document [68].

1 {

2 "@context" : " https : / / example . org /example−method/v1 " ,

3 " id " : " did : example:123456789 abcdefghi " ,

4 " publicKey " : [ {

5 " id " : " did : example:123456789 abcdefghi#keys −1" ,

6 " type " : " RsaVerificationKey2018 " ,

7 " c o n t r o l l e r " : " did : example:123456789 abcdefghi " ,

8 "publicKeyPem" : "−−−−−BEGIN PUBLIC KEY . . . END PUBLIC KEY−−−−−\r \n"

9 } ] ,

10 " authentication " : [

11 " did : example:123456789 abcdefghi#keys −1" ,

12 ] ,

13 " service " : [ {

14 " id " : " did : example:123456789 abcdefghi#agent " ,

15 " type " : " AgentService " ,

16 " serviceEndpoint " : " https : / / agent . example .com/8377464"

17 } ]

18 }

Utilising DID specifications, the interoperability is ensured between various res-

olution schemes, agnostic of the used underlying storage infrastructure. Additionally,

another method for participants to interact utilising DIDs is via Peer DIDs [299], in

which each one of them sustains their own list of DID documents, and no storage

scheme is required for their resolution.
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4.2.1.1 Decentralised Identifiers Communication Protocol

Another Hyperledger’s open-source project that utilises DIDs is Hyperledger Aries [294].

Hyperledger Aries exchanges DIDs through the end-to-end encrypted DID Communic-

ation (DIDComm) protocol that is similar to the work of Chaum [300]. Decentralised

Identity Foundation [301] is developing the DIDComm protocol. DIDComm is an end-

to-end encrypted, asynchronous protocol that can interpret some information of the

DID document, such as the recipient’s endpoint address and the public key, to verify

the participants’ integrity and authenticity, and exchange private and secure messages.

In the scenario of two participants who want to communicate, such as Alice and

Bob, they need to sign their messages with their keys, so the other participant can utilise

DIDs to verify their identity. For example, Alice encrypts and signs with her private key

a message that is intended for Bob. Then before Bob decrypts and reads the message,

he needs to check the message’s integrity by verifying Alice’s public key using a public

record, such as a blockchain identity management scheme [297]. Bob can also check

that Alice holds a credential provided by a legitimate authority. In that case, Bob adds

Alice adds to his list of verified-trusted contacts. On the other end, when Bob sends

a message to Alice, she needs to perform the same authentication and verification

check, and if Bob holds a credential issued by a legitimate authority, she can add him

to her list of trusted contacts. Each participant’s DID document encapsulates all the

required information to fulfil a DIDComm interaction, such as the mentioned example.

So, after this mutual authentication and verification, the two participants can utilise

the established DIDComm channel to further securely exchange data and messages

[68], as it can be seen in Algorithm 1. The various encryption techniques used by the

DIDComm protocol and guarantee its privacy and security include elliptic curve [302],

Rivest–Shamir–Adleman (RSA) [303] and ElGamal [304] techniques.

4.2.2 Verifiable Credentials

Another set of tools the participating parties can use to verify the other party’s identity

are VC. These participating entities consist of the Issuers entity that issues a VC to a
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Algorithm 1 DID Communication Between Alice and Bob [68].

1: Alice holds her private key ska and Bob’s DID Document that includes his endpoint
address (end poi ntbob) and his public key (pkb).

2: Bob holds his private key (skb), and Alice’s DID Document that includes her public
key (pka).

3: Alice encrypts a plaintext message (m) using Bob’s public key (pkb) and creates an
encrypted message (eb).

4: Alice signs the encrypted message (eb) using her private key (ska) and creates a
signature (σ).

5: Alice sends (eb ,σ) to end poi ntbob .
6: Bob’s endpoint (end poi ntbob) receives the message from Alice.
7: Bob verifies σ using Alice’s public key pka .
8: if Verify(σ,eb , pka) = 1 then
9: Bob decrypts eb using his private key (skb).

10: Bob reads the plaintext message (m) sent by Alice.
11: end if

Holder, and the Verifiers, that verify the authenticity of the Holder’s VC [293], as it can be

seen in Figure 4.1. As in DIDs, it is common to utilise a blockchain identity management

scheme to store the VC securely [297].

Figure 4.1: Verifiable Credential Roles [68, 293].

In order for the Issuer to issue a new VC, they need to generate a signature from

their private key that resolves the public key of their DID document. The supported

generated signature scheme can be one of the Linked Data signatures [305], JSON Web

signatures [306], or finally, Camenisch-Lysyanskaya (CL) signatures [307, 308].

The Hyperledger Aries, in order to enhance the system’s security without authentic-

ation similarly to the work of Chaum [309], utilises CL signatures by creating a blinded
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link secret that is bonded to their participating entities without the VC Issuers have

knowledge of the secret values.

The Verifiers entity accept the received VC after they confirm the following:

1. The Issuer’s ID can be resolved to a DID document stored on a public ledger, such

as a blockchain identity management scheme [297]. Additionally, the Verifiers

need to ensure that the DID document contains a public key that they can use to

sign the VC for integrity purposes.

2. The VC Holder can create a Zero-Knowledge Proof (ZKP) to demonstrate and

prove the blinded linked secret.

3. The Issuer has the permission to issue this kind of VC. Since the Verifiers accept

only Holders that poses a VC from a legitimate Issuer, they eliminate the possibility

of fraud. Hence, it is possible to create legal documents that describe the system’s

operating capabilities [310].

4. The legitimate Issuer has not revoked the presented VC. It is possible for a Holder

to poses a VC that is no longer valid. This check can be done by checking that a

revocation registry, such as a cryptographic accumulator [311], for the specific VC

has not been filed on the public ledger.

5. Last but not least, the Verifier needs to verify that the attributes included in the

VC meet the infrastructure’s authorisation criteria. A VC can be valid only for a

certain period and then lose its validity.

All the communication in the above example occurs via the encrypted DIDComm

protocol. The importance of the VC is significant since the participating entities actions

can be automated and implemented in large-scale infrastructures since the Verifiers

can resolve and verify the DID document themselves, without the need to contact the

VC’s Issuer directly.
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4.3 Private and Trusted Federated Machine Learning

Traditional machine learning faces challenges due to adversarial behaviour. Luckily,

there is a privacy-preserving machine learning field that is focused on combating many

of these issues. More specifically, FL is one of the most prominent technologies of this

field, which distributes the training of ML algorithms to the participants. However,

the distribution of the ML computation introduces new challenges and risks. FL itself

does not guarantee protection against adversarial attacks that aim to manipulate the

ML algorithms, such as data and model poisoning, or adversarial intermediary attacks,

such as Man-In-The-Middle (MITM) attacks. Nevertheless, if FL is combined with other

privacy-preserving SSI techniques, the participants can establish trust and enhance the

system’s privacy.

In the following sections, a privacy-preserving architecture is presented, namely

Trusted Federated Learning (TFL) [68], that merges SSI and FL to create a unified,

trusted ecosystem, within a healthcare scenario, with authentication and verification

checks required to train ML algorithms distributed. Additionally, all the authentications,

verifications, and data transmission occur within end-to-end encrypted communica-

tion channels to ensure the protection of this workflow. TFL is evaluated in terms of

security guarantees, ML accuracy and computational performance, and these metrics

are presented in the following sections.

4.3.1 Architecture and Implementation

This subsection presents the technical architecture, implementation and all the tech-

nical details followed to create the proof-of-concept. The information presented include

the trust establishment, the utilised end-to-end encrypted communication protocol,

and the FL process.

A healthcare ecosystem was developed that simulates three NHS hospitals and a

researcher aiming to train a ML model using hospital-held private data. The aspect of

trust is critical within such highly-sensitive environments. Within this ecosystem, the
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hospitals and the researcher need to perform mutual authentication and verifications

tests to ensure that the other party holds a legitimate credential issued by a regulatory

authority or the NHS Trust. An overview of the ecosystem can be seen in Figure 4.2.

Figure 4.2: Healthcare trust model overview [68].

The scenario starts when one of the hospitals establishes a connection with the NHS

Trust, which issues a VC to the corresponding hospital. Similarly, this process occurs

again for all the participating hospitals. For the issuing process, the NHS Trust utilises a

public identities blockchain ledger such as the British Columbia VON’s development

ledger [312], to store the public DIDs. From the researcher’s perspective, instead of the

NHS Trust, the connection establishment is with a governmental regulatory authority

that issues a researcher VC and writes the public DID to the same public identities

blockchain ledger. Furthermore, the researcher is able to connect to each hospital to

perform the mutual authentication and verification process. During this process, both

parties need to present their identity proofs that the other party is checking against

the DIDs publicly stored in the identities blockchain ledger. Unauthorised participants
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cannot infiltrate this ecosystem since their fake VC would not be resolved successfully

to the legitimate DIDs. Additionally, all the connections occur within end-to-end

encrypted DIDComm channels; hence, malicious parties cannot interfere in-between

the connections and perform attacks such as Man-In-The-Middle. For the development

of the technical testbed, a step-by-step approach is followed, as seen in Algorithm 2.

Algorithm 2 Establishing Trusted Connections [68].

1: Researcher agent exchanges DIDs with the Regulator agent to establish a DIDComm
channel.

2: Regulator offers an Audited Researcher-Coordinator credential over this channel.
3: Researcher accepts and stores the credential in their wallet.
4: for each Hospital agent do
5: Initiate DID Exchange with NHS Trust agent to establish DIDComm channel.
6: NHS Trust offers Verified Hospital credentials over DIDComm.
7: Hospital accepts and stores the credential.
8: end for
9: for each Hospital agent do

10: Hospital initiates DID Exchange with Researcher to establish DIDComm channel.

11: Researcher requests proof of Verified Hospital credential issued and signed by the
NHS Trust.

12: Hospitals generate a valid proof from their Verified Hospital credential and re-
spond to the Researcher.

13: Researcher verifies the proof by first checking the DID against the known DID
they have stored for the NHS Trust, then resolve the DID to locate the keys and
verify the signature.

14: if Hospitals can prove they have a valid Verified Hospital credential then
15: Researcher adds the connection identifier to their list of Trusted Connections.
16: end if
17: Hospital requests proof of Audited Researcher credential from the Researcher.
18: Researcher uses Audited Researcher credential to generate a valid proof and re-

sponds.
19: Hospital verifies the proof, by checking the signature and DID of the Issuer.
20: if Researcher produces a valid proof of Audited Researcher then
21: Hospital saves connection identifier as a trusted connection.
22: end if
23: end for

Upon successful authentication and verification of all the parties, the researcher can

initiate a FL training to send the ML model through the DIDComm channel, encrypted

to the recipient hospitals. The hospitals train this model using their private data and

send the trained model back to the researcher. The researcher forwards the trained

model to the next hospital, which performs the same process until all the hospitals
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train it. All the participating hospitals have trained the final trained model that the

researcher possesses without revealing any sensitive raw information directly to the

researcher. The private data derived from a mental healthcare dataset [313] split into

four partitions, three training datasets, one for each hospital and a validation dataset

possessed by the researcher for testing purposes, in order to evaluate the ML model and

measure its accuracy.

