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a b s t r a c t

For any particular location glazing transmission varies with season and time of day. Thus, glazing
transmission angular behaviour is more crucial than single glazing transmittance value for building
energy simulation and design. In this work, the spectral behaviour of the dye-sensitized solar cell (DSSC)
glazing with three different transparencies are studied. Transmittance of the devices are measured after
2 years to understand the effects of device stability on DSSC glazing applications. The solar factor for the
devices is calculated for different light incident angles for a whole year at a particular location. The
correlation between clearness index and DSSC transmittance is also studied. Finally, glare analysis is
performed for all the devices on a sunny day, intermittent day and overcast day, and is also compared
with double glazing. It is found that the 37% transparent DSSC glazing leads to a greater reduction in
disturbing glare by 21% compared to double glazing on a clear sunny day. All the above results suggest
that DSSC glazings could be productively used for fenestration integration in buildings.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

According to the world energy report, buildings consume 34% of
world energy demand and are responsible for 6% of greenhouse gas
emission [1]. The building sector in the U.S accounts for about 39%
of total energy consumption for heating, ventilation, cooling and
lighting load demand [2]. It is projected that energy-related GHG
emissions will rise about 14% by 2035 [3]. To follow the aim of the
Paris agreement, reduction of GHG emission is essential to keep the
global warming well below 2 �C [4]. Thus, it is important to have
energy efficient buildings in order to protect the environment from
the adverse effects of these emissions.

Buildings are composed of different envelopes such as doors,
roofs, walls and windows. Due to the transparent nature of a
window, it has a large impact on the energy demand as well as the
thermal and visual comfort of a building [5,6]. Presently available
single or double glazed windows allow a considerable amount of
solar heat for hot climates and excessive heat loss for cold climates,
also daylight which creates glare [7,8]. On the other hand, smart or
advanced type glazings have the potential to reduce building en-
ergy demand. Switchable and static transparent type of advanced
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glazings are currently available [9]. Static transparent PV glazings
are promising for window applications due to their multifunctional
property such as ability to control solar gain, daylight glare and
generate clean electricity [10,11]. PV glazings are also known as
BIPV glazing because it replaces buildings traditional windows and
becomes an integral part of the building. BIPV can also replace
other building envelopes such as walls and roof. However, the
windows of a building are of prime importance as it is the only
building envelope which maintains a relation between external
environment and internal room [9]. Thus, advanced BIPV windows
are required to allow soothing daylight and also to control the solar
heat by using a single system.

For glazing application, semitransparency is a precondition [12].
Natural daylight penetrating through this semi-transparent PV
makes the indoor environment comfortable. Available PV types for
glazing application include crystalline silicon, CdTe, a-Si, CIGS, DSSC
and perovskite. c-Si has higher absorption which restricts light to
pass through. There aremany studies in the literaturewhere c-Si PV
was used to replace traditional glazing at homes or buildings. Since
these cells are typically opaque, there are also important compro-
mises in terms of lighting (shadows in the building interior) and
limited external view [13e16]. The need to increase the natural
light transmission without reducing the PV efficiency directed to
the study of lighter and see through thin film PV. Regular distri-
bution of opaque c-Si can offer daylighting, however this structure
blocks the natural viewing [11]. Thin film second generation CdTe
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Ev Vertical illuminance (lux)
k Extinction coefficient
d Diffuse fraction of total solar radiation
g Solar factor/solar heat gain coefficient
kT Clearness index
n Refractive index
rb Ratio of the beam radiation on an inclined surface

to that on a horizontal surface
qi Infrared radiation
he External heat transfer coefficient
hi Internal heat transfer coefficient
SR Subjective rating

Greek symbols
a Absorptance
r Reflectance
rs Solar reflectance
rg Ground solar reflectance
ts Solar transmittance
tdir Direct transmittance
tdiff Diffuse transmittance
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[17], a-Si [18] and CIGS [19] are other options for PV glazing
application. With thin film incorporation in a glasseglass con-
struction, commercial products with a transparency up to 50% are
available in the market. The introduction of this technology pro-
vided more homogeneous daylighting of the interior spaces
compared to crystalline solar cells. However, light induced defects,
shortage and toxicity of materials used in a-Si, CIGS, and CdTe
technologies have limited the opportunity to apply them in glazing
application [20]. Moreover, the power conversion efficiency is
connected to its visual transmittance and therefore extensive per-
formance optimization should be considered [21e23].

