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a b s t r a c t 

This paper focuses on how touch interactions on smartphones can provide a continuous user authenti- 

cation service through behaviour captured by a touchscreen. While effort s are made to advance touch- 

based behavioural authentication, researchers often focus on gathering data, tuning classifiers, and en- 

hancing performance by evaluating touch interactions in a sequence rather than independently. However, 

such systems only work by providing data representing distinct behavioural traits. The typical approach 

separates behaviour into touch directions and creates multiple user profiles. This work presents an omni- 

directional approach which outperforms the traditional method independent of the touch direction - de- 

pending on optimal behavioural features and a balanced training set. Thus, we evaluate five behavioural 

feature sets using the conventional approach against our direction-agnostic method while testing several 

classifiers, including an Extra-Tree and Gradient Boosting Classifier, which is often overlooked. Results 

show that in comparison with the traditional, an Extra-Trees classifier and the proposed approach are su- 

perior when combining strokes. However, the performance depends on the applied feature set. We find 

that the TouchAlytics feature set outperforms others when using our approach when combining three or 

more strokes. Finally, we highlight the importance of reporting the mean area under the curve and equal 

error rate for single-stroke performance and varying the sequence of strokes separately. 

© 2023 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In 2007, Apple caused a paradigm shift by releasing its first 

martphone with a touch screen. Since then, smartphones have 

ecome ubiquitous, with an 81% penetration rate in the US 

 O’Dea, 2020 ). With the adoption of smartphones, a single device 

an now provide access to the entire life of its owner, e.g., en- 

ertainment profiles such as Netflix, social media accounts with 

nstant messaging, and online banking, amongst others. However, 

ser authentication on touch devices is challenging due to the 

imited input interfaces. With facial recognition and smartphone 

ngerprint reading, biometric lock screen authentication can con- 

rm legitimate users conveniently but cannot continuously main- 

ain user authenticity through user sessions. These physiological 

iometrics also require sensors vulnerable to presentation and re- 

lay attacks ( BBC News 2017 ; Almeida et al., 2020 ). Finally, active

uthentication methods are time-consuming and may interrupt or 

elay productivity ( Harbach et al., 2016 ; Koushki et al., 2021 ). 

Continuous Authentication (CA) mitigates these weaknesses by 

assively collecting behavioural biometrics from user input and 
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valuating user authenticity passively over time. Fig. 1 visualises 

he concept of touch-based CA. Step 1 captures touch data, Step 2 

ompares against known touch behaviour, and Step 3 evaluates and 

roduces a lock or unlock decision, Steps 3.1 and 3.2, respectively. 

he continuous loop then repeats the steps for each interaction to 

ecure the device over time, continuously 

The early work by ( Frank et al., 2013 ) sought to establish the vi-

bility of touchscreen data as input for behavioural biometrics and 

xplicitly argued for user authentication through touch strokes. 

ontrary to other types of CA, the touch-based method only re- 

uires a touchscreen and may thus be applied across any device 

ith a touch interface. For instance, humans in smart factories 

ould use a touchscreen to operate a conveyor belt or pickers in a 

arehouse to use a smartphone for packing orders. However, sev- 

ral challenges remain, such as identifying high-quality behavioural 

raits and defining a standard to compare touch-based CA methods 

 Patel et al., 2016 ; Zaidi et al., 2021 ). 

.1. Motivation and challenges 

Commonly, researchers model touch behaviour in the context of 

orizontal strokes (Hs) or Vertical strokes (Vs), with the Hs model 

ypically outperforming Vs ( Frank et al., 2013 ; Serwadda et al., 
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Fig. 1. Touch-based continuous authentication concept. In this example, our implementation secures a phone by 1. capturing biometric touch data; 2. comparing against a 

biometric user template; and 3. evaluating whether the genuine user is granted access to the phone 3.1 or locked 3.2 

Fig. 2. A high-level overview of the traditional bidirectional approach. Commonly, interactions are broken into touch-direction with individual models to predict if a user is 

genuine. Further improvements are made to the performance by combining predictions using sliding windows, among others. 
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013 ; Aaby et al., 2020 ). Fig. 2 presents the typical modelling ap-

roach for a user touching their device four times. Each stroke is 

rst evaluated for direction and then provided to the respective 

idirectional model. The model then predicts a probability score 

etween zero and one for strokes 1 through 4. Higher probability 

esults define a favourable decision to unlock the device - as there 

s a high probability that the user is genuine. 

As further explained in Sections 2.3 and 3.8 , a moving aver- 

ge can be applied as a window over the strokes and probabili- 

ies to smoothen and improve authentication accuracy. However, 

e suggest that a model may be agnostic to the direction; thus, 

 single omnidirectional model should authenticate the owner re- 

ardless of touch direction. A recent study by ( Aaby et al., 2020 )

ook early steps towards investigating distinct traits concerning in- 

ividual user behaviour. However, their work focused on limited 

eatures and did not consider mixing the directional gestures into 

 single omnidirectional model. Consequently, this paper is moti- 

ated by the challenges and discrepancies between modelling ap- 

roaches, the lacking comparison of behavioural feature sets, and 

 desire to create user profiles based on high-quality behavioural 

eatures. Lastly, we define a new method to select the model pa- 

ameters to reduce complexity at the cost of minor performance 

rops. 

The following section will detail each contribution related to 

hese challenges. 

.2. Research questions and contributions 

Following the challenges outlined, this paper seeks to con- 

ribute answers to the following questions: 

1. What is the performance difference between the proposed ap- 

proach versus a typical bidirectional model where stroke orien- 

tation is separated and parameters are highly optimised? 