All the participants within this ecosystem are configured as Docker containers that

mimic computational devices within their own environments. The DIDComm channels

add a layer of encryption on top of the transport protocol; in this case, the transport

protocol is the Hypertext Transfer Protocol (HTTP) at defined public ports that each

participant’s agent exposes to the network. An overview of the technical details and

ports used can be seen in Figure 4.3 and Table 4.1.

Figure 4.3: Networking communication architecture [68].

Table 4.1: Participating entities communication details [68].

Name HTTP Port Admin-API Port Webhook Port

Hospital 1 8050 8051 8052

Hospital 2 8060 8061 8062

Hospital 3 8070 8071 8072

Researcher 8040 8041 8042

NHS Trust 8020 8021 8022

Regulator 8030 8031 8032

As seen previously, the researcher sends the FL model sequentially to each par-

ticipating hospital [314, 315, 316, 71]. The step-by-step FL workflow can be seen in

Algorithm 3. The combination of SSI and FL is able to combat some common ML threats
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that derive from the lack of trust between the participants and from the remote training

of the ML model. Hence, the hyperparameter tuning of the ML parameters in order

to improve the classification accuracy is left out of this experiment’s scope. This is a

basic FL process that could be improved in real-world architectures by using a more

secure variation of FL that introduces a secure aggregator that averages each ML model

updates using the Federated Averaging algorithm [71].

Algorithm 3 Federated Learning workflow [68].

1: Researcher has validation data and a ML model, Hospitals have training data.
2: while Hospitals have not trained their training data do
3: Researcher benchmarks the model’s performance against validation data and

sends the model to the next Hospital.
4: Hospital trains the model with their data and then sends the resulting model back

to the Researcher.
5: end while
6: Researcher benchmarks the final model against validation data.

4.3.2 Evaluation

A set of performance metrics and security tests have been performed to verify that the

implementation works properly. The results of these tests can be seen in the following

subsections.

4.3.2.1 Performance Evaluation

To evaluate the performance of the presented infrastructure, a set of benchmark metrics

tests were conducted to monitor the CPU, RAM, and network usage. As it can be seen in

Figure 4.4a), the CPU usage of the researcher’s agent is being raised in every sequence it

sends the ML model to the corresponding hospital, followed by a rise in the CPU usage

of that hospital that trains it using its private data. Similarly, as seen in Figures 4.4b–

d)the monitored RAM and network usages adhere to the previous results as expected,

with a small difference that the researcher agent is validating the ML model after every

training batch; hence, its RAM and network usages gradually increase. Furthermore,

a comparison followed to benchmark the agents’ performance when the ML model is

being transmitted through the DIDComm channel and without through standard ML
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training. The results of these tests can be seen in Figures 4.5a) and b). The RAM and

network usages follow a similar pattern as the Figures 4.4b–d, hence they have not been

visualised.

(a) CPU Usage (%) during workflow (b) Memory Usage (%) during workflow

(c) Network Input (kB) during workflow (d) Network Output (kB) during workflow

Figure 4.4: CPU, Memory usage and Network use of Docker container agents during workflow
using the original federated learning architecture of [47] [68].

Further tests have been conducted to monitor the performance of the ML model,

including its classification accuracy. The experiments were conducted for 10 epochs

with a learning rate of 0.01. The dataset is split into four parts (one dataset for each

hospital used for training - and one dataset for the researcher used for testing), and

its data are being used in batches of 8. Additionally, as mentioned previously, the

researcher’s agent validates the ML model after each training batch using a testing

dataset and produces the confusion matrices shown in Tables 4.2 and 4.3 to confirm

that the ML model is being trained successfully. The classification accuracy of the ML

model is being calculated by dividing all the outcomes from the correct predictions (the

addition of TP and TN) (Appendix B), and the results presented in Tables 4.2 and 4.3,
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(a) CPU Usage (%) during workflow and transmission of the
model through the DIDComm protocol

(b) CPU (%) during workflow without the use of the DID-
Comm protocol

Figure 4.5: CPU Usage comparison of Docker containers during workflow using the novel
federated learning libraries of 68.

to display the classification accuracy using the Sigmoid linear activation function and

the Rectified Linear activation function (ReLu) accordingly [317, 318]. The comparison

of the FL classification accuracy through the DIDComm protocol and without it can

be seen in Tables 4.4 and 4.5. Finally, as mentioned in the previous section, these

experiments aim solely to demonstrate that FL processes are possible through the

presented trusted ecosystem. The aspect of the ML training itself is out of the scope of

this work. However, after careful hyperparameter tuning, these results could potentially

be further improved.
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Table 4.2: Classifier’s accuracy on the testing dataset without hyperparameters’ optimisation
over federated learning rounds, using Sigmoid activation function on the original federated
learning architecture of [47] [68].

Batch 0 1 2 3

True Positives 0 109 120 134

False Positives 0 30 37 41

True Negatives 114 84 77 73

False Negatives 144 35 24 10

Accuracy 44.1% 74.8% 76.3% 80.2%

Table 4.3: Classifier’s accuracy on the testing dataset without hyperparameters’ optimisation
over federated learning rounds, using ReLu activation function [68].

Batch 0 1 2 3

True Positives 144 121 121 108

False Positives 0 23 23 36

True Negatives 114 34 33 39

False Negatives 0 80 81 75

Accuracy 100% 60% 59,6% 57%

Table 4.4: Classifier’s accuracy on the testing dataset without hyperparameters’ optimisation
over federated learning rounds through the DIDComm protocol [68].

Batch 0 1 2 3

True Positives 0 115 120 135

False Positives 0 29 24 9

True Negatives 113 30 39 44

False Negatives 145 84 75 70

Accuracy 43.7% 56.2% 61.6% 69.3%

4.3.2.2 Security Evaluation

Many privacy issues faced in the traditional centralised ML can be mitigated by FL since

the ML model is being sent to each data holder [319, 320] instead of data transmitting

to a centralised location. However, ML models, even if they are trained and distributed

using FL, still suffer from other privacy attacks such as membership inference [183] and

model inversion attacks [189, 188, 321]. These attacks elaborate on the scenario of a
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Table 4.5: Classifier’s accuracy on the testing dataset without hyperparameters’ optimisation
over federated learning rounds without the DIDComm protocol [68].

Batch 0 1 2 3

True Positives 0 113 120 133

False Positives 0 31 24 11

True Negatives 116 35 43 45

False Negatives 142 79 71 69

Accuracy 44.9% 57.3% 63.1% 69%

malicious Researcher that could identify if certain data were part of the training, and in

the latter attack scenario in which the malicious Researcher could reconstruct a part of

the training values [68, 47].

Additionally, since the ML model is being sent to the data holders, the system is

exposed to model stealing and model poisoning attacks. In model stealing attacks,

a malicious participant stores a copy of the original ML model to avoid paying fees

for using it, or to create ML models with similar decision boundaries to profit from

them by selling them to other third parties. In model poisoning attacks, a malicious

participant inserts backdoors-trojans [322, 323, 213] to the ML model before returning

it to the Researcher. It is troublesome for the Researcher to identify if the trained ML

model is poisoned since it behaves maliciously only on the backdoor trigger activations.

Oppositely to data poisoning attacks [324, 208, 207, 206, 205], in which the ML model’s

accuracy may drop [204], model poisoning attacks remain hidden.

A number of promising defensive mechanisms against these attacks were presented

previously in Chapter 2; however, there are still open problems in FL that are yet to find

an effective solution [46].

In the ecosystem presented previously, by using VC, it is able to establish domain-

specific trust between the participants. Only mutually authenticated and verified

participants can participate in the ML training scenario. Other unauthorised parties

are immediately rejected and cannot interfere or interact with the other participants.

To evaluate the infrastructure’s security, fake Hyperledger Aries agents were created

to attempt to participate in the ML training or receive an authorised VC illegally from
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the NHS Trust or the governmental regulatory authority. The results from these tests

showed that any self-signed VC or unauthorised connection requests are immediately

rejected, and no participant can interact with the ML training if they do not hold a

legitimate VC from an authorised authority [68, 47].

For the security evaluation of the end-to-end encrypted DIDComm messaging pro-

tocol, the Wireshark and Tcpdump network packet sniffers were utilised to capture

and monitor any ingress and egress network traffic [325]. Since the participants in the

ecosystem are in the form of docker containers, the Docker virtual network card was

required to be monitored in the host computational device [326]. These results revealed

that all the communication between the participants, the proof requests and presenta-

tions, the names of the participants and their DIDs are all encrypted. Additionally, each

step of the FL training and the ML model transmission are encrypted, and the results

can be seen in Figure 4.6. Finally, the Government Communications Headquarters

(GCHQ) CyberChef [327] utilised in order to attempt to decode the encrypted content;

however, all the attempts were unsuccessful and indicated that the DIDComm protocol

is protected, at least, against typical malicious infiltrators. This is very encouraging due

to the fact that often the data used for ML training could be sensitive.
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Figure 4.6: Traffic through the DIDComm protocol is encrypted [68].

A potential threat to this infrastructure is the possibility of the participants’ compu-

tational devices becoming compromised. In that situation, a malicious entity would

be able to act as their victim and participate unauthorised on the ML training or issue

illegitimate VC to other unauthorised partipants in case the compromised participant

is the NHS Trust or the governmental regulatory authority. This threat is common in

infrastructures that utilise identity certificates to interact; hence, other security systems

should be in place to mitigate this threat, such as Two-Factor Authentication (2FA) tech-
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niques [328]. Another threat to the presented infrastructure is the possibility of DDoS

attacks [329], and in order to defend against it timeout countermeasures can be set to

block enormously large traffic deriving from one of the participants. Another counter-

measure against DDoS, could be to setup the infrastructure in a Kubernetes cluster to

handle the load balancing and recovery from failures [330]. Finally, common cyber-

security countermeasures could be set in place to protect the infrastructure against

cyber attacks. OWASP is an open-source organisation that provides the guidelines and

techniques that could be used in order to mitigate a number of cyber threats [331].

4.3.3 Summary

In this section, TFL presented, which is a combination of SSI and FL [68, 47]. This is

the first proof-of-concept that merges these technologies since the original scope was

related to the exchange of basic text messages. Additionally, insightful metrics about

the infrastructure’s performance and security were provided in Section 4.3.2. More

specifically, the scope of the presented experiment was to create a trusted healthcare

ecosystem in which three hospitals can train a ML model using their sensitive data

(a mental health dataset) securely and privately without sending raw data directly to

the ML researcher. Within this trusted ecosystem, two regulatory authorities super-

vise the communications, the governmental regulatory authority and the NHS Trust,

which issue the legitimate participating credentials for the researcher and the hospitals.

The communication between the key participants occurs only if the researcher and

the hospitals hold legitimate VCs issued by the regulatory authorities that are able to

successfully resolve the public DIDs stored in the public identities blockchain ledger.

Additionally, all the communications and the transmission of the ML model between

the participants occur through the end-to-end encrypted DIDComm protocol, which

prevents unauthorised intermediaries from intersecting the communication [68].

As presented previously, TFL provides a trusted ecosystem to conduct FL more

securely; however, common threats against FL itself, such as model poisoning, model

inversion, membership inference and adversarial examples, are not mitigated by default.
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Hence, as a future avenue, the extension of this architecture by combining it with other

privacy-preserving machine learning techniques such as DP [332, 233, 333], SMPC [334]

and adversarial training [69] is crucial.