Third generation DSSC is a potential candidate for BIPV appli-
cations due to its low manufacturing cost [24], semi-transparent
nature to transmit soothing daylight, short payback time and pos-
itive temperature coefficient [25]. Fig. 1 shows the schematic ar-
chitecture of DSSC glazing. Previously, fabricated DSSC module
Fig. 1. Schematic represent
using 9 unit cells (0.8� 0.8 cm2) in a series connection offered 60%
transmission in the wavelength range between 500 and 900 nm
[26]. Thermo-optical behaviour of DSSCs made of green and red
dyes were investigated using WINDOW software, which showed
60% reduction of solar gain [27]. Thermo-opto-electrical charac-
teristics of DSSC were investigated by Zemax, WINDOW and
COMSOL softwares [28]. To evaluate the occupant comfort due to
the colour property of transmitted solar light, correlated colour
temperature and colour rendering index for DSSC glazing was
evaluated [29]. Recently, DSSC glazing was monitored for two years
in outdoor exposure at Hanbat National University, Republic of
Korea (36.20� N, 127.18� E), which showed promising outcomes
[30]. Another outdoor experiment was also performed to study the
thermal performance for DSSC glazing which showed overall heat
transfer coefficient and solar heat gain coefficient for this glazing
were 3.6W/m2K and 0.2 respectively [31].

For glazing, transmission is a dominant parameter which is not
constant but varies with solar incident angle. The incident angle of
sunlight varies with the time of day and season. Therefore, building
integrated vertical plane DSSC glazing’s transmission is signifi-
cantly different from their normal incidence value. For building
energy simulation, this variable transmission evaluation is essential
to predict accurate energy saving calculation. Glazing trans-
mittance also has a strong correlation with clearness index, and
knowing this value helps in building energy calculation. To evaluate
clearness index, the only measured parameter is global horizontal
solar radiation. As DSSC is considered to be in wide future as one of
the future PV glazing materials, its angular transmission behaviour
variation with clearness index evaluation is essential.

In this work, clearness index and glazing transmission correla-
tionwas evaluated. To understand the potential glare control saving
using DSSC glazing, subjective glare analysis was performed using
measured external illuminance and the results were compared
with a double glazing. According to the authors’ knowledge, this is
the first report on glare analysis of DSSC, correlation between DSSC
glazing transmission with incident angle and clearness index.

2. Experimental method

2.1. DSSC fabrication

Transparent dye-sensitized solar cells were prepared according
to the literature procedures [32,33]. Nanocrystalline transparent
ation of DSSC glazing.
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TiO2 films of different thicknesses were deposited onto transparent
conducting glass (fluorine-doped tin oxide layer, sheet resistance of
13U/cm2). The thickness of the TiO2 electrodes (Table 1) was
measured using Dektak 8 Advanced Development Profiler. The TiO2
electrodes were soaked overnight in an ethanolic solution of
1� 10�6M N719 dye (Solaronix SA), sandwiched with a platinised
conducting counter electrode using a Surlyn frame (Solaronix SA) in
between, filled with the iodide/tri-iodide liquid electrolyte through
a hole in the counter electrode and sealed.
Fig. 3. Comparison of electrical efficiency and CRI for DSSCs with different
transparencies.
2.2. DSSC characterisation

The optical properties of the fabricated DSSCs was measured
using a UV-VIS-NIR spectrometer (PerkinElmer, Lambda 1050).
Fig. 2 represents the optical measurement method of the devices.
The photovoltaic performance parameters of the devices were
measured using an indoor continuous solar simulator (Wacom
AAA; model: WXS-210S-20; 1000W/m2, AM1.5G). All the trans-
parent solar cells were kept in a dark box for 2 years and the optical
measurements were carried out again for comparison.