2. What is the impact of combining n -strokes when using the typ- 

ical and proposed approach? 
2 
3. Which feature set should be used considering the different di- 

rectional modelling approaches? 

We focus on balancing the model complexity and performance 

o answer these questions while choosing the optimal feature set 

or a single omnidirectional model and two independent Hs and 

s models. Each user is modelled using five feature sets to evalu- 

te the best overall behavioural traits. We report the Area Under 

he Curve (AUC) since it is threshold independent while assessing 

he best trade-off between classes as a function of all thresholds 

 Wang and Chang, 2011 ). We also report the Equal Error Rate (EER) 

ince it is the most popular metric across the literature, noting that 

uch a rate only represents a specific decision threshold. Finally, 

ur results are reported for single-stroke and combining strokes, 

easured by the AUC and EER scores when combining a sequence 

f strokes in ranges 1 through 20. 

The rest of the paper is structured as follows: Section 2 covers 

he related work. Section 3 describes the experimental design and 

he applied methods to implement and complete the experiment. 

ection 4 presents the results before concluding in Section 5 . 

. Related work 

Touch-based continuous authentication relies on distinct fea- 

ures to authenticate an owner from other users. Several ap- 

roaches from the literature have exhibited promising results us- 

ng different feature sets, although some overlap where others 

se existing feature sets from the literature ( Frank et al., 2013 ; 

erwadda et al., 2013 ; Cheng et al., 2020 ; Yang et al., 2019 ;

yed et al., 2019 ). This work focuses on five different feature sets 

hosen because they offer the best variation amongst the related 

iterature. The study presented in ( Cheng et al., 2020 ) explains how 

o differentiate between child and adult smartphone users using 

ouch-based features. While their feature set is not used in au- 

hentication, the features they extract could also define distinct 

ehavioural features used for authentication; thus, applying these 
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Table 1 

Classifiers and parameters across related work: k-Nearest Neighbors (KNN), Logistic Regression (LR), Naïve Bayes (NB), Multi-Layer Percep- 

tron’s (MLP), Bayesian Network (BN), Decision Tree (J48), Back Propagating Neural Network (BPNN), One-Class SVM (OCSVM), Isolation Forest 

(iForest). Undefined parameters are marked with N/A. 

Paper Classifier (parameter) 

( Frank et al., 2013 ) SVM ( C = N/A, γ = N/A), KNN ( k = 1,3,5,9) 

( Serwadda et al., 2013 ) SVM ( C = N/A, γ = N/A), KNN ( k = 9), RF ( n = 1000), LR, NB, MLP, J48 

( Cheng et al., 2020 ) SVM ( C = 1.4, γ = 0.15), KNN ( k = 7), RF ( n = 200), ET ( n = 200) 

( Antal et al., 2015 ) SVM ( C = 2,8, γ = 8), KNN ( k = 3), RF ( n = 10,100) 

( Shen et al., 2016 ) SVM ( C = 0.03, γ = 0.006), KNN ( k = 2-20. Best = 11), RF ( n = 1000), BPNN (2 + 1 layers and learning rate = 0.001) 

( Yang et al., 2019 ) OCSVM ( nu = 0.1), iForest ( contamination = 0.1) 
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n continuous authentication would be attractive. The authors con- 

lude that strokes perform better than clicks in differentiating chil- 

ren from adults and that an Extra Tree (ET) classifier outperforms 

thers. The ET classifier is not commonly used for CA and could 

lso be interesting in the context of CA. The following sub-section 

ill further compare the classifiers often used for CA. 

.1. Classifier, parameters, and metrics 

Rather than identifying children from adults, Table 1 presents 

ork that uses various classifiers to implement touch-based CA 

nd specifies the varying parameters used across the literature. 

lthough each classifier behaves differently, they can also dif- 

er internally depending on parameter settings. The CA litera- 

ure often evaluates several classifiers with varying parameters 

 Serwadda et al., 2013 ). However, it is challenging to characterise 

he best overall classifier amongst the related literature without 

pecifying comparable parameter search space or using the same 

etrics. For example, ( Frank et al., 2013 ) achieves a 13% EER on

 single stroke using a Support Vector Machine (SVM) with a Ra- 

ial Basis Function kernel. However, ( Antal et al., 2015 ) finds Ran- 

om Forest (RF) superior, with a single stroke accuracy of 65%. In 

 Shen et al., 2016 ), the RF classifier offers the best EER score of 25%

nstead. Finally, ( Yang et al., 2019 ) optimises for a balanced F-score 

ith a single stroke performance between 0.7 and 0.8 - depending 

n the type of gesture. Thus, the papers are challenging to com- 

are beyond their different approach as different metrics are often 

sed. 

.2. Modelling approach and the impact of training size 

When modelling touch-based CA, strokes can be categorised 

nd processed depending on the direction of the trajectory or 

ndependent of the direction. For example, grouping left, and 

ight strokes in a Hs model are used in ( Frank et al., 2013 ;

erwadda et al., 2013 ; Yang et al., 2019 ; Antal et al., 2015 ;

hen et al., 2016 ). In contrast, ( Shen et al., 2016 ) models each

irection individually while evaluating against mixed directions. 

hese papers approach the classification as a binary challenge us- 

ng a One versus Rest (OvR) scheme ( Rifkin and Klautau, 2004 ). 

he device owner then forms the positive class, and the negative 

lass groups the remaining users. OvR causes a class imbalance 

hat can be mitigated through sampling techniques ( Frank et al., 

013 , Serwadda et al., 2013 ). However, it becomes increasingly 

hallenging to compare works since the directional approach dif- 

ers, and OvR sampling may further affect the characteristics of 

raining data. Thus, we highlight the varying amount of training 

ata used and the potential effect on performance. Eighty samples 

re used for Hs/Vs models in ( Serwadda et al., 2013 ), 100 for Hs/Vs

n ( Antal et al., 2015 ), and roughly 160 per direction-specific mod- 

ls in ( Shen et al., 2016 ), for each class, respectively. The concept of

odel stability through varying training data size is partially stud- 

ed in ( Syed et al., 2019 ; Antal et al., 2015 ), with ( Yang et al., 2019 )
3 
howing minor improvement using more than 80 training observa- 

ions. 