4.4 Conclusion

This chapter is focused on the trust establishment through decentralised identities and

the various ML approaches that can be implemented through end-to-end encrypted

communication channels. A novel ecosystem is presented that facilitates trusted FL

between three hospitals with sensitive data and a researcher with a ML model. The ML

model is being distributed to the hospitals and trained on their private data instead of

circulating raw, sensitive data in a central location. All the communications between

the participants occur within the end-to-end encrypted DIDComm channels that have

been experimentally evaluated [68]. Furthermore, the system presented in this chapter

can be used in combination with other privacy-respecting systems (Appendix D), such

as the PyDentity [335] and PyVertical [336].

Future avenues of the presented experiment would be its combination with distrib-

uted ledger systems, as seen in the previous chapter, to create a unified system that

will preserve the privacy, security and trust of the used ML approaches. However, as

presented in the literature review, a set of ML attacks still cannot be mitigated fully

even if trust is established between the participants, despite all the efforts and privacy-

preserving ML techniques. Hence, the impact of some of these attacks alongside further

countermeasures is presented in the next chapter.
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Adversarial Machine Learning

5.1 Introduction

This chapter addresses the Objective IV by presenting a practical experimentation

using adversarial ML techniques in an IDS environment, experimentally evaluating

their impact and presenting suitable future avenues for mitigation techniques [69].

Adversarial ML is a crucial topic, and even its popularity, especially in the last few

years by the research community, there is still a gap regarding the real-world impact of

these attacks, as well as thorough mitigation techniques against them. Additionally, as

the number of methods, techniques, systems and technologies increases, the attackers’

potential attacking surfaces also increase [69].

Systems such as IoT devices are a common target to malicious adversaries. The

reason for that is due to the fact that IoT devices are commonly sensors and other

low-specification devices without adequate computational resources to perform their

operations as intended and also to be configured to preserve the privacy and security of

the infrastructures. Often in these devices, security is an afterthought, with a few cy-

bersecurity attacks originating from IoT devices such as the Mirai botnet [151]. Further

cybersecurity countermeasures can be taken to protect these vulnerable devices, such

as the usage of IDS/IDPS. IDS aided by ML approaches have been prominent in recent

years since they are able to detect threats more efficiently even in situations where the

threats are zero-day [337].
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However, despite the advantages of ML IDS, there are also potentially threats asso-

ciated with them. One of the terrifying threats against these systems is the possibility

of an adversary evading detection by disguising the attacking strategy comparable to

a genuine approach. This type of attack, specifically against ML algorithms, is called

adversarial examples, which aim to trick the ML systems into classifying malicious

activity as legitimate. Currently, it is very challenging for the ML systems to mitigate

this type of attack completely, despite efforts against it seen in the literature [338].

5.2 Adversarial Attacks against Network Intrusion Detec-

tion Systems for IoT

ML-based IDS have been increasing in popularity in recent years. However, adversaries

may use an evasion technique, namely adversarial examples, to circumvent detection

[176, 65, 177, 178]. In order to make the ML-based IDS more robust, an adversarial

training technique developed with promising results [65, 179].

Additionally, the popularity of IoT devices increases as well and often, physical ob-

jects have the ability to connect to the internet [31]. However, as mentioned previously,

adversaries aim to exploit these devices that created without security in mind for their

benefit [151].

This section presents a promising study that evaluates the Bot-IoT dataset [169] in

adversarial examples settings, such as generation and label noise attacks [69]. This is

the first work of its kind. Firstly, an SVM model was developed for the classification of

the records in similar settings to the work of Koroniotis et al. [169]. Secondly, an ANN

was developed and trained using the Bot-IoT dataset with similar activation functions

as the RNN and LSTM in the work of [169]. Finally, the scope of this work differenti-

ates significantly and extend the work of [169], towards the generation of adversarial

examples for both models and the experimental comparison and evaluation of their

impact.
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5.2.1 Architecture and Methodology

Prior work investigated thoroughly the impact of adversarial examples using the KDD-

CUP-99 and NSL-KDD datasets [339]. However, Bot-IoT is still recent and unique

in terms of accumulated data records. The authors simulated an attacking-victim

experimental environment, in which they captured the attacking traffic in .pcap files

and exported them to Comma-Separate Value (.CSV ) files [169]. The results of their

experiment was the creation of the Bot-IoT dataset which consists of 73 million data

records, 46 various features and 3 features used for classification purposes. As it can

be seen in Table 5.1, the attacks have been categorised by the authors into: i) Normal

traffic, ii) Reconnaissance traffic, iii) DDoS traffic, iv) Dos traffic, v) traffic related to

Information Theft. Since the importance of the feature selection is immense, a list of

top 10 features extracted from the dataset, with the results presented in Table 5.2 [169].

Additionally, the other features present the three classification features and the values

they can get. The first classification feature is attack with the classification labels true

or false. The second classification feature, namely category, takes one classification

label from those seen in Table 5.1. Finally, the third classification, namely subcategory,

includes more specific details than the caregory feature, such as including the specific

transmission protocol (HTTP, TCP, UDP) in the DoS category.

Table 5.1: Bot-IoT category value counts [69, 169].

Category Full amount 5% amount Training amount Testing amount

DDoS 38,532,480 1,926,624 1,541,315 385,309

DoS 33,005,194 1,650,260 1,320,148 330,112

Normal 9,543 477 370 107

Reconnaissance 1,821,639 91,082 72,919 18,163

Theft 1,587 79 370 14

Total 73,370,443 3,668,522 2,934,817 733,705
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Table 5.2: Total features in the Training dataset [69, 169].

Features Description

pkSeqID Row Identifier

Proto Textual representation of transaction protocols present in network flow

saddr Source IP address

sport Source port number

daddr Destination IP address

dport Destination port number

attack Class label: 0 for Normal traffic, 1 for Attack Traffic

category Traffic category

subcategory Traffic subcategory

Top-10 Features Description

seq Argus sequence number

stddev Standard deviation of aggregated records

N_IN_Conn_P_SrcIP Number of inbound connections per source IP.

min Minimum duration of aggregated records

state_number Numerical representation of transaction state

mean Average duration of aggregated records

N_IN_Conn_P_DstIP Number of inbound connections per destination IP.

drate Destination-to-source packets per second

srate Source-to-destination packets per second

max Maximum duration of aggregated records

5.2.1.1 Attacks Composition

The developed SVM model follows a similar setting to the work of [169]. Hence, similar

outcomes were produced, such as the SVM model’s accuracy, recall, precision, and F1-

score. The developed ANN is close to the RNN and LSTM models presented in the work

of [169] for an unbiased comparison. For the creation of the adversarial examples, the

labelled noise generation technique followed during the ML training, which performs
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better in traditional ML models such as SVM, instead of feature noise generation.

For the first experimental test, three different label manipulation methods were

performed, and their results were compared and presented in the following subsections

in terms of the set ML outcomes. Firstly, a percentage of the labels flipped ranging from

0% to 50%, followed by random label flipping, and finally, targeted label flipping. For

the target label flipping, the features with the greater weight were flipped; hence, they

had the most significant impact on the ML model’s accuracy.

For the second experimental test, FGSM approaches were performed, which con-

sider that the adversary is able to alter the data used to train the SVM and ANN models.

In this scenario, a potentially adversary data provider would aim to trick the ML models

after their deployment into classifying their inputs wrongly. To simulate the attacking

environment after the ML model’s deployment, the CleverHans framework [340] was

utilised. The extend of the discrepancy between the manipulated and non-manipulated

labels is defined by the noise factor. In the work of Wang [341], the authors revealed

that a noise factor of 0.02 managed to return 100% inaccurate classification utilising the

NSL-KDD dataset; hence, in the presented experiments, the noise factor increased in

increments of 0.1 to a range from 0 to 1 since the chosen Bot-IoT dataset is significantly

larger than the NSL-KDD dataset.

A matter of great importance in the presented experiments is the evaluation of the

findings. Various ML metrics, such as the accuracy, recall, precision, and F1-score of

both ML models alongside their confusion matrices, were measured and presented.

Particular interest was given to the false-negative classifications since, in the settings of

these experiments, they mean that an adversary could potentially evade the detection

of the IDS and launch their attacks.

5.2.2 Experimental Implementation

5.2.2.1 Data Preparation

The first step of the experiments involves data preparation. As seen in the work of

Koroniotis et al. [169], the authors utilised the Correlation Coefficient and the Joint
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Entropy Scores in order to identify the top-10 features of the Bot-IoT dataset, as seen

in Table 5.2; however, as seen in the same table, nine more features added due to their

usefulness. Additionally, to simplify the ML procedure, the authors extracted 5% of the

total number of records corresponding to 3,6 million records. This “smaller” dataset was

used in the presented experiments for more manageable control. Finally, the authors

split the records to 80% training and 20% test sets; hence, the similar split sets used

in the presented experiments to keep the architecture as comparable as possible. The

training and testing data were already in numerical values; hence, encoding them is not

required. However, normalisation is still needed to scale the training and testing data

values contextual ranges to the range of −1 to 1.

Finally, to maintain the integrity of the experiments, a subset of the dataset marked

as trusted and specified the data that have not been under manipulation. This trusted

dataset would be compared with the manipulated dataset to investigate the impact of

adversarial examples.

5.2.2.2 SVM Model

The developed SVM model is similar to the work of [169], with specific hyperparameters

set in similar values, such as the penalty score set to 1 and the maximum iterations to

100,000, as well as four-fold cross-validation. As it can be seen in the confusion matrix

in Figure 5.1a, 415,935 attacks predicted as benign traffic. Further, the SVM model’s

ROC curve can be seen in Figure 5.1b; hence, the model’s accuracy is 86% to predict an

attack successfully, as it can be seen in Table 5.3, alongside the rest of the ML metrics,

such as recall, precision, and F1-score.
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(a) (b)

Figure 5.1: (a) Support Vector Machines confusion matrix without label flipping. (b) Support
Vector Machines Receiving Operator Characteristic curve without label flipping [69].

5.2.2.3 ANN Model

The developed ANN’s structure can be seen in Figure 5.2 and is composed of one input

layer, one output layer, and three intermittent layers. The left side of the figure displays

its structure for the binary classification, whereas the right side displays its structure

for the multi-class classification. The input layer of the ANN is composed of ten nodes

comparable to the number of ML features. The output layer is 2 for binary classification

or 5 for five-class classification. Additionally, the Sigmoid activation function is used

similarly to the work of [169], which also has been identified as more robust against

adversarial examples [173]. The intermittent layers are 20, 60, 80, 90, respectively.

As it can be seen in the confusion matrix of the ANN’s binary classification in

Figure 5.3a, 2955 attacks were predicted as benign. Additionally, regarding the five-class

classification, as seen in Figure 5.3b, the ANN predicted more labels as Dos and DDoS

traffic instead of their legitimate labels. Finally, as seen in Table 5.3, the ANN resulted in

very high ML metrics, while its loss remained low.
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Figure 5.2: Artificial Neural Networks Design [69].

(a) (b)

Figure 5.3: (a) Binary Artificial Neural Networks confusion matrix without adversarial examples.
(b) Multi-class Artificial Neural Networks confusion matrix without adversarial examples [69].
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Table 5.3: SVM and ANN scores without label flipping and adversarial examples [69].

