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Abstract

Directly processing 3D point cloud data becomes dominant in classification and

segmentation tasks. Present mainstream point based methods usually focus on

learning in either geometric space (i.e. PointNet++) or semantic space (i.e.

DGCNN). Owing to the irregular and unordered data property of point cloud,

these methods still suffer from drawbacks of either ambiguous local features

aggregation in geometric space or poor global features extraction in seman-

tic space. While few prior works address these two defects simultaneously by

fusing information from the dual spaces, we make a first attempt to develop

a synergistic framework, called PointGS. Leveraging both the strength of ge-

ometric structure and semantic representation, PointGS establishes a mutual

supervision mechanism that can bridge the two spaces and fuse complementary

information for better analyzing 3D point cloud data. Compared with exist-

ing popular networks, our work attains obvious performance improvement on

all three mainstream tasks without any sophisticated operations. The code is

publicly available at https://github.com/ssr0512/PointGS
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1. Introduction

With recent advances in 3D scanning technologies, it becomes convenient

to obtain 3D raw data. As the fundamental 3D representation, point cloud

has attracted extensive attention for various 3D applications [1, 2]. Recently,

researchers focus on exploiting Convolution Neural Networks (CNNs) to process5

3D point cloud, which can be generally categorized into three types: projection-

based methods [3, 4, 5], voxelization-based methods [6, 7], and point-based

methods [8, 9, 10, 11]. Among them, point-based methods, processing point

sets directly with Multi-Layer Perceptrons (MLP), have become dominant due

to their efficiency and high performance.10

Point-based approaches adopt raw point cloud data as inputs which can

be further classified into two learning strategies. The first strategy focuses on

features aggregation in the geometric space like PointNet [8], PointNet++ [9],

and other extensions [12, 13, 14, 15, 16]. Recently, PointNeXt [17] focuses on

training skills and scale strategies to improve Pointnet++ performance further;15

PointMLP [18] introduces a residual MLP structure to re-explore the CNN capa-

bility without any sophisticated local feature extractor design; ASSANET [19]

redesigns the set abstraction module in PointNet++ for reducing the anisotropy

of neighbor features. All these methods iteratively apply Farthest Point Sam-

pling (FPS) algorithms to downsample original 3D point cloud. For information20

aggregation, kNN is adopted on downsampled data to search neighbors of each

point in the geometric space. As illustrated in Figure 1 (a), point cloud grad-

ually becomes sparser after each FPS while kNN (with a fixed k) could obtain

a bigger search scope to aggregate more non-local points so that rich global in-

formation is extracted from different scale datasets. Yet, one inherited defect of25

this strategy is that kNN search may fail to aggregate the same-category points

in the geometric space, e.g. the four blue points on the different chair legs shar-

2



ing the same classification category, as illustrated in Figure 1 (a). In fact, the

Euclidean distances (blue lines) among them are still much bigger than multiple

kNN search radius (radiuses of 3 blue circles). Consequently, these four points30

are less possible to be aggregated by kNN, thus limiting the model accuracy of

learning in the geometric space.

Figure 1: Illustration of learning in geometric space or in semantic space. In (a), kNN obtains

a big search scope on sparse dataset, where the four blue points of chair legs however can

hardly be aggregated due to the limited search radius. In (b), the same-category features can

be readily aggregated together in semantic space. Yet, kNN unfortunately may not get global

features efficiently due to non-downsampled data.

The second strategy focuses on aggregating information or features in the

semantic space, such as DGCNN [10] and others [20, 21, 22, 23]. AdaptiveG-

raph [24] proposes to assign learning weights on each edge for better informa-35

tion evaluation and aggregation; Grid-GCN [25] develops a novel grid context

aggregation strategy on edge features in order to attain a good balance be-

tween efficiency and performance; 3D-GCN [26] learns unique 3D kernels with

the graph max-pooling mechanism for robust feature aggregation. This kind of

approaches encode the original 3D coordinate information into semantic repre-40

sentations in the first layer, and then consistently handle the feature learning

in semantic space without geometric information supplement. Since all points

have been transformed into the high-level features which contain robust repre-

sentation, the same-category point aggregation becomes more straightforward.
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As illustrated in Figure 1 (b), all the points of chair legs, which have similar45

