
A Quality-Diversity Approach to Evolving a
Repertoire of Diverse Behaviour-Trees in Robot

Swarms

Kirsty Montague1, Emma Hart1[0000−0002−5405−4413], Geoff
Nitschke2[0000−0001−9058−852X], and Ben Paechter1[0000−0002−4841−0805]

1 Edinburgh Napier University,
{k.montague,e.hart,b.paechter}@napier.ac.uk,

2 University of Capetown
{geoff.nitschke}@uct.ac.za

Abstract. Designing controllers for a swarm of robots such that collabo-
rative behaviour emerges at the swarm level is known to be challenging.
Evolutionary approaches have proved promising, with attention turn-
ing more recently to evolving repertoires of diverse behaviours that can
be used to compose heterogeneous swarms or mitigate against faults.
Here we extend existing work by combining a Quality-Diversity algo-
rithm (MAP-Elites) with a Genetic-Programming (GP) algorithm to
evolve repertoires of behaviour-trees that define the robot controllers.
We compare this approach with two variants of GP, one of which uses
an implicit diversity method. Our results show that the QD approach re-
sults in larger and more diverse repertoires than the other methods with
no loss in quality with respect to the best solutions found. Given that
behaviour-trees have the added advantage of being human-readable com-
pared to neural controllers that are typically evolved, the results provide
a solid platform for future work in composing heterogeneous swarms.

Keywords: Swarm-robotics · Quality-Diversity · Genetic-Programming.

1 Introduction

Evolutionary techniques were first proposed to design controllers for swarms
of robots as far back as 1992 [17]. A steadily increasing amount of work since
then has shown that EAs are capable of designing controllers for a range of
tasks, demonstrating that self-organising behaviours can emerge from a swarm in
which each member executes the same controller. Recently, attention has begun
to turn towards evolving repertoires of controllers which exhibit behavioural
diversity. This is particularly prevalent in the literature relating to evolution
of controllers for individual robots, for example, Cully et al. [7], but has also
begun to permeate the swarm robotics field. Having access to a repertoire of
behaviourally diverse controllers has multiple potential advantages. For example,
it can facilitate fault-tolerance by providing alternative methods of control when
there are faulty sensors or actuators; it raises the possibility of adapting to unseen



2 Montague et. al.

situations in novel environments not known when the controllers were evolved;
it enables composition of a heterogeneous swarm with respect to control. The
latter is pertinent given the breadth of literature across disciplines suggesting
that groups of diverse problem-solvers can outperform groups of high-ability
problem-solvers [16]. Thus, there is considerable need for a library of diverse
behavioural repertoires that can be used to improve swarm task-performance.

Existing work relating to evolution of diverse repertoires for swarms has
tended to use neural network or parameterised controllers in conjunction with a
quality-diversity algorithm. The latter are a family of methods first introduced
in [27] that evolve multiple solutions that are diverse with respect to one or
more user-defined characteristics. This study evaluates a method to evolve di-
verse behaviours on various swarm-robotic tasks, where behaviours result from
controllers defined by behaviour-trees (BTs). BTs are structures that describe
switching between a finite set of tasks [4, 23], enabling complex behaviours to
be described from a series of simple tasks. In addition, they have the added
advantage of being human-readable: this allows them to be analysed, extended
and verified [29]. A broad range of recent work has investigated ways in which
Behaviour Trees can be leveraged for fully-autonomous robotic control [1, 2, 5,
12, 23] in both individual and swarm robotics.

The paper makes two contributions to the field of BTs and swarm-robotics.
Firstly, we show that genetic-programming (GP) can be used to evolve diverse
BTs representing primitives defining general skills required to realise foraging
behaviours. Evolving primitives rather than a single BT that realises an overall
foraging behaviour is advantageous in that primitives can be combined in multi-
ple ways in a higher-level control strategy to achieve multiple tasks. We compare
two GP methods for evolving primitives. The first requires separate runs of a
GP algorithm to produce each primitive. The second simultaneously evolves all
three primitives using an implicit population diversity mechanism. We then de-
velop a third method that combines the quality-diversity algorithm MAP-Elites
[25] with GP to explicitly evolve a repertoire of behaviours that are diverse with
respect to three axes describing behavioural characteristics. We demonstrate our
QD-GP algorithm significantly outperforms the two GP approaches in terms of
metrics that quantify both the quality and diversity of the generated behaviours,
although the GP method using implicit diversity is surprisingly competitive in
terms of both quality and diversity metrics.