(a) SVM scores without label flipping

Scoring Percentage (%)

Accuracy 85.897

Recall 85.895

Precision 100

F1 91.255

(b) ANN scores without adversarial examples

Scoring Percentage (%)

Accuracy 99.692

Loss 1.170

Recall 99.813

Precision 99.591

F1 99.702

5.2.2.4 Generating Adversarial Examples

The experimental activities regarding the generation of adversarial examples are divided

into two subcategories. Firstly, regarding the SVM model, random and targeted label

flipping activities were performed to the training dataset. Secondly, regarding the ANN

model, the CleverHans library utilised to generate the adversarial examples [340]. This

library also offers random and targeted FGSM approaches, with the random FGSM

aiming to modify the labels on the dataset, whereas the FGSM targeted approach aims

to alter the dataset as much as needed to maintain it similar to the classification feature.

SVM Model. Regarding the SVM model’s random label flipping, the labels flipped

in ranges from 5% to 50%, in 5% increments. The attack column is flipped from 0

to 1 and vice versa in the training set. Regarding the SVM model’s targetted label

flipping, the labels with the greatest importance should be identified utilising the SVM

hyperplane. The labels with the lowest distance to the hyperplane (margin) have the

most importance; hence, their labels should be flipped from 0 to 1 and vice versa to

generate sufficient targeted adversarial examples. After the label flipping, target or

not, the same data preparation techniques are performed, as seen in the previous

subsection.
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As seen in Figure 5.4a, in the SVM model’s targeted label flipping activities, as the

range of flipped labels with high importance increases towards 50%, all the ML metrics

are being negatively impacted; hence, the SVM model is manipulated successfully. The

non-targeted label flipping activities flipped the labels randomly without considering

their importance; hence, as seen in Figure 5.4b, there is no direct correlation of the

increasing percentage of the flipped labels to the ML metrics. The specific results from

the presented experiments can be seen in Table 5.4.

(a) SVM targeted label flipping metrics

(b) SVM non-targeted label flipping metrics

Figure 5.4: SVM model’s metrics during label flipping activities [69].
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Table 5.4: Effect of Zero vs. 50% label flips against the metrics using hyperplane margin method
[69].

Scoring Accuracy Precision Recall F1

Percentage of flipped labels (%) 0 50 0 50 0 50 0 50

Random Flip 0.999 0.441 0.999 0.610 1.0 0.613 0.999 0.612

Targeted Flip 0.999 0.610 0.999 0.621 1.0 0.913 0.999 0.737

ANN Model. Regarding the ANN model’s label flipping, the adversarial examples

generation activities are similar for the binary and the multi-class classification. As

mentioned previously, the CleverHans v3.0.1 library is used to generate adversarial

examples [340]. Firstly, the Keras model needed to be converted to a logistic regression

model. Secondly, the training dataset needed to be converted to a Tensorflow tensor.

Utilising the CleverHans library, the value of epsilon could be set that defines the level

of perturbation, as well as if the FGSM is a random or targetted attack. The generated

dataset could be then used as a testing dataset to evaluate the ANN model, identify the

ML metrics and construct its confusion matrix.

As seen in Figure 5.5a, the targeted label flipping activities using the FGSM for the

binary classification ANN model, shown that the ML metrics reduced (apart from the

loss that increases) as the epsilon value was increasing. This finding was expected since

a greater value of epsilon impacts the data more. Additionally, after the epsilon value

of 0.5, the ML metrics are impacted the most. Similarly, as seen in Figure 5.5b, the ML

metrics also reduced regarding the non-targeted label flipping activities using FGSM

for the binary classification ANN model. However, for this experiment, increasing the

epsilon value over 0.2 started affecting the ANN, with the greatest impact after the

epsilon value of 0.5, as previously. The specific results from the presented experiments

can be seen in Table 5.5.

Regarding the multi-class classification of the ANN model, as seen in Figure 5.6a,

the targeted label flipping activities have shown that the ML metrics gradually decrease

analogous to the increase of the epsilon value until the maximum. However, in similar

non-targeted label flipping activities, the ML metrics abruptly decrease after the epsilon

value of 0.1.
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In Figure 5.7, the confusion matrices of the experiments can be seen. In Figure 5.7a,

the binary classification confusion matrix presented for the non-targeted and targeted

label flipping activities respectively. The non-targeted binary classification ANN in-

correctly classified as benign a high number of attacking samples, resulting of a recall

increase in Figure 5.5b. In Figure 5.7b, the confusion matrices of the five-class classi-

fication ANN can be seen, observing that with a high value of epsilon, the ANN does

not classify DoS and DDoS attacks correctly, whilst incorrectly also predicting benign,

reconnaissance and theft attacks.

Table 5.5: Effect of Zero epsilon vs. 1.0 epsilon against the metrics using Fast Gradient Sign
Method in targeted and non-targeted modes [69].

Scoring Accuracy Loss Precision Recall F1

Epsilon 0 1 0 1 0 1 0 1 0 1

Binary Tar. 0.996 0.927 0.016 0.151 0.996 0.895 0.996 0.563 0.996 0.690

Binary Non-Tar. 0.996 0.768 0.016 1.080 0.996 0.769 0.996 0.771 0.996 0.769

Multi-Tar. 0.956 0.421 0.045 1.764 0.952 0.312 0.957 0.493 0.955 0.382

Multi-Not-Tar. 0.956 0.141 0.045 2.403 0.952 0.153 0.957 0.249 0.955 0.189

5.2.3 Experimental Evaluation

For the experimental evaluation, a set of ML metrics was firstly measured and compared

to identify the usefulness of the models. Further, since the experiments are within the

IDS domain, particular focus is given to maintaining a high accuracy score with a low

false-positive rate [342], which would be malicious threats bypassing the security.

5.2.3.1 Evaluating the SVM model

As the false-positive rate is increasing the recall score of the SVM model decreases and

vice versa. The recall metrics for the SVM model can be seen in Figure 5.4 and Figure 5.8.

By observing the Figure 5.4a, it can be seen that in targeted label flipping, the accuracy

of the SVM model decreases quicker than its recall. That is because the false-negative

rate does not increase as fast as the false-positive rate. However, this is not the case for
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(a) ANN binary classification metrics of targeted label flipping using FGSM.

(b) ANN binary classification metrics of non-targeted label flipping using FGSM.

Figure 5.5: ANN binary classification model’s metrics during label flipping activities using FGSM
[69].
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(a) ANN five-class classification metrics of targeted label flipping using FGSM.

(b) ANN five-class classification metrics of non-targeted label flipping using FGSM.

Figure 5.6: ANN five-class classification model’s metrics during label flipping activities using
FGSM [69].

the non-targeted label flipping, as seen in Figure 5.4b. In this experiment, the recall

score is in pair with the SVM model’s accuracy, which means that the false-negative rate
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(a) Confusion matrices of ANN binary classification model.

(b) Confusion matrices of multi-class perturbed with 1.0 epsilon.

Figure 5.7: Confusion matrices of binary and five-class classification ANN models using FGSM
perturbed with 1.0 epsilon [69].

increases quicker than in the targeted experiment. Fundamentally, that means that an

adversary performing random label flipping would be more prone to exploit the ML

IDS, avoid its detection and deploy their attacks instead of targeted label flipping. When

comparing these findings with those from the literature, it can be noticed that flipping

labels with a large distance from the hyperplane is required to manipulate the model

more effectively; hence, choosing labels with the largest distance from the hyperplane

instead of those with the lowest would affect the SVM model more, and make it more

prone to adversarial examples.
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Figure 5.8: Comparing recall scores in targeted and non-targeted SVM label flipping [69].

Another comparison with the findings from the literature is related to the experi-

ments’ threat model and its impact on the final results. In the presented experiments,

it was assumed that the adversary is able to access data used for ML training. In the

work of Huang et al. [180], the authors mentioned that adversaries able to manipulate

data used for ML training would greatly impact the ML metrics negatively. However, as

can be seen in Figure 5.4 and Table 5.4, a high amount of perturbed labels is required

to impact the ML metrics significantly; hence, by using defences such as statistical

analysis, these attacks could be easily detected [179].

5.2.3.2 Evaluating the ANN model

As seen in Section 5.2.2, the developed ANN is generating adversarial examples using

FGSM and is split into two submodels, one for binary classification and one for a five-

class classification. The threat model for these two submodels remained the same; the

adversary is assumed to be able to manipulate data used for ML training and also trying

to evade detection from the ML IDS after its deployment. As it can be seen in Figure 5.5

and Figure 5.6, the generation of adversarial examples negatively impacts the measured

ML metrics; hence, the ML IDS is not able to effectively detect the threats. Adversaries

following this threat model would be able to exploit the ML IDS and launch their attacks

effectively.
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Regarding the binary classification submodel, the generation of adversarial ex-

amples in targeted FGSM settings revealed that after the epsilon value of 0.8, the ac-

curacy of the ANN model decreased. As mentioned previously, the increase of the

false-negative rate allows the adversary to remain undetected from the IDS. As seen

in Figure 5.9a, when the epsilon value reaches its maximum value of 1.0, the accuracy

drops from to 92.7% from 99.8%, whilst the recall of the model drops to 56.3% from

99.7%. Additionally, in the Figure 5.7a, the confusion matrix of the FGSM adversarial ex-

amples’ manipulation revealed a substantial increase in false-negatives than the similar

confusion matrix before any manipulation, as seen in Figure 5.3a. The key finding from

these targeted experiments is that even if the model’s accuracy remained high for the

classification task, its recall decreased dramatically, and means that if an organisation

considers only the model’s accuracy may fall victim to undetected FGSM adversarial

examples. As seen in Figure 5.9b, the non-targeted FGSM adversarial examples have

a greater negative impact on the accuracy of the model since it drops to 76.8% from

99.6%, whilst its recall score drops to 77.1% from 99.6%. The accuracy drop is because

non-targeted FGSM aims to manipulate the labels in such a way, making them incorrect

for the classification task. Finally, considering the confusion matrices of these exper-

iments in Figure 5.7a, it is observed that the number of false-negatives increased in

non-targeted FGSM settings. Additionally, as seen in Figure 5.10a the recall score of

the model is exceptionally negatively impacted when using targeted FGSM adversarial

examples since the accuracy of the model remained very high.

Regarding the five-class classification submodel, the generation of adversarial ex-

amples using targeted FGSM aims to push the dataset towards the feature class, and

as seen in Figure 5.10a, this has a gradual negative impact on the ML metrics, as the

value of epsilon increases towards the maximum value of 1.0. More specifically, the

accuracy of the model drops to 42.1% from 95.6%, whilst its recall score drops to 49.3%

from 95.7%. Using non-targeted FGSM generated adversarial examples, the increase

of the epsilon value significantly impacts the ML metrics that decrease sharply after

its value surpasses 0.1, as seen in Figure 5.10b. However, adversaries that exploit this

attack may evade their specific attacks’ detection but still be detected by the ML IDS,
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(a) Comparing accuracy versus recall scores in binary targeted FGSM
adversarial examples.

(b) Comparing accuracy versus recall scores in binary non-targeted FGSM
adversarial examples.