features, are readily aggregated together after multiple kNN search process in

the semantic space. However, geometric structures of objects are unavailable in

semantic space. As such, it might be improper to apply FPS to downsample

semantic features. Thus, kNN is unfortunately inefficient to extract global in-

formation on the non-downsampled semantic features. Though graph pooling50

or increasing the search radius can be considered as possible solutions in the

semantic space, the computational cost is prohibitive. On the other hand, the

redundant local features updating process also hinders the model efficiency.

In this paper, we utilize the strength of geometric space and semantic space

to develop a novel dual-space information fusion mechanism for simultaneously55

addressing the limitations of both learning strategies. For global features extrac-

tion, we successively apply FPS on original point cloud to generate multi-scale

geometric information as shown in Figure 2 (a). To enrich the geometric priors,

we calculate spherical coordinates relation which is separately combined with

different scale point cloud to form inputs. Then, we separately input these data60

into different branches of PointGS for delicate feature extraction where the rich

global features can be obtained. In particular, FPS indexes are preserved end-

to-end which contain robust geometric prior knowledge of objects. We then

utilize these fixed indexes to downsample features straightforwardly in semantic

space for eschewing high computational graph pooling process or large search65

radius setting. Detailed justification can be seen in Section 3. For same-category

point aggregation within each branch of PointGS, we iteratively utilize kNN in

semantic space in order to avoid the dilemma as demonstrated in Figure 1 (a).

Meanwhile, we explore a local feature updating rule to simplify the aggrega-

tion process. In addition, we conduct a fusion mechanism to reinforce features70

communication among different branch of PointGS as illustrated in Figure 2

(b). Specifically, our framework presents an elegant information fusion system

that acts as a bridge between Geometric and Semantic spaces to alternatively

reinforce feature fusion and interaction between two spaces while attaining a

mutual supervision mechanism. As demonstrated in Figure 2 (c), 3D points75
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are first transformed into semantic features, and kNN indexes of semantic space

are utilized to find corresponding points in geometric space for more relevant

geometric information supplement. Then, the selected points are encoded and

fed back into semantic space to further calibrate semantic feature aggregation.

Such fusion process is iteratively applied between two spaces so that PointGS80

not only ensures original data structure consistency in both spaces, but also

forms a dual-space mutually supervised learning mechanism.

Without sophisticated operations, PointGS exhibits superior performance

on 3D point cloud analysis and achieve comparable results with state-of-the-art

methods on classification and segmentation tasks. The major contributions of85

this paper are summarized as follows.

• To efficiently capture global information, our model utilizes FPS to form

multi-scale geometric inputs which are helpful to extract rich global infor-

mation and eschew complex pooling in semantic space.

• To effectively aggregate similar local features/information, we iteratively90

apply kNN in semantic space for similar features aggregation and explore

a new feature updating rule for simplifying the aggregation process.

• To simultaneously address the defects of two learning strategies, we design

a dual-space information fusion architecture, in order to establish a mutual

supervision mechanism between geometric and semantic spaces.95

2. Related Work

2.1. Voxelization-based and Projection-based Learning

Voxelization-based and Projection-based methods transform the point cloud

into an ordered data form in order to take advantages of powerful CNNs. Many

voxelization-based works [6, 27, 28, 29] map the points into the regular 3D grid100

representations and apply 3D convolutions. However, the massive computation

costs posit challenges in these approaches due to the cubic growth in the number

of voxels. To improve efficiency, OctNet [7] and Kd-Net [30] utilize tree models
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and skip the empty voxels. Albeit their efficiency, these strategies still suffer

from information loss during the quantification process on the voxel grid. Alter-105

natively, the projection-based methods [31, 4, 32, 33] project 3D points to a set

of multi-view 2D images, make it possible to apply traditional 2D convolutions

directly. Nevertheless, 2D CNN operations used in these methods make it less

possible to capture non-local geometric features. Moreover, they often struggle

with points inner occlusion. In this paper, we follow the point-based learning110

strategy but explores a simpler yet effective architecture.