2 Background

In the context of swarm robotics, evolutionary algorithms have been used to
evolve a range of controller types: most commonly, neural controllers are learned,
with an EA learning the network topology, weights or both [30]. The parameters
of parametric controllers have also been evolved [8]. However, another line of en-
quiry has focused on the evolution of behaviour-tree (BT) controllers. They are
often presented as a viable architecture for robotics on the basis that they remove
the trade-off between reactivity and modularity inherent in finite state machines



A QD Approach to Evolving Diverse Behaviour Trees 3

[6], allowing complex behaviours to be encoded while still maintaining indepen-
dence between components. In addition they have the added advantage of being
human-readable; this allows them to be analysed, extended and verified [29].
Successful examples include evolution of behaviour tree controllers for swarms
of kilobot robots foraging in a simulated arena, developed in a series of papers
[18–20]. Behaviour trees for swarms of e-puck robots [24] were also evolved by
[21] and compared to finite-state machine controllers generated by AutoMoDe
Chocolate [10] and neural networks generated by an approach dubbed Evostick
[11]. The authors found that both of the modular design approaches transferred
to reality more successfully than the controllers evolved by Evostick. [14] intro-
duce the Instinct Evolution Scheme to control a swarm of miniature autonomous
agents with constrained resources and reconfigurable hardware. They propose a
method where Grammatical Evolution is used to evolve BTs from a set of action
nodes derived from a Pareto front of configurations for each hardware module
which satisfy local objectives (for example precision versus power consumption).

Quality-diversity algorithms [27] are a relatively new family of evolutionary
algorithms that aim to find a maximally diverse collection of individuals (often
with respect to a user-defined measure of behaviour) in which each individ-
ual is as high performing as possible. While the field has rapidly expanded to
include a large set of algorithm variants, most derive from two fundamental al-
gorithms: MAP-Elites [25] and Novelty-Search with Local Competition (NSLC)
[22]. Both methods return an archive of diverse, high-quality behaviors in a single
run. Many successful applications of QD methods to evolve diverse behavioural
repertoires for single robots exist3. However, applications to swarm-robotics to
provide diverse behavioural repertoires are still under-represented in the litera-
ture, despite the potential benefits sketched in section 1.

Engebr̊aten et al [8] evolve a repertoire of diverse controllers for a multi-
function swarm using MAP-Elites. Robots were controlled using parametric or
weighted controllers inspired by the use of artificial potential fields and evolved
to conduct perimeter surveillance and network creation tasks. In Gomes et. al.
[13], evolution of a diverse set of task-agnostic behaviours is tackled. Robots
have neural controllers, and novelty-search with local-competition (NSLC) [22]
is used to evolve a set of diverse behaviours that can be utilised in multiple
tasks. The authors demonstrated that repertoires of general swarm behaviours
can be generated, yielding a wide diversity of high-quality behaviours. Steyven
et. al. [15] describe the first distributed model of the MAP-Elites algorithm for
embodied evolution: each robot in a swarm runs its own MAP-Elites algorithm,
with a robot exchanging or updating its individual container when coming into
range of another robot. Their algorithm EDQD was demonstrated to produce a
diverse range of controllers in a simple swarm following task.

Thus, despite a plethora of literature exploring QD methods to generate
diverse behavioural repertoires for individual robots, such methods are under-
explored in swarm-robotics. This study extends related work by combining GP

3 For an up-to-date list of relevant papers, see https://quality-diversity.github.io



4 Montague et. al.

with MAP-Elites to evolve a repertoire of BT controllers, representing generic
building-block primitives, combined to realise swarm-robotic foraging tasks.

3 Methodology

The goal of the paper is twofold. Firstly, we investigate whether GP can be used
to evolve BTs representing three primitive behaviours that are important com-
ponents of swarm-foraging tasks (go-to-food, go-to-nest, increase-neighbourhood-
density). Similarly to the work described by Gomes et al. [13], the motivation
behind this approach is that general low-level behaviours can in future be com-
posed into more complex behaviours in multiple different tasks. Secondly, we
investigate the extent to which a diverse repertoire of swarm controllers can be
evolved. In this work, we assume that swarms are homogeneous in that all robots
run the same controller, however as noted in section 1, the motivation behind
this is that the evolved repertoire has broad swarm-robotic task applicability.