Figure 5.9: Comparing accuracy versus recall scores in binary targeted and non-targeted FGSM
adversarial examples [69].

classifying their intentions as another type of attack and blocking them. By comparing

the confusion matrices before and after manipulation, as seen in Figure 5.3b and Fig-

ure 5.7b, respectively, it can be observed that a considerable number of DoS and DDoS

attacks is being classified as benign, whilst the false-negative rates of the other attacks

such as reconnaissance and information theft remain low. The key finding from these

experiments is that adversaries that launch DoS or DDoS attacks have higher chances

of evading the ML IDS detection.
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(a) Comparing accuracy versus recall scores in multi-class targeted FGSM
adversarial examples.

(b) Comparing accuracy vs recall scores in multi-class non-targeted FGSM
adversarial examples.

Figure 5.10: Comparing accuracy versus recall scores in five-class targeted and non-targeted
FGSM adversarial examples [69].

5.3 Conclusion

ML IDS are increasing in popularity and are being used widely. However, their biggest

threat is detection avoidance by adversaries. Additionally, the research interest related

to adversarial examples also increased in the last few years. Adversarial examples aim

to trick the ML models they exploit; hence, in the IDS domain, to trick the ML IDS into

classifying adversary attempts as benign traffic [65, 343].
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In this chapter, the conducted experiments demonstrated the impact of adversarial

examples in a ML IDS scenario, utilising the Bot-IoT dataset [169]. As mentioned in the

introduction of this chapter, this work is the first of its kind, investigated the Bot-IoT

dataset [169] in adversarial settings. Firstly, an SVM model was developed to measure

the impact of targeted and non-targeted label flipping. Secondly, two ANN submodels

were developed, one for binary classification and one for multi-class, in this case, five-

class classification. Key findings from these experiments revealed that various ML

metrics mostly drop when affected by adversarial examples. More specifically, in the

SVM model settings, the flipping of labels with the highest distance from the hyperplane

affected the model the most instead of the initial indication that the lowest distance

from the hyperplane would have the most significant impact. In the ANN settings, the

targeted FGSM generated adversarial examples maintained a very high accuracy in

the model, whilst its recall score was dropped significantly. Hence, organisations that

employ such ML IDS models in their operations should also take into consideration the

recall score in pair with the accuracy of the model.

Intriguing future avenues for the experiments presented in this chapter would be the

investigation of adversarial examples in other IDS datasets, in which the attacks surface

would be more balanced and not so heavily weighted towards DoS and DDoS traffic;

however, this is currently a real-world limitation since the generation of mass balanced

attacking traffic is eminently challenging. Further, another interesting future approach

regarding the investigation of adversarial examples would be in ML models incorporated

with other privacy-preserving ML techniques and countermeasures against them, such

as adversarial training [182, 344].

This chapter investigates the impact of adversarial attacks from both an adversary’s

and the defender’s perspectives. However, it should be noted that this chapter examined

adversarial example attacks and not other crucial ML attacks such as the model inver-

sion, which aims to reconstruct data used for the training of the models (Appendix E)

[345]. The findings and experimentation presented in this chapter can be applied to

other ML models and datasets in order to examine the impact of adversarial examples

on other domains.
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Conclusions

Typically, technological advancements and systems, even in critical areas, focus on

developing new features and capabilities, with their security and privacy often an

afterthought. However, a shift towards the development of systems with security in

mind since their conceptualisation has been observed. Some of these systems involve

DLTs and blockchains, decentralisation of systems, and the invention of the privacy-

preserving ML domain. The thesis discussed areas that can benefit from the presented

innovative technologies, such as the IoT, Big Data and Cloud computing, alongside

future directions to create a more secure world [69].

Blockchain technology has attracted much interest in the last few years. Primarily,

this interest was focused on its financial aspects, the cryptocurrencies. However, it

has evolved to benefit a broader spectrum of fields that can help solve previously non-

investigated problems. This growth created similar DLT architectures focused on the

fundamental underlying technology that is secure and private [13]. Furthermore, the

emerging SSI concept is prevalent and is considered the future of the citizens’ digital

identities. The advantages for the data subjects, the citizens, cannot be neglected by

organisations and governmental bodies since SSI transfers the true ownership of the

generated data back to their owners. Since this concept can be easily combined with

other ML and AI approaches, without adding significant computational overhead, the

data subjects control which data and for how long they need to share with ML and AI

models and revoke their access to it. However, these ML and AI approaches come with

133



6. CONCLUSIONS

their own challenges, security and privacy concerns and careful consideration should

be given when these approaches are being adopted in highly-sensitive environments.

The main findings and contributions of this thesis can be seen as follows:

• To address the Objective I, this thesis presented use cases of one of the most

paramount private-permissioned DLTs, the Hyperledger Fabric, in the domain of

the DNS. PRESERVE DNS has been presented, which enables the secure storage of

passive DNS records and allows access to some of their private details, such as the

IP addresses of the end-users that performed the DNS queries, only to authorised

participants, the end-users themselves [66]. The security and performance of

this system have been experimentally evaluated in comparison with other works

in the literature, and it was demonstrated how it could be used on top of other

related technologies.

• To address the Objective II, the previous contribution extended and applied

to another critical domain such as healthcare, and PREHEALTH presented, a

privacy-preserving EHR management system using the Hyperledger Fabric [67].

This system is tailored to a medical architecture with varying access levels to

the stored data utilising the similar private data collection feature as shown in

PRESERVE DNS [66]. As previously, PREHEALTH was experimentally evaluated in

terms of security and performance against other works in the literature. The key

findings of these experiments focused on the privacy-preservation and efficiency

of systems that employ this technology without adding substantial computational

overhead and improving current practices [66, 29, 67]. Additionally, these signi-

ficant contributions and novelties to the current practices can be employed by

existing infrastructures without requiring complete remodelling.

• To address the Objective III, this thesis presented a promising SSI solution that

utilises digital identities DLTs that can be combined with other privacy-preserving

ML and AI approaches [68]. This system presented a healthcare scenario with

six participants, a ML researcher who aims to train a ML model from private
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data stored in each of the three participating hospitals’ premises, an NHS Trust,

and a governmental regulatory authority. In this scenario, the ML researcher is

firstly required to acquire a digital participation credential from the governmental

regulatory authority, as well as each of the three hospitals is required to acquire a

similar digital participation credential from the NHS Trust. Further, to establish a

secure connection, the researcher and each of the three hospitals must present

their digital participation credential to the other party, who can verify it auto-

matically using a digital identities blockchain ledger. For the verification of the

credential, there is no need to contact the governmental regulatory authority or

the NHS Trust since their private details are used to generate the participation

credentials and the information stored in the digital identities blockchain ledger

can be used to verify it automatically. After establishing the secure connection,

the ML researcher can initiate a FL training by sending the ML model sequen-

tially to each of the three hospitals to train it using their sensitive data. Hence,

no raw, sensitive data transmission occurs at any point of the ML training. It

should be noted that the improvement of the ML performance itself was left out

of the scope of this experiment since it was focused on the demonstration that

ML training is possible in a decentralised scenario as the aforementioned and

can occur through the DIDComm channel. The evaluation of this system shows

that its security has been dramatically improved since the ML models are being

transmitted end-to-end encrypted, through the DIDComm channel between

the participants, without compromising the system’s performance in compar-

ison with traditional FL approaches. It should be noted that, not surprisingly,

a common challenge for these systems is the human factor itself. Since all the

interactions occur based on the utilisation and presentation of various forms

of digital credentials, their protection against adversaries is critical. A potential

security breach and abuse of these credentials may result in major disruptions to

the business continuity, as well as exfiltration and exploitation of sensitive data

depending on the architecture of the affected system [68].
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• Finally, to address the Objective IV, this thesis investigated, from an adversary’s

perspective, the impact of their attacks on ML IDS systems. The adversary’s goal

was to trick the ML IDS into classifying a malicious attempt as benign. This

work focused on investigating these activities utilising a recent Bot-IoT dataset

[169]. Hence, the key findings and contributions from these activities, on the

one hand, highlighted the problem that is often neglected for enterprises that

employ such systems and, on the other hand, revealed their impact that should be

carefully considered, as well as potential defensive countermeasures to diminish

or mitigate these issues [69]. The literature related to this topic has been very

active in the last few years; however, a complete defensive countermeasure to

mitigate this problem has not yet been found. Additionally, as presented, the

BoT-IoT dataset is fairly imbalanced, focused more on some specific types of

attacks; hence, the impact of adversarial attacks on a balanced dataset may have

different outcomes and should be investigated more in the future.

6.1 Future Work

As future work for the presented approaches, technologies and systems individually

can be found within the conclusion of each respective experimental chapter. However,

as a whole, a combined system is envisioned that incorporates DLT, self-sovereign

digital identities and ML/AI. The chosen DLT can store the sensitive data in a privacy-

preserving manner, which only authorised participants can access. The access control

policy and the authorisation of the participants can occur using self-sovereign digital

identities stored in a public blockchain. The citizens who choose to use this system can

control which data they want to share with the other infrastructure participants and can

deny or revoke access to it easily and quickly. Finally, the security analysis of the stored

data can occur using privacy-preserving ML and AI techniques, adding an extra layer

of security and privacy. Regarding these ML and AI techniques, careful consideration

should be given to a range of attacks against them, including but not limited to only

adversarial examples, and countermeasures against them with few examples including
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adversarial training, differential privacy, and knowledge distillation.

However, the question that derives is whether we can build a secure world on top of

an insecure one1. As the whole world becomes data-centric, the privacy of the end-users

is remarkably valuable, thus motivating all future solutions to aim to preserve it.

1Bruce Schneier in Privacy, Trust and the Future at Edinburgh Napier University: https://www.
youtube.com/watch?v=eFmsCSIEMlw
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Machine Learning Metrics

The accuracy of a network intrusion detection system can be calculated using the

Equation (B.5). Additionally, the standard Machine Learning metrics can be seen as

follows:

(B.1) Tr ue Posi t i ve Rate = T P

(T P +F N )

(B.2) Tr ue Neg ati ve Rate = T N

(T N +F P )

(B.3) F al se Posi t i ve Rate = F P

(F P +T N )

(B.4) F al se Neg ati ve Rate = F N

(T P +F N )

(B.5) Accur ac y = T P +T N

(T P +T N +F P +F N )

(B.6) Pr eci si on = T P

(T P +F P )

(B.7) Recal l = T P

(T P +F N )

(B.8) F 1 Scor e = 2× (Pr eci si on ×Recal l )

(Pr eci si on +Recal l )
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Automated Machine Learning Analysis of

Phishing URLs

DNS abuses rise in popularity in the last few years and becoming even more sophistic-

ated than previously. Hence, to defend successfully against adversaries, the defensive

countermeasures need to evolve and incorporate multiple promising technologies,

such as ML. Additionally, the automation of the attacks detection is a protective meas-

ure that can combat adversaries quickly, without relying upon the human factor that

often can be tricked [43]. Splunk can be used to create a flexible infrastructure that

can take as input data from various sources such as domain lists, perform automated

ML and identify potential abuses from a user-friendly interface. This section presents

the methodology required to create this implementation, and an illustration of this

system can be seen in Figure C.1. Additionally, this section presents the findings of this

infrastructure alongside evaluation and discussion about them.

C.1 Datasets

An ML algorithm’s prediction quality is considerably associated with the datasets’ quality

used for its training process. In order for the ML algorithm to correctly classify the

output of a query, the training datasets require to be labelled as malicious or benign,

accordingly. A common technique is the usage of multiple allowlists and blocklists to

reduce the potential memorisations of the training data from the ML algorithm [43].
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Figure C.1: System Architecture Diagram [43].