2.2. Point-based Learning in Geometric Space

3D coordinates constitute point cloud data in geometric space. PointNet [8]

is the pioneering work to take these raw data as inputs which demonstrates the

possibility of processing irregular point clouds directly. For better locality en-115

coding, PointNet++ [9] further applies PointNet as set abstraction mechanism

and a hierarchical structure to aggregate local features. After PointNet++,

numerous works focus is shifted to how to generate better regional point repre-

sentations. PointConv [34] and KPConv [12] focus on constructing convolution

weights matrices based on the input coordinates. PointCNN [15] permutes the120

neighbor points to a fixed order, thus enabling to apply convolutions directly.

InterpCNN [14] utilizes coordinates to interpolate pointwise kernel weights, and

SpiderCNN [35] defines kernel weights as a family of polynomial functions. Re-

cently, ASSANET [19] redesigns the set abstraction module in PointNet++

for reducing the anisotropy of neighbor features. PointNeXt [17] focuses on125

training skills and scale strategies to improve Pointnet++ performance further.

PointMLP [18] introduces a residual MLP structure to re-explore the CNN

capability without any sophisticated local feature extractor design. All these

methods focus on iteratively utilizing spatial coordinates to learn 3D structure

relations. However, as illustrated in Figure 1 (a), kNN search in geometric space130

might be limited to aggregate same-category points. In this paper, we show-

case that even without applying the carefully designed convolution process of

local set abstraction, a small modification of learning strategy is able to exhibit

6



gratifying performance and even better results.

2.3. Point-based Learning in Semantic Space135

This kind of approaches encode 3D coordinates at first and then focus on

conducting message passing in semantic space. After coordinates encoding in

the first layer, DGCNN [10] proposes the EdgeConv model to aggregate edge

representations of point cloud and search similar features in semantic space.

ECC [20] aims to use edge information to generate conditional edge filters.140

AdaptiveGraph [24] proposes to assign learning weights on each edge for bet-

ter information evaluation and aggregation. Grid-GCN [25] develops a novel

grid context aggregation strategy on edge features in order to attain a good

balance between efficiency and performance. 3D-GCN [26] learns unique 3D

kernels with the graph max-pooling mechanism for robust feature aggregation.145

GACNet [36] employs graph attention convolution, and SPG [37] operates on a

superpoint graph to represent contextual relations. However, the low efficiency

global feature extraction and edge information redundancy usually hinder the

performance of this kind of method. PCT [38] and Point Transformer [39] uti-

lize transformer structure to capture long-range relation within point cloud, and150

their complicated structure commonly incur unfavorable computational cost.

Compared with these transformer-based methods, PointGS is more simple and

exhibits competitive or even better performance. In this paper, we attain conve-

nient global information extraction without sophisticated operators and explore

an efficient local features updating rule for point cloud understanding.155

3. Main Methodology

3.1. Geometric Space Learning

Global Information Extraction and Guidance Within our method, we

first utilize FPS on the original geometric data to generate multi-scale inputs

and reserve FPS indexes as a geometric guidance for the subsequent downsam-160

pling process. Different from conventional geometric space learning approaches
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Figure 2: (a) shows the geometric space learning structure in PointGS, where FPS downsam-

pling is successively utilized to generate multi-scale inputs. The spherical coordinate relation

of each scale point cloud are concatenated together with corresponding inputs as extra initial

information supplement. (b) illustrates semantic space learning details of PointGS. We con-

duct a simple graph model to aggregate semantic features and present a fusion mechanism to

to enhance information communication among four branches. (c) details the dual-space fusion

structure, enabling to achieve alternatively learning in either geometric or semantic space.