Two GP algorithms for generating BTs are compared. GP1 evolves a BT to
optimise the behaviour of a single primitive, hence needs to be run separately for
each of three primitives go to food, go to nest, increase density. The variants are
thus labelled GPf , GPn, GPd respectively. In contrast, GPf,n,d simultaneously
evolves BTs for all three primitives: an implicit diversity maintenance mechanism
is used in which the selection method compares solutions on a randomly chosen
objective each time it as called. We then compare these methods to a quality-
diversity approach (MAP-Elites) which evolves behaviours for each objective
that are diverse with respect to three user-defined descriptors. Like GP1, this
also needs to be run once per objective (consequently labelled QDn, QDf , QDd).

3.1 Environment, Robots and Simulator

The simulator and task implemented are inspired by the foraging kilobots ex-
periment described in Jones et al. [18]. This requires robots to travel between
nest and food regions in an arena as shown in figure 1. Our swarm consists of 9
robots. We consider evolution of three behavioural fragments which can be com-
bined by a higher-level algorithm to achieve more complex swarm behaviours.
The fragments considered attempt to maximise the following objectives:

– O1: Increase neighbourhood density maximises the difference between
the density of neighbouring robots at the beginning and end of each trial by
subtracting the initial density from the final density.

– O2: Move towards the nest region uses the distance estimated by each
robot based on the shortest route by hops via neighbouring robots from its
location at the start and end of each trial. The difference is maximised by
subtracting the initial distance from the final distance.



A QD Approach to Evolving Diverse Behaviour Trees 5

– O3: Move towards the food region maximises the robots’ estimated
difference in distance to the food region in the same way as the nest region, by
subtracting the initial estimated distance from food from the final estimated
distance from food.

The robots used are footbots, shown in figure 2, simulated using ARGoS [26]
and based on marXBots as described in Bonani et al. [3]. They move on a com-
bination of tracks and wheels (treels). The sensing and actuation capabilities of
the robots in this scenario are given in table 1. If a robot is within 50mm of the
centre of the arena, it is considered to be within the nest region, while if it is
located more than 50mm plus the width of the gap between nest and food then
it is considered to be within the food region. A blackboard provides the interface
between the evolving behaviour-trees and the footbot control software. Informa-
tion received from sensors and other robots in each update cycle is condensed
into the blackboard entries listed below, each of which return true or false, with
two separate entries as necessary for left and right. Note that ‘left’ means that a
detection event occurred anywhere in the left hemisphere of the robot (assuming
a virtual line drawn through the centre of the robot from front to back). ‘Right’
is interpreted in the same manner.

– Is this robot in the food region
– Is this robot in the nest region
– Is the shortest route to food to this robot’s left / right
– Is the shortest route to the nest to this robot’s left / right
– Is the closest neighbouring robot to this robot’s left / right

Each update cycle, the robots transmit their ID and estimated distances from
the food and nest regions to their neighbours. Distances are calculated using the
shortest hop distance via neighbouring robots after adding the extra distance
to the robot in question. Robots currently within the nest or food regions will
send a default estimate of 0mm and robots that are out of range default to
500mm. Messages arriving from robots more than 100mm away are ignored while
messages within this range arrive with 95% probability (as per Jones et al. [18]).
Also in keeping with Jones et al [18]), behaviour trees are ticked (executed) at
2Hz while sensing and communication takes place at 8Hz, and the range and
bearing data is averaged over seven samples to estimate neighbourhood density
and the distance to the nest and food regions.

A single evaluation consists of ten trials, each lasting 20 seconds (40 ticks). In
each trial, the robots start in a random position within 100mm of the centre of a
500mm x 500mm arena. To encourage robust behaviours, the trials are equally
split between two arena configurations which differ in the size of the gap between
the nest and food regions (50mm and 70mm) while the radius of the nest region
remains constant at 50mm.

3.2 Behaviour tree representation

All nodes in a typical BT return one of three strings, success, failure, or running
(the node’s operation will continue to execute until at least the next tick). This



6 Montague et. al.

Table 1: Footbot Reference Model
Ground sensor Informs the robot if it is in the nest or food regions

Range Distance to each neighbour

Bearing Angle of each neighbour

Signal Information payload from each robot in range con-
taining the cumulative distance to nest and food re-
gions derived from hops

Motors Left and right wheels controlled independently, with
± 10% variation between robots

Fig. 1: The arena layout, with
nine robots initialised in random
starting positions.