A popular list commonly used by the research community as a benign dataset is the

Alexa Top 1 Million domain names database. This database consists of the top 1 million

domain name records. However, since these domain names are ordered by popularity,

the developers of this database cannot ensure that all the domain names listed are

benign and may contain a number of malicious websites. Hence, a countermeasure

to combat this issue is the usage of a random percentage of this list and the manual

verification of the listed domain names. The process of randomly selecting a percentage

of data instead of the entire database can also be used to populate malicious domain

name databases such as the Phishtank’s blocklist [346], which generally consists of over

400,000 phishing domain name records. The accumulation of data derived from these

two lists can be used as a training dataset for the ML algorithm to classify benign or

malicious domain names accurately.

Since the manual verification of the Alexa’s Top 1M domain name database may
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still contain a number of malicious records, further tests were conducted using benign

and malicious domain name databases from the literature, such as the Sahingoz et al.

[347] lists. Furthermore, to conclude the testing precisely and accurately, a third test

can be conducted using benign and malicious datasets provided by Marchal et al. [348].

However, the comparison of the findings using combinations of the datasets is critical

to ensure the unbiased and accurate prediction of the ML algorithm. Additionally, it

should be noted that the feature importance of each dataset combination may change;

hence a thorough presentation of the findings is critical.

C.2 Analysis

The ML Toolkit of the Splunk software cannot yet extract the ML features from different

datasets. Hence, the usage of other tools commonly used for data pre-processing,

such as the Pandas Python library, can help and hasten this process. Since the merged

datasets include both benign and malicious domain name records in each test, a new

feature should be developed as a new data column that distinguishes the status of

each particular domain name record. This domain name status column, or easier the

Type feature is outlined by the benign or malicious value, respectively. Furthermore,

common Unix tools such as “Regex” can be used to remove redundant content from the

dataset. Additionally, since the used datasets may also contain personally identifiable

information such as the IP addresses of the client that performed the DNS query or the

server that resolved it, any IP addresses should be removed to avoid GDPR legislation

issues.

Furthermore, since the benign datasets did not include critical details of a DNS

record such as the Time-To-Live, a number of additional features could not be extracted.

Consequently, the focus of this work centred on the analysis of the lexical character-

istics of the domain name records present in the merged dataset. After the dataset

pre-processing, a total of 18 individual features were extracted, divided into two lists de-

scriptive and statistical features, as it can be seen in Table C.1 and Table C.2, respectively.

The distinction of the domain name records originates from several variables that can
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be analysed directly from the domain name records in the case of descriptive features or

the several variables that can be analysed after the application of specific mathematical

functions to each domain name record in the case of the statistical features. A thorough

presentation and explanation of the two lists can be seen in the following sections.

Table C.1: Descriptive features [43].

Feature No. Feature Description

1 Quantity of URL unique characters

2 Quantity of Domain unique characters

3 Quantity of Suffix unique characters

4 Domain Length

5 Suffix Length

6 Total Length

7 Quantity of Domain Name Numbers

8 Quantity of URL Numbers

9 Quantity of Suffix Numbers

10 Quantity of Symbol Characters in the Domain

11 Quantity of Symbol Characters in the Suffix

12 Total Quantity of Symbol Characters

Table C.2: Statistical features [43].

Feature No. Feature Description

13 Domain Character Continuity Rate

14 Suffix Character Continuity Rate

15 Shannon Entropy of Domain Name String

16 Shannon Entropy of Suffix String

17 Standard Deviation of the Shannon Entropy of the Two Domain Levels

18 Mean Deviation of the Shannon Entropy of the Two Domain Levels

C.2.1 Descriptive Features

The extraction of 12 features from each domain name record formed the descriptive

features list. As presented in the literature, these descriptive features include findings
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such as that benign domain name records have a lower quantity of numbers or symbols

than malicious domain name records. This is because malicious domain name records

may be randomly generated through software or because of domain name squatting.

Additionally, benign domain name records commonly are shorter than the malicious

domain name records [80]. An observation derived from the retrieved malicious data-

sets is that several malicious domain name records have shorter domain names than

subdomains. Hence, even if this is considered unbalanced, the total number of charac-

ters may look similar to benign domain name records. Furthermore, since the creators

of benign domain name records aim to use easily remembered names, commonly, the

quantity of unique characters in a domain name is shorter than malicious domain

name records. It should be noted, that often the unique characters in malicious domain

name records may be numbers. As such, carefully chosen features were developed

to measure the quantity of unique characters, numbers and the length of the domain

names, subdomains and suffixes individually.

C.2.2 Statistical Features

The extraction of 6 more features forms the list of the statistical features. As mentioned

previously in the descriptive features, benign domain name creators aim to use easily

remembered domain names; the price of these domain names tends to be higher than

less intuitive domain names. Since the adversaries only use a domain name for a

relatively short period of time, they focus on saving as much money as possible. Hence,

these less intuitive domain names may contain several similar characters next to each

other. This list of statistical features is composed of features such as the presented

character continuity rate [349]. To extract this feature, the domain name record is

split into tokens of sequential characters according to their nature, such as symbols,

numbers or letters. As an example, the “pavlos123-char12” domain name should be

split into tokens of sequential characters. Hence, the domain string is split into “pavlos”,

“123”, “-”, “char”, and “12”. In order to calculate the character continuity rate of the

domain name, the length of the largest tokens from each category should be added
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together and then divided by the total length of the domain name. In the previous

example, “pavlos” has 6 tokens, “123” has 3 tokens, and “-” has 1 token; hence, the

total of these tokens is 10, and divided by the total length of the domain name, which

is 16, the character continuity rate infers to 0.625. Another statistical feature that can

be extracted from the domain name records is the Shannon entropy of the different

domain name levels [350], or their standard and mean deviations.

C.3 Results

As mentioned in the previous sections, the dataset for the ML algorithms contains all

the extracted features. Additionally, for the training of the ML algorithms, another data

column has been developed that distinguishes if a particular domain name record

is benign or malicious. This dataset is used as the input to the Splunk ML Toolkit,

which can then be configured to continuously monitor a particular database in order to

identify if a domain name record is benign or malicious in real-time with high accuracy.

Splunk ML Toolkit is able to split the provided dataset into two subsets, according to

the configured split percentage, one intended to train the ML model and one to test it.

Three experiments were developed with different datasets derived from benign and

malicious datasets combinations. Test 1 contains 5,000 benign and 5,000 malicious

domain name records from the Alexa Top 1M and Phishtank datasets [351, 346]. The

merged Test 1 dataset is then 50/50 split, with the first half used for the training of the

ML algorithms and the second half for the testing. The Splunk ML Toolkit provides

valuable metrics and straightforward hyperparameter configuration to improve the

efficiency of any ML algorithm. The chosen algorithms for Test 1 are the Random Forests

and SVM to directly compare the findings with other works in the literature. Details

about the chosen hyperparameters and the testing performance using the Random

Forests and SVM algorithms can be seen in Table C.3 and Table C.4, respectively. For

optimal results, careful fine-tuning of the algorithm’s hyperparameters shows that the

precision of the Random Forests algorithm can reach up to 89% with 87% recall. The

findings of the same experiment but using the SVM algorithm showed that by tweaking
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its hyperparameters, the precision score can reach up to 89% with 88% recall.

Table C.3: Test 1 Random Forests algorithm performance on the testing dataset [43].

N Estimators Max Depth Max Features Precision Recall

10 ∞ ∞ 0.87 0.86

10 10 ∞ 0.89 0.86

10 10 2 0.89 0.87

Table C.4: Test 1 SVM algorithm performance on the testing dataset [43].

C Gamma Precision Recall

1 1/18 0.89 0.87

1 1/50 0.83 0.83

10 1/18 0.90 0.88

For the second experiment, namely Test 2, the dataset includes 70,000 domain

name records and derived from Sahingoz et al. [347]. The chosen hyperparameters and

the testing performance of the Random Forests and SVM algorithms can be seen in

Table C.5 and Table C.6. The maximum performance of the Random Forests algorithm

topped at 84% precision with 84% recall, whereas the SVM algorithm’s performance was

79% precision with 77% recall after careful optimisation of the hyperparameters.

Table C.5: Test 2 Random Forests algorithm performance on the testing dataset [43].

N Estimators Max Depth Max Features Precision Recall

10 ∞ ∞ 0.84 0.84

1 ∞ ∞ 0.81 0.81

10 10 ∞ 0.80 0.80

10 ∞ 2 0.84 0.84
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Table C.6: Test 2 SVM algorithm performance on the testing dataset [43].

C Gamma Precision Recall

1 1/18 0.76 0.76

10 1/18 0.77 0.77

100 1/18 0.78 0.77

100 1/500 0.79 0.77

For the third experiment, Test 3, the dataset consists of 96,000 domain name records

and is a combination of the previous dataset with the Phishtorm malicious domain

name records dataset [348]. The chosen hyperparameters and testing performance of

the tested algorithms, as previously, Random Forests and SVM, can be seen in Table C.7

and Table C.8. The Random Forests algorithm achieved 85% precision with 85% recall,

whereas the SVM algorithm reached 81% precision with 81% recall.

Table C.7: Test 3 Random Forests algorithm performance on the testing dataset [43].

N Estimators Max Depth Max Features Precision Recall

10 ∞ ∞ 0.85 0.85

1 ∞ ∞ 0.83 0.83

10 10 ∞ 0.83 0.83

10 ∞ 2 0.85 0.85

Table C.8: Test 2 SVM algorithm performance on the testing dataset [43].

C Gamma Precision Recall

1 1/18 0.79 0.79

100 1/18 0.81 0.81

100 1/100 0.81 0.80

100 1/500 0.80 0.79

The results of the experiments showed that the adjustment of the hyperparameters

does not always guarantee an efficiency improvement of the ML algorithms.
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C.4 Discussion

As seen in the first experiment, the SVM algorithm outperformed the Random Forests.

Additionally, in the case of the SVM algorithm, alteration of the hyperparameters showed

significant changes to the results, as seen in TableC.4. Test 1 produced the best results in

terms of Precision and Recall, presumably of the lower number of domain name records.

The second experiment, namely Test 2, showed that the Random Forests algorithm

outperformed the SVM algorithm, as seen in Table C.5 and Table C.6. Additionally,

adjustment of the hyperparameters did not reveal any significant perturbation to the

results. However, this experiment produced the worse results and is not suited for an

automated domain name filtering system. The largest available dataset was used for

training for the third experiment, and the results were slightly better than the previous

one, as seen in Table C.7 and Table C.8. This experiment proved that the SVM algorithm

does not function well when using large datasets, with the Random Forests algorithm’s

results to prevail.

The experiments confirmed that the selected features were not biased on the used

datasets and processed sensible new data. Additionally, it is proved that even if the

produced results were not ideal for a fully automated domain name record filtering

system, the ML models produced by the experiments could undoubtedly reduce the

human input require to manually check, verify and block malicious domain name

records and URLs.