.3. Removing clicks and combining strokes 

Defining strokes from clicks is essential as a precursor to mod- 

lling since clicks appear to cause poor performance ( Yang et al., 

019 ). There are different ways to identify strokes, e.g., counting 

he points within a trajectory and removing strokes with less than 

our ( Serwadda et al., 2013 ) or five ( Frank et al., 2013 ) touchpoints.

thers assess the directional angle and exclude strokes that change 

irection, such as sliding up and then down without releasing the 

nger ( Yang et al., 2019 , Syed et al., 2019 , Shen et al., 2016 ), or a

inimum length can be required ( Antal et al., 2015 ). Since a user’s 

ouch strokes may have slight variations, authenticating based on 

 single stroke is challenging because it requires the classifier to 

dentify each touch operation perfectly. In ( Frank et al., 2013 ), 

 range of 1-20 strokes are combined using different techniques 

ased on KNN neighbours’ distance and the SVM’s hyperplane, 

ith 11 and 13 strokes working well. In contrast, ( Serwadda et al., 

013 ) takes a sequence of ten feature vectors and applies a moving 

verage when predicting the user. Rather than averaging the fea- 

ure vector, ( Antal et al., 2015 ) uses a moving average over the pre-

icted probabilities of a sequence of strokes and concludes that ten 

trokes are optimal. The latter approach can be seen in Fig. 2 with 

 moving average window of two strokes. However, ( Shen et al., 

016 ) found 11 strokes a reasonable trade-off. ( Syed et al., 2019 )

roups strokes by five and authenticated based on a majority vote. 

astly, ( Cheng et al., 2020 ) combines 9-11 strokes. Consequently, 

mproving performance by combining around ten strokes is com- 

on, but the method and outcome vary across the literature. As 

uch, we seek to answer research question two by varying the 

umber of combined strokes in the context of the different ap- 

roaches and feature sets. 

The following section presents the experimental design and de- 

cribes the proposed omnidirectional method, training size, data 

et, and the implemented behavioural feature sets. 

. Experimental design and methods 

The central hypothesis of this paper argues that behaviour can 

e generalised by an omnidirectional model - matching or outper- 

orming the traditional approach where the horizontal and vertical 

trokes are modelled independently. If true, the time to model a 

ser can be reduced by roughly half. Further, selecting and evalu- 

ting essential behavioural features may be more straightforward 

s only one model needs to be inspected. The traditional approach 

s configured as a baseline and omnidirectional as the contender 

o evaluate our method. We define an omnidirectional model to 

rocess any gesture independent of the direction of the stroke. In 

ontrast, bidirectional models separate strokes depending on the 

nderlying direction. Furthermore, five different feature sets are 

sed to illuminate which behaviour works in the context of the 

roposed method. 
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Fig. 3. Example of raw data from a single stroke. Each touch point describes behavioural traits through engineering features such as “length of trajectory”, “End-to-End line”, 

and the “Largest Deviating Point” between the two feature examples. 

3

2

r  

2  

E  

l

r

n

r

i

t

F

fi

P

3

l

m

z

b

f

t

t

q  

w

i

3

a

a

c

t

l

d

a

f

s

o

a

3

2  

t

b

a

l

f

f

f

i

f

3

h  

u

e

i

t

t

d

d

3

d

C

r

t

b

i

l

i

a

i

a  

1

z

q

T

e

f

t

m

(  

c  

5

f

T

E

a

.1. Data and feature sets 

This paper uses the raw data collected by ( Serwadda et al., 

013 ) as it contains more users, observations, and extended pe- 

iods of data compared to others ( Frank et al., 2013 ; Antal et al.,

015 ; Mahbub et al., 2016 ; Sitova et al., 2016 ; Buriro et al., 2019 ;

berz et al., 2018 ; Shekoufa et al., 2019 ). The data was col-

ected over two sessions to enable intersession authentication. The 

aw data includes a user ID, swipe ID, timestamp, ( x, y ) coordi- 

ate pairs, pressure, and the area covered by the finger for each 

ecorded touch point. Portrait and landscape data are separated 

nto different sets. We exclusively focus on the portrait mode as 

he most preferred smartphone orientation ( Fierrez et al., 2018 ). In 

ig. 3 , a single stroke is visualised and shows a user moving their 

nger from Point A, the right side of the screen and leftwards to 

oint B. 

.2. Compatible users and raw data 

Since this work is not looking to vary the training data, we fol- 

ow the recommendation by ( Yang et al., 2019 ). Thus, eligible users 

ust provide more than 80 training observations with each hori- 

ontal and vertical direction to establish the two models for the 

idirectional approach. An even number of observations is selected 

or each direction among up, down, left, and right strokes. In con- 

rast, the omnidirectional model uses all directions. When authen- 

icating, users must also provide enough test data to combine a se- 

uence of n strokes. ( Frank et al., 2013 ) combined up to 20 strokes

ith ten strokes producing good results; thus, we combine strokes 

n the range of 1 through 20 for comparability. 