Fig. 2: A screenshot of a footbot
robot in the arena taken in AR-
GoS.

results in a uniform interface where all nodes are compatible, removing any
possibility of creating an invalid tree along with any requirement for type safety.
The root node of a behaviour tree is executed (ticked) at regular intervals. If
the root has child nodes, the tick propagates through the tree as each branch
node which is executed ticks one or more of its children. Composition nodes form
the branches and control the flow of execution through the tree by prioritising
between several child nodes in different ways (table 2). The composition nodes
in these experiments have memory so if a child node returns running the parent
does likewise. Upon resuming execution they continue by ticking the same child
in their list the next time they themselves are ticked.

Leaf nodes can be either conditions or actions. Condition nodes control the
flow of execution by returning success or failure depending whether their con-
dition is satisfied, which determines whether their parent can continue to tick
any subsequent children. The action nodes in these experiments all represent
locomotion behaviours, returning running initially (in effect pausing the BT for
one tick) and returning success on the next tick. In doing so, the action node
terminates and allows execution to flow back to the parent. Condition or action
nodes do not have children so they can be exchanged freely by the mutation



A QD Approach to Evolving Diverse Behaviour Trees 7

Fig. 3: An example behaviour tree.

and crossover operators. An example behaviour tree is shown in figure 3, with a
select node at its root and a sequence node as the first child. The tree checks if
the robot is in the nest, in which case it stops, otherwise it moves forward.

Behaviour tree nodes: BTs nodes in these experiments can fulfil one of three
roles as outlined below:

– Composition nodes control the flow of execution through the tree. There
are three types of node (sequence, select and probabilistic), described in ta-
ble 2. The role of these nodes is to govern execution of child nodes, accounting
for which was executed last.

– Condition nodes have no children and return success or failure depending
whether their condition is satisfied. Nodes are listed in table 3 and determine
the direction of the nearest neighbour (left/right); direction of the shortest
hop distance to food or nest (left/right); whether the robot is within the
nest or food region. Where necessary, the robots’ immediate vicinity within
100mm is divided into left and right hemispheres and the node’s return value
indicates whether the given half contains the object of interest.

– Action nodes have no children. Their purpose is to send commands to the
robots’ motors to provide movement. These are listed in table 4

Table 2: Composition Nodes
Sequence node with memory and Executes each child until one fails
2, 3 or 4 children

Select node with memory and Ticks each child until one succeeds
2, 3 or 4 children

Probabilistic node with memory and Ticks one child chosen at random
2, 3 or 4 children



8 Montague et. al.

Table 3: Condition Nodes
If on food Returns success if the robot is within the food region

If food to left Returns success if the shortest route to the food region is to the
robot’s left

If food to right Returns success if the the shortest route to the food region is to
the robot’s right

If in nest Returns success if the robot is within the nest region

If nest to left Returns success if the shortest route to the nest region is to the
robot’s left

If nest to right Returns success if the shortest route to the nest region is to the
robot’s right

If robot to left Returns success if the nearest robot is to this robot’s left

If robot to right Returns success if the nearest robot is to this robot’s right

Table 4: Action Nodes
Stop No movement for one tick

Forwards Move forwards for one tick

Forwards left Right wheel forwards for one tick, rotating the robot anti-clockwise

Forwards right Left wheel forwards for one tick, rotating the robot clockwise

Reverse Move backwards for one tick

Reverse left Right wheel in reverse for one tick, rotating the robot clockwise

Reverse right Left wheel in reverse for one tick, rotating the robot anti-clockwise

3.3 Algorithms

Controllers for three behaviour fragments are evolved using a benchmark evolu-
tionary algorithm and two variations which employ different strategies for pro-
moting behavioural diversity.

Benchmark algorithms: We compare results obtained from running a clas-
sical genetic-programming algorithm with quality-diversity approach. The GP
algorithm is implemented using DEAP [9] with the parameters specified in table
5. We evaluate two versions of this algorithm:

1. GPo: this optimises a single objective o (one of the three functions speci-
fied in section 3.1), and therefore evolves a BT for one of three primitive
behaviours. Experiments are conducted for each of three primitives in turn
from each of the three variants (GPf , GPn, GPd).