C.4.1 Feature Importance

The importance of the chosen set of features is being evaluated using the Splunk ML

Toolkit. As it can be seen in Figure C.2, the importance of each feature is visualised in a

bar graph. The displayed feature number derives from Table C.1 and Table C.2. In the

first experiment, features 1, 6, 16 and 18 held the most weight for the perturbation of

the results. That indicates that using the chosen dataset to train the ML model, longer

domain name records with more unique characters are often identified as malicious. In
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the second experiment, the feature importance was more comparable, with features 10,

17 and 18 having more importance than the rest. Finally, for the third experiment, the

most crucial features are 6, 10 and 13.

Figure C.2: Feature importance comparison graph [43].

Several interesting observations were made through the presented experiments.

Firstly, the feature importance of the second and third experiments showed that larger

datasets depending on similar features instead of datasets with fewer data. Secondly,

the character continuity rate (features 13 and 14) was the third most crucial feature of

Test 3. When this is compared with the literature, it showed that in the work of Lin et al.

[349], the character continuity rate feature was the most important. Thirdly, feature

9, which is related to the count of numbers in the domain name record suffix, had no

crucial importance in the presented experiments since there were no numbers in any

domain name record suffixes.

C.5 Alerting and Further Improvement

After the training of the algorithms, the Splunk ML Toolkit has the functionality to be

configured to monitor a specific database continuously in order to predict if a specific

domain name record is benign or malicious by utilising the “knowledge” acquired from

the presented experiments. Additionally, the toolkit can be configured accordingly to

automatically alert the user and be re-trained to continue its learning process, remaining
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up-to-date with more recent benign and malicious domain name trends and potentially

further improve its performance.

The ML model created by the Splunk ML Toolkit can be “applied” into a specific

database, such as a “CSV” file, as it can be seen in Figure C.3. The top 3 results of this

Splunk query can be seen in Figure C.4, alongside the prediction if a given domain name

is benign or malicious by utilising the knowledge of the previously trained ML model.

Figure C.3: Applying the knowledge of a machine learning model into a specified database file
in Splunk Search [43].

Figure C.4: Sample results from the Splunk’s search machine learning model fit [43].

The configuration of an alert to the user that is using the Splunk platform can be

seen in Figure C.5. Since Splunk is continuously monitoring a specified database in

real-time, any additions to the database are automatically checked, utilising the trained

ML model and accurately predicting if a domain name entry is benign or malicious.

Additionally, after a specified timeframe, the ML model can automatically initiate a

re-training using the newly added domain name records. This alerting system is fully

automated without requiring any further modifications from its end-users.
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Figure C.5: Splunk machine learning alert [43].

C.6 Summary

The detection of phishing domain name records is more challenging than identifying

botnet traffic because phishing URLs mimic benign domain name records not to look

suspicious. Hence, the human input would be further minimised in the future since

ML algorithms perform very adequately. Additionally, the automated detection of the

phishing domain name records using tools such as Splunk ML Toolkit can offer further

protection mechanisms. As presented in the previous sections, Splunk can monitor

domain name databases to identify malicious domain name records and URLs in real-

time. Additionally, the identified benign and malicious records can be used for further

training of the ML models to stay up-to-date to recent trends and probably enhance the

accuracy of the algorithms even more.
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Additional Technical Experimentation

related to Digital Identities and

Privacy-Preserving Machine Learning

D.1 Case Study: PyDentity and Aries-Jupyter-Playground

The trusted workflow that presented previously is flexible and can be adapted to any

use case and domain. However, its extension to an open-source project, namely Py-

Dentity, and an educational platform, namely Aries-Jupyter-Playground, remove the

architectural complexities from their users, enabling them to focus on the development

of their use case instead of bothering with low-level architectural details [335].

PyDentity allows effortless and straightforward experimentation with SSI techno-

logies using the Hyperledger Aries. Using Aries-Jupyter-Playground, one is able to

create their custom use case by focusing on the high-level domain-specific logic and

using the provided low-level libraries to handle the technology’s complexities. This

domain-specific logic may include the issuing of VC, writing of DIDs to public iden-

tities blockchain ledgers, the request and presentations of identity proofs, as well as

the exchange of text messages. The platform can be integrated with other commer-

cial and open-source mobile identity wallets by inputting a communication request

or scanning a QR code. This platform is demonstrated through Jupyter notebooks to
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incorporate Python code specifics with supporting text. Additionally, the PyDentity

is built using Docker containers that contain all the necessary libraries, frameworks

and dependencies required to operate as intended, removing this obstacle from the

end-users [335].

D.1.1 Architecture

PyDentity was originally developed as an open-source project within the OpenMined

open-source community to demonstrate the usage of SSI technologies. Furthermore,

the development of low-level libraries that remove the requirement of knowledge of the

underlying technologies created the Aries-Jupyter-Playground educational platform,

which is a mixture of three Hyperledger projects, Hyperledger Aries, Hyperledger Indy,

and Hyperledger Ursa. Hyperledger Aries handles the domain-specific logic, defines

the agent’s actions and how they interact with each other [352]. The Hyperledger Indy

involves everything related to the identity blockchain ledger, the storage of DIDs that the

agents resolve, and their resolution. Finally, the Hyperledger Ursa is the lower layer of the

three and includes all the low-level encryption libraries used by the other technologies;

it should be noted that the logic behind the end-to-end encrypted DIDComm protocol

relies on this layer. The experimental code in PyDentity is written primarily in Python

programming language with a few examples in Rust, Go, .NET and Javascript. However,

this platform is programming language-agnostic, and it can be incorporated into any

SSI system written in any programming language. Similarly, it is blockchain-agnostic,

and even if the chosen public identities blockchain ledger is built using Hyperledger

Indy, any DID storage and resolution system could be used, even a traditional database

such as PostgreSQL [290, 335].

The initiation of the Docker containers for each Hyperledger Aries agent participat-

ing in the playground is being handled by the Docker Compose [353]. These Docker

containers include and are being configured as follows:

• The Docker image of the Aries-Cloudagent-Python (ACA-Py) [354] is being used,

which is a Hyperledger Aries instance written in Python programming language
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and is configurable from an environment file that specifies the Hyperledger Indy

network that will be used for the DID interactions; that can be a local Hyperledger

Indy instance or a public identities blockchain ledger such as Sovrin.

• A PostgreSQL instance for each agent to store all the identity certificates and

cryptographic keys required for their interactions.

• A Jupyter notebook for each agent that includes example tutorials on how the

PyDentity works and can be customised with domain-specific logic according to

the end-users’ use cases.

• Optionally, an Ngrok server [355] can be enabled to expose an HTTP port to the

public internet in order to allow its tunnelling to the created application and

establish external communications instead of local-only demonstration.

An Aries-Jupyter-Playground examples architecture with two actors, Bob and Alice,

can be seen in Figure D.1. The platform allows the further extension of the scenario

by adding several other participants without requiring any specific knowledge about

the underlying SSI technologies and frameworks. Additionally, since it uses Jupyter

notebooks, its further demonstration to other researchers and communities is straight-

forward through code and text blocks [335].

Figure D.1: Aries-Jupyter-Playground Overview [335].
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D.1.2 Summary

The PyDentity and its extension to the Aries-Jupyter-Playground are software environ-

ments initially created to educate other users about SSI technologies by allowing them

to interact with these technologies removing the necessity to master the underlying

Hyperledger frameworks. As future work, this system can be extended and be incor-

porated with other educational platforms related to digital and decentralised identities

[356], as well as other projects that would be greatly benefited from this ecosystem such

as PyVertical [336] and PySyft [357].

D.2 Federated Machine Learning in Vertically Distributed

Datasets

The concept of various FL approaches often involves two types of participants, those

who create the ML model and the others who have the necessary sensitive data to

train it; hence the term for this concept is called horizontal FL [358, 71, 359, 360, 361].

However, real-world situations are more complex. It is common for data collectors, such

as various governmental and healthcare departments, services, and banks, to hold data

for the same data subjects (the same individuals) [362]. Since the sensitivity of the data,

a simple merge of it and share across all the parties is considered a privacy breach and

not possible due to regulations. Since the data is split vertically, the term vertical ML

prevailed [363, 336, 364].

In the previous subsections, the presented FL ecosystem was composed of three

hospitals and an ML researcher. The ML researcher created an ML model that was

being sent to the three hospitals to train it using their private data. However, the three

hospitals shared the same features to train the ML model, and just each one was adding

more data samples to the final ML training [68]. If this data was split vertically, such as

one hospital held some data about the data subjects (such as the names and surnames

of the individuals), another hospital held other data about the same data subjects (such

as their mental state), and the third held some others about the same data subjects, then
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the training of the ML model would not be possible since the researcher that created

it could not know which data features each hospital possesses. In this subsection,

PyVertical is presented, which is a vertical FL framework [336]. The ML training dataset

is split vertically among two data owners and a data scientist. The data partitions are

linked using Private Set Intersection (PSI) [363], and the ML model is successfully using

Split Neural Networks (SplitNNs) [336].

PyVertical developed as an open-source framework [365] within the OpenMined

organisation, and it is the first open-source framework that facilitates vertical FL using

SplitNNs [336].

D.2.1 Architecture

In PyVertical, a set of features is split among two data owners and a data scientist. This

set of features derives from the MNIST dataset [366] which consists of images of hand-

written digits and their labels. The images split vertically, with the left side assigned to a

data owner and the right side to the other. Additionally, for the demonstration of the

proof-of-concept, the data scientist possesses the set of labels of these images. PyVer-

tical is written in Python programming language, and an overview of its architecture

can be seen in Figure D.2. The Data Scientist holds a part of the SplitNN and the labels

dataset, whereas the Data Owners hold their images datasets and parts of the SplitNN.

This scenario could be extended to a multi-headed scenario, which would introduce

multiple data owners.

In the vertically split datasets, a number of data samples may intersect between the

participants. Hence, a unique ID is associated with each data sample used by the data

owners utilising the PSI and mutually agree which data features will be used for the ML

training. Furthermore, the data owners sort their datasets according to these IDs and

discard non-shared data from their training datasets.

In PyVertical, there is no transmission of the ML model or raw data. The communic-

ation of the participants occurs through the PySyft’s Duet framework [357] which allows

the data scientist to compute data on the data owners’ premises remotely.
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Figure D.2: Parties and datasets in the conducted experiment [336].

D.2.2 Experiment

The objective of the practical experiment is to demonstrate that PyVertical can success-

fully facilitate federated learning in a vertically distributed dataset. Hence, its objective

is not focused on improving the accuracy of the ML algorithm nor carefully tuning

its hyperparameters. As mentioned previously, 20.000 images of the MNIST dataset

were split into left and right halves and were assigned to the two data owners, whilst

their labels were assigned to the data scientist. Furthermore, the linkage of the data

samples occurred through the python PSI library [367, 363] in order to investigate all

the intersections between the data samples using the previously mentioned unique IDs.

Firstly, the data scientist calculates the intersection of their data with one of the data

owners. Secondly, the data scientist calculates the intersection with the second data

owner; and finally, the data scientist calculates the global intersection of data samples

and communicates this information to the data owners. An overview of the usage of

PSI can be seen in Figure D.3. In this figure, firstly, the Data Scientist computes the

intersection with Data Owner 1. Secondly, the Data Scientist computes the intersection
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with Data Owner 2. Finally, the Data Scientist computes the global intersection. Addi-

tionally, in SplitNNs, each participant trains their own ML model segment; however, the

data scientist controls the ML training process and is able to calculate the accuracy and

loss of the model using a testing dataset mentioned as the validation dataset, with the

results seen in Figure D.4. The technical details of the experiment include the learning

rate used for this experiment, which is 0.01 for the data owners’ models and 0.1 for the

data scientist model using the ReLu activation function and the training epochs that

were 30 [336].