Previously, we fabricated DSSCs with different transparencies
from 53% to 19% and studied their indoor photovoltaic perfor-
mance. It was found that, the photovoltaic performance of the
DSSCs increases with a decrease in device transparency, before it
starts decreasing for the low transparent devices. The DSSC with
37% transparency in the visible range produced about 6% power
conversion efficiency. The same devicewas scaled up to understand
the potential of DSSCs in building applications. Solar concentrators
were also coupled with the devices and it was found that the low
solar concentrators could improve the efficiency of the transparent
DSSCs. The impact of temperature on PV performance was also
analysed.

In our next investigation, the correlated colour temperature
(CCT) and colour rendering index (CRI) for DSSC glazing application
were calculated. After comparing the results, it was found that the
transparent DSSCs offer only 2.7% lower CRI and CCT values than
the vacuum and double-glazing. All the above results have been
Table 1
Various DSSCs fabricated and their optical and electrical performance parameters.

Device
name

TiO2 thickness
(mm)

Transparency
(%)

Power conversion efficiency
(%)

L2 3.5 53 2.51
L3 6 50 4.49
L4 8 44 5.02
L5 10 37 5.93
L6 12 25 5.15
L7 14 19 3.24

Fig. 2. Schematic representation of the UV/vis/NIR sp
reported [29,33,34]. Fig. 3 compares the electrical efficiency and CRI
of the devices with their transparencies. It has been found that the
devices with higher transparency have better CRI and CCT values.
Since L5 device has the highest efficiency among all with 37%
transparency and devices L2 and L3 are aesthetically suitable, we
consider these three devices named as L2, L3 and L5 with 53%, 50%
and 37% transparency respectively for further analysis in this work.
3. Methodology

3.1. Angular transmission

Angular dependent glazing transmission is given by
Refs. [35,36].
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Where extinction coefficient (k) and refractive index (n) can be
found from equations (2) and (3) respectively
ectrophotometer used for optical measurements.



Fig. 4. Schematic cross section of a room with DSSC glazing place on vertical south
facade.
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Internal radiometric properties r and t are defined as follows
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3.2. Solar factor

The solar factor or solar heat gain coefficient of a glazing in-
dicates the fraction of the entering incident solar radiation into a
room after passing through that glazing material [37]. It also
measures the transmitted solar energy through a glazing. This is the
sum of the solar transmittance ðtsÞ and entering infrared radiation
ðqiÞ to a building interior [38]. Angular dependent solar trans-
mission from equation (1) is replaced in equation (6).

g ¼ ts þ qi ¼ ts þ a
hi

hi þ he

¼ ts þ ð1� ts � rsÞ
hi

hi þ he

(6)

Angular solar factor (g(q)) was evaluated using equation (7)

gðqÞ ¼ gð0ÞtsðqÞ (7)

3.3. Glazing transmission and clearness index

The relationship between clearness index and glazing trans-
mittance is given by equation (8) [35].
Table 2

t ¼ t0
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From equation (1) t ¼ tdir when q ¼ qdir .

t ¼ tdif When q ¼ qdif ¼ 59:68� 0:1388bþ 0:001497b2

[39].

t ¼ tg When q ¼ qg ¼ 90� 0:5788bþ 0:002693b2 [39].
(Ground reflection (rg) was considered as 0.2 and used in the

calculations).

Criterion scale of discomfort glare subjective rating (SR) [41].

Comfort level indicator Glare subjective rating (SR)

Just intolerable 2.5
Just disturbing 1.5
Just noticeable/accepting 0.5
3.4. Glare analysis