2. GPf,n,d: in order to implicitly encourage diversity within the population,
each time the selection method is called, one of three objectives is chosen
with uniform probability, and the individuals in the tournament are com-
pared according to the chosen objective. A list of the elite solution for each
objective is maintained throughout the run. As the intention is to evolve



A QD Approach to Evolving Diverse Behaviour Trees 9

three separate trees representing each primitive, the population size is tripled
and the maximum evaluation budget is set to three times the budget of GPo.

All of the nodes used to define BTs return the same type (a string which
is either ”success”, ”failure” or ”running”), so there is no requirement for the
algorithm to be strongly typed. Pressure is applied towards smaller trees by
selecting the shortest in the event that their fitness scores are exactly equal and
at least one of them is more than three nodes deep.

MAP-Elites for Evolution of Diverse Behaviours: We use the QD algo-
rithm MAP-Elites [25]. This is implemented using the Python Library QDPy;
the reader is referred to the documentation for a full description of the algo-
rithm which follows the original definition of MAP-Elites. MAP-Elites differs
from classical evolutionary algorithms in that the population is stored in a con-
tainer discretised into cells according to behaviour descriptors defined by a user.
Each solution is mapped to a single cell according to the derived behavioural
descriptors; the cell stores up to three solutions which have the best objective-
values found for that cell during the run. We define three behavioural axes de-
scribing phenotypic aspects of the robots during execution of the BT controller
that promote phenotypic (behavioural) diversity: (1) Ratio of forwards vs back-
wards movements; (2) Ratio of clockwise vs anti-clockwise rotations; (3) Ratio
of condition nodes vs action nodes. Quality is calculated using the same three
objective functions as the GP approaches described in the previous section. As
with GPo, the QD method must be run separately for each of three primitives.
These methods are labelled (QDn, QDf & QDd). All parameters required to
run the GP algorithm defined in DEAP and the MAP-Elites algorithm defined
in QDPy are listed in table 5 and were derived from [18] where possible or by
preliminary empirical testing otherwise.

4 Results

We present results from two sets of experiments: (1) A comparison of the quality
of the best BT controller found from each of three methods for each primitive
(GPo, GPf,n,d, QDo); (2) A comparison of the diversity of behaviours found by
each of the three algorithms per primitive. Quality is determined with respect to
objective fitness for each of the three primitives. We measure diversity according
to the coverage metric. That is, the proportion of bins filled, and finally also
report the QD score which captures both quality and diversity. This is obtained
by summing the highest fitness values found in each grid bin (Qi) [28]

∑t
i=1 Qi.

All metrics are calculated over 10 runs with a maximum budget of 25,000 evalua-
tions per objective4. To evaluate whether there is statistical significance between
pairs of results, we first apply a Shapiro-Wilk test to test for normality. If the
null hypothesis is rejected (p ≤ 0.05) then a Mann-Whitney test is used for
comparison, otherwise a t-test is applied (again with a confidence level of 0.05).

4 GPn,f,d is allocated 75000 evaluations as it simultaneously solves 3 objectives.



10 Montague et. al.

Table 5: Genetic Programming & Quality-Diversity Parameters
GP Parameters

Generations 1000

Population size 25 per objective

Tournament size 3 (GPo) and 5 (GPf,n,d)

Elites 1 per objective

Probability of crossover 0.8

Probability of mutating by inserting a subtree 0.05

Probability of mutating by shrinking a subtree 0.1

Probability of mutating by replacing one node 0.5

Trials per evaluation 10

Arena configurations per evaluation 2

Trial length 20 seconds (40 ticks)

QD Parameters

Bins 8 x 8 x 8

Max items per bin 3

Initial batch size 100

Batch size 50

Generations 500

4.1 Comparison of Objective Fitness

While the main goal of the paper is to generate diverse repertoires of behaviours
with respect to each of the three primitives, it is instructive to understand
whether searching for diversity in addition to quality has an adverse impact
on quality. Figure 4 shows box-plots over the 10 runs per objective value and
algorithm. From a qualitative perspective, the QD approach appears more ro-
bust in that the variation across repeated runs is much smaller than the two GP
methods. Statistical tests applied between each pair of algorithms per-objective
show that the null-hypothesis cannot be rejected between any tests for the go-to-
food and density objectives, whereas for the go-to-nest objective, a statistically
significant difference is observed between GPn and GPf,n,d, and between GPn

and QDn, with GPn providing the poorer result in each case.
Our results clearly demonstrate that for two objectives (food, density), there

is no evidence that the GPf,n,d approach, that aims to maximise all objectives
simultaneously, results in any difference in quality when compared to results
from the corresponding single objective GP variant. Furthermore, there is no
evidence that evolving for both quality and diversity reduces the quality of the
best solutions found for these two objectives.