Figure D.3: Computation of intersections [336].

D.2.3 Summary

PyVertical is the first open-source framework that enables the FL on vertically distrib-

uted datasets. The experiment presents two data owners that hold the raw data and

one data scientist that controls the ML training process. There is no transmission of

the ML model nor the raw data throughout this experiment. All the communications

occur through the Duet framework that enables the remote computation of data. A

future avenue for this project would be its combination with PyDentity to introduce a

trust mechanism that also protects all communications through end-to-end encrypted

channels [68]. Additionally, the presented experiment was dual-headed, and all the ML
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model segments had the same size; hence, future work could investigate a multi-headed

scenario with multiple data owners and the impact of imbalanced datasets on PyVertical

[336, 368].

Figure D.4: Train and validation-testing accuracy for an unoptimised dual-headed SplitNN on
vertically-partitioned MNIST [336].
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Practical Defences Against Model

Inversion Attacks for Split Neural

Networks

FL tries to solve many of the aforementioned ML attacks since it decentralises the

training process. However, it is still susceptible to a number of attacks that, as seen,

aim to exploit the ML model itself or reconstruct the data used for training. Similarly,

SplitNN approaches add an extra layer of security and privacy; however, they do not

fully mitigate all of these attacks. As seen previously, a terrifying ML attack is the model

inversion since it aims to exploit the ML model and reconstruct the data used on it.

Often data used to train ML models is sensitive, and their security and privacy must

be preserved. In this section, a practical defence against model inversion attacks is

presented in a SplitNN scenario. Without applying this practical defence, an adversary

is able to reconstruct a set of inference-time data with limited knowledge of the data

distribution. The presented defence adds noise during the intermediate layers of the

ML model’s training and successfully mitigates this type of model inversion attacks, as

seen in the following subsections [345].

The presented practical defence is the extension of NoPeekNN. NoPeekNN aims

to limit the data reconstruction in SplitNN environments, by minimising the distance

correlation of the raw input data with data produced during the ML during intermediate
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representations [54, 369]. NoPeekNN optimises the ML model by combining its loss

with the distance correlation loss in order to masquerade the similarity between the

intermediate data from the raw input data. NoPeekNN utilises a hyperparameter α ∈
[0,∞] to control the perturbation of the loss, and even if it has been shown that it

protects the reconstruction of input data efficiently, this method has not been applied

to model inversion attacks. As seen in the following subsections, an experimental

evaluation compared the presented practical defence with NoPeekNN and concluded

to a number of valuable findings [345].

E.1 Architecture

As seen previously, in SplitNNs, each participant controls and trains a model’s segment

which is mapped to an intermediate ML model representation. The threat model

of this experiment considered an adversary that also controls a model segment and

accumulates a set of raw data and intermediate data produced by at least one other

model segment. The adversary could be a malicious data scientist or a malicious data

owner inferring in the training process of another legitimate data owner. The adversary

creates their own attacking ML model utilising this set to convert the intermediate data

back into raw data inputs. The investigated model inversion attack aims to reconstruct

data during the inference of the model and not the reconstruction of training data.

Additionally, since the adversary creates their own attacking ML model and does not

have any white-box knowledge about the initial ML model, this investigation falls under

the black-box model inversion [345].

The presented Noise Defence adds Laplacian noise after each data owner’s ML train-

ing of their own model segment before the updates are sent to the data scientist. Al-

ternatively, this noise can also be added during the model segment’s ML training. The

result of adding noise in the middle of the training process allows the model to adapt to

it and improve its utility. Additionally, noise obfuscates the data transmitted to the data

scientist through the different model segments and does not allow a malicious data

scientist to understand their correlation with the raw input data. The noise defence
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concurrently with NoPeekNN can be seen in Algorithm 4. The reason for this defence

stems from the fact that data owners may not fully trust the data scientists, and they

want to preserve the security and privacy of their sensitive data [345].

Algorithm 4 NoPeekNN method with Noise Defence [345, 369].

1: laplacian noise scale b
2: NoPeekNN weight α
3: Data owner model f1 with weights θ1

4: Computational server model f2 with weights θ2

5: Learning rates λ1,λ2

6: for epoch ← 1,2, . . . , N do
7: for i nput s, t ar g et s ← d at aset do
8: i nter medi ate ← f1(i nput s)
9: noi se ∼ L(0,b)

10: i nter medi ate ← i nter medi ate +noi se
11: out put s ← f2(i nter medi ate)
12: θ1 ← θ1 +λ1

∂
∂θ1

αLdcor (i nput s, i nter medi ate)+Lt ask (out put s, t ar g et s)

13: θ2 ← θ2 +λ2
∂
∂θ2

Lt ask (out put s, t ar g et s)
14: end for
15: end for

For this experiment, the MNIST dataset [370] utilised. More specifically, the exper-

iment is split into two parts; in the first, the adversary has access to some data of the

same distribution, and in the second, the adversary derives data to attack from the

EMNIST dataset [371]. Regarding the MNIST dataset, from the total of 60,000 images,

40,000 images were used for the training of the ML model and 10,000 for validating

purposes, and finally, the remaining 10,000 images were used to train and evaluate the

adversary model, split in half for each of those processes. The ML training occurred

through 10 epochs, with a 32 batch size and 0.001 learning rate. The hyperparameter

α utilised in the noise defence similarly to NoPeekNN, with the values of α set to 0.1,

0.5, 1.0 for the NoPeekNN, and the values of b set to 0.1, 0.5, 1.0, respectively for the

presented noise defence. For the second part of the experiment, the impact of the

adversary’s knowledge on the data distribution has been experimentally evaluated by

assigning data from the EMNIST dataset to the adversary [345].

As it can be seen in Figure E.1, the original ML model without any defence ap-

plied to it is vulnerable to model inversion reconstructions. The figures represent the

reconstruction of images extracted from a classifier with no defence mechanisms ap-
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plied. Additionally, the figures show one example for each class of the MNIST dataset.

Columns 1 and 3 are real datapoints; columns 2 and 4 are reconstructions [345]. More

specifically, in Figure E.1b, when 250 MNIST images and more are used, the ground

truth of each data point can be reconstructed with high success. In Figure E.1c, the

reconstructions are more visible, especially for some particular classes that were not

distinctly visible when using 250 MNIST images. This is particularly threatening in the

case of highly sensitive data such as medical records [345].

(a) Data reconstructions
from an attacker trained
on 100 images.

(b) Data reconstructions
from an attacker trained
on 250 images.

(c) Data reconstructions
from an attacker trained
on 1250 images.

Figure E.1: MNIST images R reconstructions from adversary models trained on a different
numbers of datapoints [345].

E.2 Experimental Evaluation

The presented noise defence, as well as the NoPeekNN, do not significantly impact

the accuracy of the ML model. The accuracy of a ML model with the noise defence

and NoPeekNN can be seen in Figure E.2. As it can be observed, as the NoPeekNN

perturbation increases, the accuracy of the model decreases. However, this impact is

not significant since even in high perturbation levels, the accuracy-privacy trade-off is

optimal, with shattered reconstructions and an acceptable accuracy score [345].

The accuracy of the ML models and the average distance correlation between in-

termediate and input data can be seen in Table E.1. Since NoPeekNN is optimised to

minimise this correlation, a higher perturbation from it would minimise it, as expected.

An interesting finding is that additive noise may partly degrade the NoPeekNN defence
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since there is a correlation between the noise level increase and the average distance

correlation [345].

Figure E.2: Accuracies on a validation dataset by classifiers with as a function of the scale of
laplacian noise added to intermediate data after training [345].

Noise scale NoPeekNN weight Accuracy (%) Distance Correlation

0.0 0.1 98.04 0.472 ± 0.004

0.0 0.2 97.80 0.390 ± 0.003

0.0 0.5 97.90 0.368 ± 0.004

0.1 0.0 98.19 0.804 ± 0.004

0.1 0.1 97.84 0.474 ± 0.003

0.1 0.5 98.00 0.411 ± 0.004

0.2 0.0 98.00 0.811 ± 0.004

0.2 0.1 97.98 0.491 ± 0.003

0.2 0.5 97.46 0.411 ± 0.003

0.5 0.0 98.24 0.795 ± 0.004

0.5 0.1 97.52 0.525 ± 0.003

0.5 0.5 97.38 0.437 ± 0.003

Table E.1: Validation accuracy and distance correlation between input data and intermediate
tensor of classifiers using NoPeekNN and training noise defences [345].

For the second part of the experiments, as seen previously, it was assumed that

the adversary utilises the EMNIT dataset to reconstruct images on the ML model that

trained on the MNIST dataset. As it can be seen in Figure E.3b, the adversary utilised

5,000 EMNIST images; however, as a result, even if the reconstructions are more fuzzy
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and shattered than the previous part of the experiment when using MNIST attacking

images, the ground truth classes can still be identified, with a comparison presented in

Figure E.3a. This finding demonstrates that even if adversaries have partial knowledge

about the data distribution of the ML model that they try to attack, a model inversion

attack can be alarmingly successful [345]. To further enhance the trust and security

of the ML training process, an identity system can be incorporated, as seen in the

previous chapter, to transmit the ML models end-to-end encrypted only between

trusted participants [68, 47].

(a) (b)

Figure E.3: (a) MNIST data reconstructions from an attacker trained on 5,000 MNIST images.
(b) MNIST data reconstructions from an attacker trained on 5,000 EMNIST images [345].

The image reconstructions using the model inversion attack on varying values of

noise are presented in Figure E.4. At a noise value of 1.0, the image reconstructions are

entirely shattered. At a noise value of 0.5, large chunks of the reconstructed images are

shattered, whilst lower noise values obfuscate only slightly the reconstructions. On the

other hand, using NoPeekNN, the image reconstructions obfuscate the most noticeable

characteristics of classes, but their general structure remains visible. Similarly to noise

defence, lower noise levels do not efficiently protect the model against reconstructions

[345]. A combination of noise defence and NoPeekNN can be a feasible and more robust

defensive mechanism. Depending on the use case, a ML model may elaborate on the

benefits of one or the other [345].
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(a) (b)

Figure E.4: (a) Model inversion attack on an MNIST classifier using the noise defence mechanism.
Left-to-right: true image, reconstructions on models with (0, 0.1, 0.5, 1.0) noise scale. (b) Model
inversion attack on an MNIST classifier using NoPeekNN defence. Left-to-right: true image,
reconstruction on models with (0, 0.1, 0.5) NoPeekNN weighting [345].

E.3 Summary

The noise defence presented in this section extended the NoPeekNN technique by

including additive Laplacian noise during the ML model’s training. It is able to defend

effectively against model inversion attacks with a satisfactory privacy/utility trade-off

and can be applied to any SplitNN architecture. Several examples of reconstructed

images are presented in order to evaluate the experiment, alongside valuable findings.

Additionally, noise defence can be considered comparable to DP. Future avenues for

this work would be investigating the impact of noise defence utilising more complex

datasets, the calculation of the privacy guarantees it offers, as well as investigating the

impact of other noise techniques such as Gaussian noise [345, 372].
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