To identify the daylight glare control potential of these DSSC
glazings, theoretical analysis using measured outdoor vertical
illuminancewas employed. Glare index calculation is provided for a
DSSC glazing for a typical sunny day, intermittent day and overcast
day in Penryn, UK (50.16� N, 5.10� W). The DSSC glazing is
considered to be on a vertical south façade. The dimensions of the
glazing were considered as 30� 30� 0.5 (l�w� h) cm in the scale
model. The dimensions of the room, glazing position and
measuring points are shown in Fig. 4. These dimensions resemble
the DSSC as a large glazed façade, while the internal surface of the
unfurnished room has white paint (0.8 reflectance) as mentioned
previously [40]. The glare subjective rating is [41] given by equation
(9) where EV is the vertical illuminance facing the window (worst
case) measured at the centre of the room. This SR index allows
discomfort glare estimation experienced by subjects whenworking
at a visual daylight task (VDT) placed against a window of high or
not uniform luminance. The reason for selecting this index is the
engagement of only one photo sensor which can save time and cost.
The criterion scale of discomfort glare subjective rating is given in
Table 2. This method also allows the non-intrusive measuring
equipment necessary for scale model daylighting assessments
[42,43].
SR ¼ 0:1909E0:31v (9)
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4. Results and discussion

4.1. Spectral behaviour of the devices

Fig. 5 shows transmission, reflection and absorption curves for
L2, L3 and L5 devices. Average transmission for L2, L3, L5 are 53%,
50%, 37% and reflections are 40% 44% and 53% respectively. For
comparison, the product of relative spectral distribution of illumi-
nant D65 (Dl) and the spectral luminous efficiency for photopic
vision, V(l) is the photopic luminous efficiency function of the
human eye and has also been added which ranges from 400 to
Fig. 5. Optical performance o

Fig. 6. Comparison of transmittance of the differen
700 nm with its peak at 555 nm. This type of DSSC glazing has low
NIR transmission after 1600 nm and high visible transmission
which is promising for glazing application. Peak transmission oc-
curs around 750 nm for all the devices. Below 400 nm and above
700 nm, the product DlV(l) is zero since V(l) is zero. Beyond
700 nm, the optical performance of all the DSSCs is similar. Fig. 5
compares the optical performance of the devices with the phot-
opic eye sensitivity to light wavelength.

As DSSCs have long term stability issues, the optical properties
of the devices were measured after two years. Fig. 6 compares the
transmittance of both fresh and old devices. The transparency of
f the transparent DSSCs.

t transparent DSSCs (Fresh and after 2 years).



P. Selvaraj et al. / Renewable Energy 141 (2019) 516e525 521
the devices is decreased by 20e30% after 2 years compared to the
initial measurement. This could be due to the interfacial reaction in
the device. Since the electrolyte has corrosive characteristics,
corrosion of the electrode in the electrolyte solution frequently
occurs resulting in poor transparency of the cell. Though the elec-
trodes are corroded, the devices still transmit the light. For glazing
perspective, the durability based on transmission is comparable
with other smart glazing [44].
Fig. 7. Variation of DSSC transmiss

Fig. 8. Variation solar factor w
4.2. Solar factor

Spectral transmittance and reflectance at normal incidence are
the most commonly measured optical properties of glazing. For
vertical plane DSSC glazing, transmission varies with light incident
angle. Here, using equation (1), incident angle dependent glazing’s
angular transmission was calculated from measured normal inci-
dent transmission. Fig. 7 shows the angular dependency of the L2,
ion with solar incident angle.

ith solar incident angle.



Table 3
Yearly useable single transmittance value of DSSCs for different transparency, different azimuthal and monthly clearness index.

Inclination Azimuthal orientation Mean monthly clearness index Transmittance

L2 DSSC L3 DSSC L5 DSSC

Vertical plane DSSC
North 0.7 27% 25% 20%
South 0.4 27% 25% 20%
East, West, North West, North East 0.6 27% 25% 20%

Fig. 10. Daylight glare index of transparent DSSC and double glazing for a typical clear sunny day at Penryn, University of Exeter.

Fig. 9. Variation of DSSC transmission with clearness index.

P. Selvaraj et al. / Renewable Energy 141 (2019) 516e525522
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L3 and L5 DSSC glazing devices. For the University of Exeter in
Penryn, the incident angle varies from 13� to 82� throughout the
year. For the month of December, glazing transmission is high
compared to month of June.