.3. Features 

Fig. 3 presents a single stroke drawn between a finger down 

nd up, Point A and Point B, respectively. A blue line is illustrated 

s the trajectory, which defines the length between the 16 points 

ollected as part of the Android operating system when capturing 

ouch interactions. An orange dotted line is also shown to high- 

ight the End-to-End length (E2E) feature, which defines the flight 

istance. The Largest Deviating Point (LDP) is another feature that 

ppears at point 12, measured by the dotted green line. Several 

eature sets have been proposed throughout the literature to de- 

cribe behaviour, as seen in Table 2 . Interestingly, several papers 

verlap without direct comparison or discussion on which features 

re included or excluded in each set. 

.4. Feature extraction and data cleaning 

We selected five papers ( Frank et al., 2013 ; Serwadda et al., 

013 ; Cheng et al., 2020 ; Yang et al., 2019 ; Syed et al., 2019 ) from

he literature because they provide a broad spectrum of different 
4 
ehavioural traits. To focus on strokes, we remove clicks and inter- 

ctions with less than or equal to five points or if the trajectory 

ength is shorter than three pixels. Besides filtering clicks, some 

eatures cause undefined values, such as the E2E line slope for per- 

ect horizontal stroke. Similarly, the inter-stroke time is unavailable 

or each user’s first stroke. After removing strokes and data clean- 

ng, the data set consists of 78,423 strokes that qualify for all five 

eature sets. 

.5. Selecting users of interest 

Each model must have 80 observations to generate a stable be- 

avioural model for the target user ( Yang et al., 2019 ). Thus, valid

sers are chosen based on the requirement seen in Fig. 4 . For 

ach left, right, up, and down direction, 50 training and 30 test- 

ng strokes are required. The training size is thus 100 for each of 

he two bidirectional models and 200 for the omnidirectional. The 

esting size is set to 30 samples per direction to ensure enough 

ata when combining strokes. Consequently, the data set is re- 

uced from 138 to 35 users of interest. 

.6. Modelling pipeline and class balancing 

In Fig. 5 , the proposed modelling pipeline is introduced, where 

ata is labelled according to the OvR method for each user. A 

ross-Validator (CV) is configured using a five-fold stratified loop, 

epeated five times, and is applied to reduce bias considering 

he limited number of training observations. When training the 

idirectional model using 100 samples and the CV, each train- 

ng fold is reduced to 80 strokes which adheres to the guide- 

ines of ( Yang et al., 2019 ). The pipeline is implemented us- 

ng Python 3.8 SciKit-learn ( Pedregosa et al., 2011 ) and Imbal- 

ncedLearn ( Lemaître et al., 2017 ) as the sampler. The touch train- 

ng data from Session A is provided to the pipeline for each user 

nd the specific classifier per feature set from Table 2 . Fig. 5 , Step

, under-samples the majority class. Steps 2 and 3 standardise to 

ero mean and normalise values between 0-1 if the classifier re- 

uires it, e.g., SVM. Finally, Step 4 implements the parameters in 

able 3 . 

Once a model is computed, the testing data from Session B is 

valuated by the model, generating predicted probabilities. Data 

rom Session B is collected at least one day after Session A. Thus, 

he results measure the intersession performance and are possibly 

ore conservative than works measuring intrasession performance 

 Frank et al., 2013 ; Serwadda et al., 2013 ; Aaby et al., 2020 ). Be-

ause of the CV, the pipeline defined in Fig. 5 computes 25 ( =
 × 5) models and searches for the optimal parameter for each 

eature set, classifier, and approach. Thus, the parameter grid in 

able 3 results in a broad range of models to evaluate, such as an 

T classifier, and the optimal parameter is selected by considering 

 total of 236,250 models. Since class imbalance can be challenging 



P. Aaby, M.V. Giuffrida, W.J. Buchanan et al. Computers & Security 128 (2023) 103146 

Table 2 

Overview and overlap of the feature as shown in Frank et al. ( Frank et al., 2013 ), Serwadda et al. ( Serwadda et al., 2013 ), Syed et al. ( Syed et al., 2019 ), Yang et al. ( Yang et al., 

2019 ), and Cheng et al. ( Cheng et al., 2020 ). Most papers have several features overlapping with the earliest work by Frank et al., whereas Yang et al. have only four 

overlapping features and limited overlap with others. 

Paper Paper 

# Feature name 

( Frank 

et al., 

2013 ) 

( Serwadda 

et al., 

2013 ) 

( Syed 

et al., 

2019 ) 

( Yang 

et al., 

2019 ) 

( Cheng 

et al., 

2020 ) # Feature name 

( Frank 

et al., 

2013 ) 

( Serwadda 

et al., 

2013 ) 

( Syed 

et al., 

2019 ) 

( Yang 

et al., 

2019 ) 

( Cheng 

et al., 

2020 ) 