4.2 Coverage and QD Scores

Figures 5 and 6 show boxplots for the three respective metrics for each of three
objectives. Results from pairwise statistical testing are also given in table 6. It
is immediately clear that the QD method provides significantly better coverage



A QD Approach to Evolving Diverse Behaviour Trees 11

(a) Increase density (b) Move towards nest (c) Move towards food

Fig. 4: Box-plots of the best fitness obtained for all three algorithms and objec-
tives with a design budget of 25,000 evaluations per objective and averaged over
ten runs, or twenty runs where available

(a) Increase density (b) Move towards nest (c) Move towards food

Fig. 5: Coverage for each algorithm and objective with a design budget of 25,000
evaluations per objective and averaged over ten runs

(a) Increase density (b) Move towards nest (c) Move towards food

Fig. 6: Quality diversity scores for each algorithm and objective with a design
budget of 25,000 evaluations per objective and averaged over ten runs

and QD score than the EA approaches, indicating that the method is able to



12 Montague et. al.

Table 6: Statistical testing results showing pairwise comparisons. Statistically
significant results within a confidence interval of 0.05 are shown in bold.

Metric Objective Comparison p-value Type of test

Best fitness Increase density GPd vs GPn,f,d 0.3505 T-test
GPd vs QDd 0.9695 T-test

Go to nest GPn vs GPn,f,d 0.0004 T-test
GPn vs QDn 0.0066 T-test

Go to food GPf vs GPn,f,d 0.4406 Mann-Whitney
GPf vs QDf 0.9422 T-test

Coverage Increase density GPd vs GPn,f,d < 0.0001 T-test
GPd vs QDd < 0.0001 T-test

Go to nest GPn vs GPn,f,d < 0.0001 T-test
GPn vs QDn < 0.0001 T-test

Go to food GPf vs GPn,f,d < 0.0001 T-test
GPf vs QDf < 0.0001 T-test

QD Score Increase density GPd vs GPn,f,d < 0.0001 T-test
GPd vs QDd < 0.0001 T-test

Go to nest GPn vs GPn,f,d < 0.0001 T-test
GPn vs QDn < 0.0001 T-test

Go to food GPf vs GPn,f,d < 0.0001 T-test
GPf vs QDf < 0.0001 T-test

(a) QDd: Increase density

(b) QDn: Go to nest

(c) QDf : Go to food

Fig. 7: Heatmaps for QDo (three separate objectives)



A QD Approach to Evolving Diverse Behaviour Trees 13

(a) Increase density GPd 148 solutions, GPf,n,d 255 solutions, QDd

290 solutions

(b) Go to nest GPn 201 solutions, GPf,n,d 255 solutions, QDn 283
solutions

(c) Go to food GPf 112 solutions, GPf,n,d 255 solutions, QDf 305
solutions

Fig. 8: Histograms showing the distribution of fitness values per algorithm (one
row per objective)

produce diversity in behaviour while also maintaining quality. In terms of the
best solution found, the QD approach generally finds solutions that are at least
on a par with the other methods. That is, there is no statistical evidence that
solution task performance is different (section 4.1). Figure 7 provides a visual-
isation of the evolved QD container for each objective. Since the container has
dimensions 8x8x8 it is presented as 8 separate 8x8 containers5.

5 Given the obvious difference between the QD and EA methods, we only show the
QD containers given page limit constraints.



14 Montague et. al.

Figure 8 plots the distribution of fitness values in the repertoires generated
by each algorithm for each objective from a single run of each. The figure also
indicates the size of each repertoire. Although all methods produce a spread of
values, the QD approaches produce repertoires that encapsulate many different
behaviours that also have high quality (task performance). That is, the centre
of mass of the distribution is shifted to the right in the QD case. Note that
the GPf,n,d method finds much larger repertoires than the single objective GP
method for all three objectives, and that the repertoires also contain solutions
that tend to be of higher quality. One possible explanation for this is that by
randomly selecting an evaluation function to score an individual during each
round of tournament selection, some useful transfer of knowledge occurs which
increases fitness. Similarly, Evolutionary Multi-Task Optimisation (EMTO) [31]
methods have demonstrated that solving multiple tasks in combinatorial optimi-
sation via a shared population can improve quality and is thus worthy of further
investigation. Alternatively, the random choice of objective function per round
of selection is likely to also encourage wider exploration of the search-space.