As both conductive glasses are sealed in DSSC, little air gap is
present between the two glass panes. So, the whole device was
considered as a single glazing (4.4mm thickness). Using equation
(7), angular solar factor was calculated and shown in Fig. 8. External
heat transfer coefficient (he) of 25W/m2K, internal heat transfer
coefficient (hi) of 7.7W/m2K, and wind speed of 4m/s were
considered to evaluate the solar factor for the normal incident
angle. L2, L3 and L5 DSSC glazings have solar factors of 0.57, 0.55
and 0.39 respectively at normal incidence angle. However, due to
the angular transmission, this solar heat gain is not achievable in
Fig. 11. Daylight glare index of transparent DSSC and double gla

Fig. 12. Daylight glare index of transparent DSSC and double gla
DSSC glazing [45].
4.3. Variation of transmission with clearness index

The correlation between clearness index and glazing trans-
mittance was evaluated for DSSC glazing and shown in Fig. 9.
Isotropic diffuse transmittance is dominant for clearness index
below 0.4, whereas angular dependent direct transmission is
dominant after 0.4. For vertical plane DSSC glazing, transmittance
varies with season, day and time. However, for south facing vertical
plane DSSC glazing, single value glazing transmittance of 20% for
L5, 25% for L3 and 27% for L2 can be chosen throughout the year
while clearness index is less than 0.5. This study offers a yearly
useable single glazing transmittance for DSSC glazing, which is
zing for an intermittent day at Penryn, University of Exeter.

zing for a typical cloudy day at Penryn, University of Exeter.



Table 4
Comparison of glare subjective ratings for a typical sunny, intermittent cloudy and
overcast day for different glazing types at mid-day.

Weather Glare subjective rating (SR) @ mid-day

Double Glazing L2 DSSC L3 DSSC L5 DSSC

Clear sunny day 5.70 5.10 4.95 4.50
Intermittent cloudy day 4.30 3.75 3.70 3.40
Overcast day 3.80 3.40 3.35 3.10
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advantageous for the building designers in northern latitude areas.
For others, azimuthal orientation single achievable glazing trans-
mission below the threshold clearness index is listed in Table 3.

4.4. Daylight glare analysis

Glare analysis was performed using equation (8). Wavelength
dependent spectrum data for double glazing was collected from
Ref. [8]. Illuminance data was recorded for south facing vertical
plane on the roof of the ESI building in Penryn, UK (50.16� N, 5.10�

W) using the illuminance sensor from MESA. Fig. 10, Fig. 11 and
Fig. 12 show the daylight control potential using three different
transparent DSSCs and a double glazing for a typical clear sunny
day (0e5% opaque cloud coverage), intermittent cloudy day
(26e50% opaque cloud coverage) and overcast day (88e100%
opaque cloud coverage) respectively. Around mid-day, all types of
glazings allowed an excessive amount of light which creates dis-
turbing glare on a clear sunny day. Despite this, all the glazings
allow excessive light which creates disturbing glare, 21% reduction
in glare subjective rating is observed for the 37% transparent DSSC
glazing compared to double glazing on a clear sunny day. During
peak hours (mid-day) glare reduction is less in all the DSSC glazings
for intermittent cloudy and overcast days as well. The glare sub-
jective rating for a typical sunny, intermittent cloudy and overcast
day for different glazing types are compared in Table 4.

5. Conclusions

Suitability of semi-transparent dye-sensitized solar cells (DSSC)
for fenestration integrationwas investigated in this work. To obtain
this, three different transparency (named in this work as L2, L3, L5)
DSSCs were developed. For building glazing application, the
essential criteria such as angular transmission, solar factor, and
daylight glare index were determined by using theoretical equa-
tions and measured normal incident transmission. Average trans-
mission and solar factor at normal incidence anglewere found to be
53% and 0.57 for L2 DSSC, 50% and 0.55 for L3 DSSC, 37% and 0.39
for L5 DSSC. For vertical plane fenestration, angular transmission
varies with varying incident angle. Using clearness index and
glazing transmission correlation, one single yearly useable glazing
transmission for different azimuthal direction was also evaluated
for these DSSC type glazing. Finally, daylight glare analysis of DSSC
glazing was carried out and compared with double glazing. For a
clear sunny day, 21% glare can be reduced than double glazing using
37% transparent DSSC glazing. These analysis will help building
engineers and architects to design a new low energy or retrofit
building with DSSC glazing.
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