1 Inter-stroke time x x x 39 Standard deviation 

pressure 

x x 

2 Stroke duration x x x x 40 25% pressure x 

3 Start X x x x x x 41 50% pressure x 

4 Start Y x x x x x 42 75% pressure x 

5 Stop X x x x x x 43 Mean area x x 

6 Stop Y x x x x x 44 Standard deviation 

area 

x x 

7 Length E2E x x x x 45 25% area x 

8 Mean resultant 

length 

x x 46 50% area x 

9 Numeric direction x 47 75% area x 

10 Direction E2E x x x x 48 Start pressure x x x 

11 20% velocity x x 49 Stop pressure x x 

12 50% velocity x x x 50 Categorical 

direction 

x 

13 80% velocity x x 51 X @ max velocity x 

14 20% acceleration x 52 X @ min velocity x 

15 50% acceleration x x 53 Y @ max velocity x 

16 80% acceleration x 54 Y @ min velocity x 

17 Median velocity 

last 3 pts 

x x 55 Max velocity x x 

18 Largest deviation 

from E2E 

x 56 Min velocity x 

19 20% deviation x 57 Slope of E2E line x 

20 50% deviation x 58 Intercept of E2E 

line 

x 

21 80% deviation x 59 X @ LDP x 

22 Average direction x 60 Y @ LDP x 

23 Length of 

trajectory 

x x x x 61 LDP pressure x 

24 Ratio length 

E2E-to-trajectory 

x x 62 Mean velocity 

X-axis prev to LDP 

x 

25 Mean velocity x x x x 63 Mean velocity 

Y-axis prev to LDP 

x 

26 Median 

acceleration last 5 

pts 

x 64 Mean velocity 

X-axis post to LDP 

x 

27 Mid-stroke 

pressure 

x x x 65 Mean velocity 

Y-axis post to LDP 

x 

28 Mid-stroke area x x 66 Start pressure x 

29 Mid-stroke finger 

orientation 

x 67 Time to reach max 

velocity 

x 

30 Phone orientation 

(label) 

x 68 X displacement 

finger down-down 

x 

31 Standard deviation 

velocity 

x x 69 Y displacement 

finger down-down 

x 

32 25% velocity x 70 X displacement 

finger down-up 

x 

33 75% velocity x 71 Y displacement 

finger down-up 

x 

34 Mean acceleration x 72 Median velocity 

first 3 pts 

x 

35 Standard deviation 

acceleration 

x 73 Mid-stroke velocity x 

36 25% acceleration x 74 Median 

acceleration first 3 

pts 

x 

37 75% acceleration x 75 Median 

acceleration last 3 

pts 

x 

38 Mean pressure x x 76 Mid-stroke 

acceleration 

x 

5
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Fig. 4. Subsetting data and selecting users with adequate training and testing data. Each user is balanced to include a fixed number of directional training and testing 

interactions to avoid bias towards a specific touch direction. The overall data set is reduced from 138 candidates to 35 valid users with sufficient data. 

Fig. 5. Modelling pipeline used for training. Each user provides their touch data 

from session A for training, which is then 1. downsampled for OvR class balance, 2. 

scaled to one standard deviation and zero mean, 3. normalised in the range 0-1, and 

4. tuned against our parameter list in Table 3 . Step two and three is not required 

for the tree-based classifiers. The cross-validator thus creates models for each user 

that can predict user input from session B for each algorithm and feature set. An 

average rolling window is applied to the predicted probabilities to smoothen and 

increase general performance. 

Table 3 

Parameter search space for each classifier tested, as seen in the literature. The pa- 

rameters are chosen based on the related work where applicable. 

Classifier Parameters 

KNN K = {1, 3, 5, 7, 9} 

SVM C = {0.01, 0.1, 1.0, 10, 20, 100} 

GB / RF / ET Min samples split = {0.005, 0.01, 0.1} 

N estimators = {100, 200, 500, 700, 1000, 1200} 
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or some classifiers, the proposed method down-samples the ma- 

ority class following an OvR approach similar to ( Serwadda et al., 

013 ; Syed et al., 2019 ). At the same time, stratification ensures 

lass balance in each fold. 

.7. Classifier parameters and complexity 

This work assesses whether the proposed single omnidirec- 

ional model can compare with bidirectional models using dif- 

erent feature sets and classifiers. However, each classifier may 

erform differently depending on the configured parameters and 

he provided feature set. Classifiers such as KNN, SVM, RF, and 

T are commonly seen in the literature with different parame- 

ers ( Frank et al., 2013 ; Serwadda et al., 2013 ; Cheng et al., 2020 ;

ang et al., 2019 ; Syed et al., 2019 ). Still, in published work, it can

e unclear which parameters are tested and thus the most effective 
6 
cross the different behavioural feature sets. To address this, we 

mplement each classifier while searching the parameters shown 

n Table 3 . 

Most classifiers become more complex as their parameters in- 

rease in value, such as the number of trees in RFs and the regu- 

arisation parameter of SVM- which may lead to overfitting models. 

hus, a consideration is made between balancing the best param- 

ter and the model complexity. The parameters are optimised to 

aximise the Area Under the Curve (AUC) score as a function of 

ll thresholds ( Wang and Chang, 2011 ). We select the classifier’s 

arameter by subtracting one standard deviation of the AUC score 

rom the model’s best-performing AUC score, trading minimal per- 

ormance gains for reduced complexity. 

Fig. 6 visualises our parameter selection approach. The example 

tarts with the cross-validated output of three parameters tested 

or a given algorithm. From the three test results, Rank 1 provides 

he highest AUC score. However, the standard deviation value is of- 

en high while providing minor performance over the other results. 

hus, we take the best AUC score and subtract the associated stan- 

ard deviation value to set a threshold of the test results, which 

efines a mask of acceptable parameters. This example has two 

arameter pairs as the mask, in which the lowest parameter is se- 

ected since it produces a less complex model while generally pre- 

erving good performance. Consequently, we sacrifice minor per- 

ormance while lowering the deviation between users. Similarly, it 

educes the model complexity, translating to faster training. 