5 Conclusions and Further Work

The goal of this research was to compare methods for generating a repertoire of
diverse behaviours for three primitive tasks that are useful components for syn-
thesising foraging behaviours in swarms. To the best of our knowledge, this study
was the first experimental comparison of various methods for generating diverse
behaviours via behaviour-tree controllers, with respect to three different primi-
tives. Our study compared a standard GP algorithm to a GP algorithm using an
implicit diversity mechanism (to simultaneously evolve three behaviours), to a
quality-diversity algorithm (MAP-Elites), using an explicit diversity mechanism.

Results showed, inline with existing literature that has evolved neural con-
trollers, that QD is capable of evolving a diverse repertoire of high quality BT
controllers. Furthermore, this study demonstrated that a GP algorithm using
an implicit diversity mechanism is capable of evolving high (task-performance)
quality controllers, although the repertoire size attained is smaller than that of
the QD approach (figure 5). An advantage of using behaviour trees over neural
networks is their readability. Using BT controllers in swarms therefore poten-
tially offers a route to creating swarms with explainable behaviour in the future.

The evolved repertoires provide a platform for two avenues of future work.
On the one hand, the diverse behaviours evolved for each primitive can be com-
bined to deliver a broad range of complex foraging behaviours, for example,
evolving a ‘meta-BT’ that uses the primitives themselves as nodes. Other high-
level strategies might also be learned that utilise these primitives, for example,
reinforcement learning. On the other hand, the existence of the evolved reper-
toires opens up the possibility of constructing swarms in which the robots have
heterogeneous behaviours. This would require a search algorithm to discover use-
ful compositions, but would provide new insights into the benefits of composing
a swarm from a single high-performing behaviour or multiple behaviours that



A QD Approach to Evolving Diverse Behaviour Trees 15

are diverse with respect to quality. Composing swarms where each entity has a
diverse form of movement also potentially offers some mitigation against faults
or breakages and thus ensures swarm-robotic resilience.

References

1. Banerjee, B.: Autonomous acquisition of behavior trees for robot control. pp. 3460–
3467 (10 2018). https://doi.org/10.1109/IROS.2018.8594083

2. Biggar, O., Zamani, M.: A framework for formal verification of behavior trees with
linear temporal logic. IEEE Robotics and Automation Letters 5(2), 2341–2348
(2020). https://doi.org/10.1109/LRA.2020.2970634

3. Bonani, M., Longchamp, V., Magnenat, S., Retornaz, P., Burnier, D., Roulet, G.,
Vaussard, F., Bleuler, H., Mondada, F.: The marxbot, a miniature mobile robot
opening new perspectives for the collective-robotic research pp. 4187–4193 (01
2010). https://doi.org/10.1109/IROS.2010.5649153

4. Colledanchise, M., Marzinotto, A., Ögren, P.: Performance analysis of stochastic
behavior trees. In: 2014 IEEE International Conference on Robotics and Automa-
tion (ICRA). pp. 3265–3272 (2014). https://doi.org/10.1109/ICRA.2014.6907328

5. Colledanchise, M., Natale, L.: Improving the parallel execution of behavior trees
(09 2018). https://doi.org/10.1109/IROS.2018.8593504

6. Colledanchise, M., Ögren, P.: Behavior trees in robotics and ai: An introduction.
CoRR abs/1709.00084 (2017), http://arxiv.org/abs/1709.00084

7. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like ani-
mals. Nature 521(7553), 503–507 (2015)

8. Engebr̊aten, S.A., Moen, J., Yakimenko, O., Glette, K.: Evolving a repertoire of
controllers for a multi-function swarm. In: International Conference on the Appli-
cations of Evolutionary Computation. pp. 734–749. Springer (2018)

9. Fortin, F.A., De Rainville, F.M., Gardner, M., Parizeau, M., Gagné, C.: Deap: Evo-
lutionary algorithms made easy. Journal of Machine Learning Research, Machine
Learning Open Source Software 13, 2171–2175 (07 2012)

10. Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn,
G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V.,
Birattari, M.: Automode-chocolate: automatic design of control software for robot
swarms. Swarm Intelligence 9 (06 2015)

11. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: Automode:
A novel approach to the automatic design of control software for robot swarms.
Swarm Intell 8, 1–24 (06 2014). https://doi.org/10.1007/s11721-014-0092-4

12. Giunchiglia, E., Colledanchise, M., Natale, L., Tacchella, A.: Conditional behav-
ior trees: Definition, executability, and applications. In: 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC). pp. 1899–1906 (2019).
https://doi.org/10.1109/SMC.2019.8914358

13. Gomes, J., Christensen, A.L.: Task-agnostic evolution of diverse repertoires of
swarm behaviours. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Reina, A., Trianni, V. (eds.) Swarm Intelligence. pp. 225–238. Springer Interna-
tional Publishing, Cham (2018)

14. Hallawa, A., De Roose, J., Andraud, M., Verhelst, M., Ascheid, G.:
Instinct-driven dynamic hardware reconfiguration: Evolutionary algorithm opti-
mized compression for autonomous sensory agents. pp. 1727–1734 (07 2017).
https://doi.org/10.1145/3067695.3084202



16 Montague et. al.

15. Hart, E., Steyven, A.S., Paechter, B.: Evolution of a functionally diverse swarm
via a novel decentralised quality-diversity algorithm. In: Proceedings of the Genetic
and Evolutionary Computation Conference. pp. 101–108 (2018)

16. Hong, L., Page, S.E.: Groups of diverse problem solvers can outperform groups
of high-ability problem solvers. Proceedings of the National Academy of Sciences
101(46), 16385–16389 (2004)

17. Husbands, P., Harvey, I.: Evolution versus design: Controlling autonomous robots.
In: Proceedings of the Third Annual Conference of AI, Simulation, and Planning
in High Autonomy Systems’ Integrating Perception, Planning and Action’. pp.
139–140. IEEE Computer Society (1992)

18. Jones, S., Studley, M., Hauert, S., Winfield, A.: Evolving Behaviour Trees for
Swarm Robotics, pp. 487–501. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-73008-0 34, https://doi.org/10.1007/978-3-
319-73008- 34

19. Jones, S., Studley, M., Hauert, S., Winfield, A.: A two teraflop swarm. Frontiers
in Robotics and AI 5, 11 (02 2018). https://doi.org/10.3389/frobt.2018.00011

20. Jones, S., Winfield, A., Hauert, S., Studley, M.: Onboard evolution of un-
derstandable swarm behaviors. Advanced Intelligent Systems 1 (07 2019).
https://doi.org/10.1002/aisy.201900031, https://doi.org/10.1002/aisy.201900031

21. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic modular design of robot swarms. In: International
Conference on Swarm Intelligence. pp. 30–43. Springer (2018)

22. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty
search and local competition. In: Proceedings of the 13th annual conference on
Genetic and evolutionary computation. pp. 211–218. ACM (2011)

23. Marzinotto, A., Colledanchise, M., Smith, C., Ogren, P.: Towards a uni-
fied behavior trees framework for robot control. pp. 5420–5427 (05 2014).
https://doi.org/10.1109/ICRA.2014.6907656

24. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for
education in engineering. In: Proceedings of the 9th conference on autonomous
robot systems and competitions. vol. 1, pp. 59–65. IPCB: Instituto Politécnico de
Castelo Branco (2009)

25. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv
preprint arXiv:1504.04909 (2015)

26. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Math-
ews, N., Ferrante, E., Caro, G.A.D., Ducatelle, F., Birattari, M., Gambardella,
L.M., Dorigo, M.: Argos: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intelligence 6, 271–295 (2012)

27. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: A new frontier for evo-
lutionary computation. Frontiers in Robotics and AI 3, 40 (2016)

28. Pugh, J.K., Soros, L.B., Szerlip, P.A., Stanley, K.O.: Confronting the challenge of
quality diversity. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation. pp. 967–974 (2015)

29. Scheper, K., Tijmons, S., De Visser, C., Croon, G.: Behavior trees for evolutionary
robotics. Artificial life 22 (02 2016). https://doi.org/10.1162/ARTL a 00192

30. Trianni, V.: Evolutionary swarm robotics: evolving self-organising behaviours in
groups of autonomous robots, vol. 108. Springer (2008)

31. Wei, T., Wang, S., Zhong, J., Liu, D., Zhang, J.: A review on evolutionary multi-
task optimization: Trends and challenges. IEEE Transactions on Evolutionary
Computation (2021)