While classifiers may have additional parameters that can affect 

erformance, the scope of this paper is to evaluate those tuned in 

he related work for comparability. The details and mechanisms 

f each classifier are well documented across the literature, but 

he following parameters are briefly covered. For SVM, the kernel 

sed is a Radial Basis Function and the γ parameter scales accord- 

ng to the number of features and their variance ( Pedregosa et al., 

011 ). For Gradient Boosting (GB), the sub-sample parameter is set 

o 0.95, which trains each base classifier on a fraction of the avail- 

ble data. Sub-sampling is a stochastic behaviour and typically en- 

ances performance. 

.8. Combining strokes 

Classifiers may struggle to identify each stroke correctly, and 

t is common to combine strokes when authenticating users. We 

ombine strokes using a moving average over the predicted proba- 

ilities, like ( Syed et al., 2019 ), since it makes the model agnos- 

ic by still predicting each stroke separately. Similarly, the fea- 

ure vector remains the same in contrast to ( Aaby et al., 2020 ).

hile the latter approach is also classifier agnostic, we argue that 

 Aaby et al., 2020 ) is inadequate for directional features using an- 

les since an average over the left and right direction may result in 

 behaviour representing neither of the two movements. As such, 

e use the former method but recognise the merit of the latter in 

ases where directional features are irrelevant. 
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Fig. 6. An example of the parameter selection method when balancing performance and complexity. Step 1. locates the highest-ranked AUC score; 2. computes a lower 

threshold by subtracting the associated STD; 3. uses the threshold to mask the cross-validated parameters of interest; and 4. then selects the lowest parameters, which 

create lesser complex models. 

Fig. 7. Frequency of selected parameters for kNN, for each touch direction, using the feature sets from the related work, TouchAlytics (TA), WhichVerifiersWork (WVW), 

BehaveSense (BS), Syed, and Cheng feature sets, ( Frank et al., 2013 ; Serwadda et al., 2013 ; Cheng et al., 2020 ; Yang et al., 2019 ; Syed et al., 2019 ), respectively. As shown, the 

best parameter varies depending on the applied feature set. 
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. Results and discussion 

We first present the classifiers and parameters selected using 

ur approach and with a comparison to the related work. Next, we 

ompare bi- and omnidirectional models in the context of single- 

troke authentication before considering the impact of combining 

trokes. Lastly, we highlight the benefits of combining strokes in 

he context of the five feature sets and classifiers. 

.1. Modelling parameters 

We searched through the parameters in Table 3 for the Horizon- 

al (Hs), Vertical (Vs), and Omnidirectional models to better under- 

tand which parameters work for most users. For KNN and SVM, 

he optimal parameter changes depending on the applied feature 

et and directional modelling approach. For KNN, as seen in Fig. 7 , 

ost models found three neighbours a suitable parameter when 

sing the TouchAlytics (TA) behaviour. In contrast, the other fea- 

ure sets change between 1, 3, and 5 neighbours but rarely 7, re- 

ardless of direction. While a shared parameter cannon be sug- 

ested based on this result, we see a similar difference in the opti- 

al parameter used across the literature, as seen in Table 1 , where 

he optimal k range is either 3, 7, 9, or 11, depending on the refer-

nced work. 

For SVM and TA, as seen in Fig. 8 , the Hs models favour C = 0.1

hile the Vs models vary between C = 0.1 and C = 1.0. Similar to

NN, different f eature sets also prefer different parameter values. 

owever, most models appear to perform decently with a C pa- 

ameter of 1.0. Similar to the parameter search for SVM, it is chal- 

enging to suggest an optimal parameter for all users. Contrary to 

NN and SVM, all tree-based classifiers use 100 trees and a sample 

plit of 0.005 for all users, feature sets, and directions. An excep- 

ion is the GB classifier, with omnidirectional models selecting 200 
7 
rees for approximately 5 out of 35 users depending on the feature 

et. Fig. 9 shows an example of the trade-off between performance 

nd time to train an omnidirectional model depending on the pa- 

ameter complexity selected for the tree-based classifiers. How- 

ver, we can observe that the GB classifier improves more than the 

ther classifiers when increasing the number of trees but still un- 

erperforms compared to the ET classifier. 

Performance may increase with the number of trees used in a 

ree-based classifier, but it requires a longer training time. We ar- 

ue that the performance gain is insignificant, considering it can 

ake up to four times longer to fit the models. Consequently, there 

s limited benefit in increasing the complexity beyond 100 trees 

ompared to ( Serwadda et al., 2013 ; Shen et al., 2018 ), which uses

p to 10 0 0. Thus, our parameter selection approach may also ben- 

fit the time required to (re)train models. 

.2. Bi versus omnidirectional single-stroke comparison 

After setting the optimal model parameters, Fig. 10 presents the 

ean AUC score for each classifier, grouped by each feature set 

hen authenticating users using a single stroke with each model. 

nsurprisingly, the performance differs amongst the feature sets. 

ehaveSense (BS) ( Yang et al., 2019 ) generally ranks top, whilst 

yed ( Syed et al., 2019 ) and WVW ( Serwadda et al., 2013 ) often

erform poorly. 

While the bidirectional approach has the highest mean AUC 

nd EER score, the difference from the omnidirectional counter- 

art is negligible; moreover, the standard deviation for omnidirec- 

ional models is slightly lower for both AUC and EER compared to 

idirectional models. In ( Serwadda et al., 2013 ), they achieved an 

ER score of 13.8 and 17.2%, Hs and Vs, respectively, but required 

en strokes. Similarly, we also notice that some users are more 

hallenging to model than others, as indicated by the wide error 
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Fig. 8. Frequency of selected parameters for SVM, for each touch direction, using the feature sets from the related work, TA, WVW, BS, Syed, and Cheng feature sets, 

( Frank et al., 2013 , Serwadda et al., 2013 , Cheng et al., 2020 , Yang et al., 2019 , Syed et al., 2019 ), respectively. 

Fig. 9. Mean AUC scores in the context of fitting tree-based models with greater parameter complexity and coloured by the time to train models in seconds. Greater 

parameter complexity provides limited performance gains while consuming three to four times the time to fit. 

Fig. 10. Single-stroke performance. Mean AUC scores across all users for each classifier and feature set while comparing the directional approaches. Error bars indicate the 

0.95 Confidence Interval. The Extra Tree classifier outperforms others in combination with the BehaveSense (BS) ( Yang et al., 2019 ) feature set. 

8 
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Table 4 

Top five single-stroke performances ranked by highest mean AUC score amongst bi 

and omnidirectional classifiers and feature sets. 

Classifier Feature set Approach AUC ( ±STD) EER ( ±STD) 

ET BS Bi 0.833 ( ±0.103) 0.239 ( ±0.098) 

ET BS Omni 0.827 ( ±0.098) 0.247 ( ±0.094) 

ET TA Omni 0.824 ( ±0.096) 0.247 ( ±0.087) 

ET Cheng Bi 0.822 ( ±0.106) 0.251 ( ±0.104) 

ET TA Bi 0.821 ( ±0.103) 0.252 ( ±0.096) 

Table 5 

Classifiers that are not significantly different from the single-stroke ET BS Bidirec- 

tional AUC distribution. 

Classifier Feature set Direction P-value 

ET Cheng Bi 0.3257 

ET BS Omni 0.3098 

ET Cheng Omni 0.2013 

ET TA Omni 0.1589 

ET TA Bi 0.1014 

RF Cheng Bi 0.0665 

GB Cheng Bi 0.0574 
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Table 6 

Top five performances, combining five strokes, ranked by highest mean AUC score 

amongst bi and omnidirectional classifiers and feature sets. 

Classifier Feature set Approach AUC ( ±STD) EER ( ±STD) 

ET TA Omni 0.890 ( ±0.099) 0.179 ( ±0.112) 

ET BS Bi 0.886 ( ±0.106) 0.181 ( ±0.112) 

ET TA Bi 0.886 ( ±0.109) 0.182 ( ±0.117) 

ET BS Omni 0.881 ( ±0.096) 0.190 ( ±0.104) 

GB TA Bi 0.881 ( ±0.093) 0.190 ( ±0.103) 
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ars in Fig. 10 . Regardless, the goal of this work is not to exclude

r identify problematic users but to compare the modelling ap- 

roach irrespective of these. Table 4 highlights the top five classi- 

ers with the highest mean AUC score. The results for each model 

re compared against the top-performing model on the first line in 

able 4 to detail the answer to research question one further. 

.3. Wilcoxon signed-rank test 

To measure whether the top-performing model is better than 

thers, we apply the Wilcoxon signed-rank test using the best 

odel as the reference. The test compares the AUC scores between 

he reference and iteratively selects the other classifiers to evalu- 

te the AUC distributions and whether the best AUC scores differ 

ignificantly from any other classifiers. More specifically, the null 

ypothesis assumes that the AUC scores predicted by classifier A 

re from the same distribution as classifier B’s. We wish to reject 

he null hypothesis with a 5% confidence level. If the null hypothe- 

is cannot be rejected, then the reference model is not significantly 

etter than the comparison. Table 5 presents seven classifiers that 

ail to reject the null hypothesis, suggesting that the traditional Bi 

pproach is not significantly better than the proposed omnidirec- 

ional approach. 

As such, we can answer the first research question. In the con- 

ext of single-stroke authentication, there is an insignificant perfor- 

ance difference between the traditional and our proposed omni- 

irectional methods. While Fig. 10 shows that the BS feature set 

onsistently outperforms the others irrespective of the classifier 

nd modelling approach, we note this may not carry over when 

ombining strokes, which the following section covers. 

.4. Combining strokes 

While the best single-stroke classifier was an ET classifier us- 

ng the BS feature set, we visualise the influence of combining 

trokes in Fig. 11 . What stands out is the steady incline in the

ean AUC score for the omnidirectional ET classifier using the TA 

eatures. Compared to ( Serwadda et al., 2013 ), the proposed ap- 

roach achieves equivalent results using five strokes compared to 

en in the referenced work- Table 6 details the top five perform- 

ng combinations across the bi and omnidirectional methods when 

ombining five strokes. When combining strokes, the best classifier 

emains an ET classifier, but the feature set changes to TA. Com- 

ared to single-stroke authentication results in Table 4 , we im- 
9 
roved the mean AUC score from 0.833 to 0.890 ( + 5.7%) and re- 

uced the EER score from 0.239 to 0.179 (-6%). More importantly, 

he proposed omnidirectional method outperforms the traditional 

idirectional approach. 

In the context of single-stroke authentication, our approach 

ompares to the traditional one but requires just one model in- 

tead of two. Thus, modelling could be faster and easier to man- 

ge, deploy, and interpret. At the same time, our approach is su- 

erior when combining three strokes or more. We found limited 

mprovements for any methods when combining more than ten 

trokes. Hence, Fig. 11 is limited to combining ten strokes as the 

urve flattens without changing the rankings of classifiers. Com- 

ared to ( Serwadda et al., 2013 ), we also combined ten strokes and

chieved an average of 0.905 AUC and 0.159 EER score, which is 

 0.004 EER; however, we have a single model and a more stable 

tandard deviation. We found minimal improvements using more 

han ten strokes, as seen in Fig. 12 , which shows omnidirectional 

erformance. The same is true for the bidirectional models com- 

ining more than ten strokes. Thus, to answer research questions 

wo and three, we suggest that three to five strokes are enough to 

rovide satisfactory performance. Despite being the earliest feature 

et, we suggest using the TouchAlytics set since the results show 

etter performance for the ET and amongst many of the classifiers 

sed for bi and omni-directional methods. 

.5. Limitations 

.5.1. Inconsistency of comparable metrics across the literature 

AUC is threshold independent and aims to produce models that 

nd the best trade-off between miss-classifying the genuine and 

on-genuine users. The EER is derived from AUC based on selecting 

 threshold that separates the two classes while balancing miss- 

lassification equally. However, EER is not the best metric to com- 

are since it depends on the chosen thresholds, which vary be- 

ween users. Similarly, false acceptance and rejection rates suffer 

rom the same issue. Accuracy is rarely seen in the related work, 

erhaps since it generalises both true positives and negatives over 

ll data points; thus, a majority class with good performance may 

kew the results. In our work, we decided to optimise for more 

ignificant AUC scores while also providing EER scores to compare 

ith other papers. However, direct comparison with related work 

s challenging since the metrics are derived using differences such 

s stroke combining methods, data sub-setting, data cleaning, and 

ser selection. 

.5.2. Feature super and subsets 

While this paper focuses on five feature sets from the litera- 

ure, an evaluation of feature importance can be made to define a 

uperset which combines the best n performing features from each 

elated work into a new feature set. Similarly, subsets can be made 

o eliminate noisy or poorly performing features. However, we took 

he first steps to compare the feature sets and leave these potential 

mprovements to future work. We highlight that it may be faster to 

valuate feature importance using our omni-directional approach 

ince simpler models are faster to train and more straightforward 
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Fig. 11. Overview of the performance impact when combining strokes. The plot is limited to 1 to 10 strokes due to limited gains beyond ten and presents the different 

classifiers (Clf) – RF, GB, and ET, and the feature sets (Fset) – WVW, Syed, TA, BS, and Cheng. The BS feature set performs well for one stroke but inferior when combining n 

number of strokes. 

Fig. 12. Mean AUC scores when combining 10 to 20 strokes grouped by classifiers (Clf) – RF, GB, and ET, and the feature sets (Fset) – WVW, Syed, TA, BS, and Cheng, 

exclusively for the omnidirectional approach. Similar trends appear for the bidirectional method but with slightly lower scores. 
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o interpret. For example, new features could be engineered, such 

s splitting the stroke at the 20 quantiles to better focus on the 

eginning of touch interactions. 

.5.3. Coordinate specific features 

Most feature sets used in touch-based biometrics incorporate 

t least the start and stop ( x, y ) coordinate pairs as features.

owever, models relying on coordinate pairs may have a contex- 

ual limitation since they can be affected by the screen content. 

.g., the placement of a button or other screen content that a 

ser needs to click or when users may avoid covering the screen 

ith their finger while reading. Furthermore, the size of a de- 

ice may further affect these features despite normalising the co- 

rdinates according to the Dots Per Inch, as seen in ( Frank et al.,
10 
013 ). This work shows that the BS ( Yang et al., 2019 ) feature

et performed well on single-stroke authentication while suffer- 

ng when combining strokes. Interestingly, the BS feature set also 

ontains the most coordinate-specific features. It may be better to 

ngineer coordinate-independent features or lean towards the TA 

 Frank et al., 2013 ) feature set. 

.5.4. Incompatibility between the strokes combining method 

It is challenging to compare results between the state-of-the- 

rt, as the methods to combine strokes differ, e.g., training a model 

y combining the feature vectors before training ( Serwadda et al., 

013 ) or averaging the predicted probabilities ( Antal et al., 2015 ). 

hus, single-stroke performance should be reported to allow com- 

arisons based purely on model performance, where, under per- 
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ect conditions, each stroke could be accurately predicted. How- 

ver, since models are trained to generalise, it is also essential 

o examine combining strokes. This work averages the predicted 

robabilities of classifiers trained on single strokes and a rolling 

indow between 1 (no averaging) to 20 strokes. Thus, the com- 

arison of merging feature vectors before training is left for future 

ork. 

.5.5. Comparing Omni vs bidirectional paradox 

While the omnidirectional model outperforms the traditional 

ethod, a direct comparison may not be fair as the underlying 

ata differs. Specifically, a horizontal model is exposed to 100 

trokes, while the omnidirectional must learn the horizontal be- 

aviour collectively from all 200 observations. Hence, our approach 

ay have an advantage in generalisation, which could cause a bet- 

er performance when combining strokes. 

. Conclusion 

While the bidirectional models based on an ET classifier work 

or single-stroke authentication, our approach is comparable and 

uperior when combining three strokes. Interestingly, single-stroke 

uthentication works better using the behaviour captured by the 

S feature set, but the TA feature set improves performance when 

ombining strokes. Despite KNN and SVM being commonly used, 

hey are inferior to the tree-based classifiers. We conclude that the 

mnidirectional approach is preferable when using an ET classifier 

sing the TA feature set and combining at least three strokes. Fur- 

her, we suggest our hyper-parameter tuning method, providing a 

ower AUC standard deviation. 
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