like PointNet++ [9], which apply FPS within the different model stages, we

successively apply FPS at the beginning to form a pyramid geometric informa-

tion as shown in Figure 2 (a). After concatenating with corresponding spherical
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coordinate relation, each scale inputs are simultaneously encoded into seman-165

tic space by different branches of PointGS. Benefiting from pyramid structure,

global information extraction becomes efficient and convenient. Intuitively, the

4-scale feature learning process is independent which hinders the feature commu-

nication among different scale features. Feature fusion among multiple branches

is one straightforward solution to handle this problem, yet downsampling in se-170

mantic space is still a challenge. To this end, we propose to directly leverage FPS

indexes as guidance, which termed as Geometric Information Guidance (GIG),

to efficiently attain semantic features downsampling within feature fusion pro-

cess. The FPS indexes contain consistent and robust object geometric structure

knowledge which ensures the rationality of the downsampling process in seman-175

tic space. For upsampling, the simple feature interpolation of Pointnet++ is

employed in our method to attain reliable and efficient feature upsampling. The

right part of Figure 2 (b) details the structure of proposed feature fusion pro-

cess. Grey lines indicate the dowsampling process which adopt FPS indexes as

guidance, and blue dash lines represent the simple upsampling process.180

Albeit its simplicity, the proposed structure exhibits some prominent mer-

its. 1) By constructing multi-scale inputs and multi-branch learning structure,

global information extraction becomes efficient and convenient. 2) Once FPS is

applied at the beginning to form multi-scale inputs, time-consuming downsam-

pling is unnecessary in the semantic space anymore. Meanwhile, the FPS indexes185

can be efficiently utilized to downsample semantic representations within multi-

ple feature fusion process. 3) Constant FPS indexes from end-to-end ensure the

geometric structure consistency at different scale data which provides a geomet-

ric guidance for reasonable downsampling in semantic space. The effectiveness

of proposed downsampling mechanism can be clearly seen in Table 1, and more190

details can be later seen in Section 4.4.

Geometric Relation Supplement Spatial geometric information is criti-

cal for model performance [40]. In order to provide more geometric information,

we transform coordinates at each scale and their neighbours into the spherical

coordinate system to obtain relative angles for more spatial relation description195
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Table 1: Comparison of with/without Geometric Information Guidance (GIG).

ModelNet40 ShapeNetPart

Model Input mAcc OA Input Cls. mIou Ins. mIou

Without GIG 1k 90.1 93.0 2k 82.0 85.8

With GIG 1k 90.9 93.8 0.8 ↑ 2k 82.8 86.6 0.8 ↑

among points. Figure 3 details the relative angle expression based on three axes

separately. N is one neighbour point and C is the center point. By adopting

arctan function, the polar angle (θi) and the azimuth angle (φi) are calculated

through two points coordinates. γi is the radial distance between neighbor and

center point (i = X,Y, Z), which is the same as Euclidean distance and we200

dropped in PointGS for simplicity. According to different axes, we obtain three

pairs of relevant angle relation (θX , φX , θY , φY , θZ , φZ) as extra spatial geo-

metric information for the model. By doing so, we enable PointGS to obtain rich

geometric information while maintaining the simplicity of the model structure.

The effectiveness of these geometric relation supplement is later empirically ver-205

ified in Section 4.4.

Figure 3: Spherical coordinate system illustration in this work. θi is the polar angle, φi is the

azimuth angle, and γi is the radial distance between N and C (i = X,Y, Z). Polar angles and

azimuth angles are adopted as extra relevant relations information.
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3.2. Semantic Space Learning

Revisiting Conventional Local Features Updating Rule For reliable local

features aggregation, we focus on feature learning in semantic space and modify

the local features updating rule for efficient purpose. By convention, the local

features updating rule of GNNs on point cloud, like DGCNN, can be formulated

as:

f l+1
i = Λj∈N(i)Φ(f

l
i ||f l

j − f l
i ). (1)

Λ(·) means the aggregation function (max-pooling), Φ(·) denotes the local

features extraction function (MLPs), and f l
i represents the semantic features of

point i at layer l. N(i) is the set of neighbor features, which is identified by

kNN search (k number is 20-40) in semantic space. Different from traditional

graph learning field, no adjacency matrix [41] is available to indicate topological

information in point cloud. Thus, the edge information is commonly redundant.

According to [40], it is feasible to simplify the local features updating rule with

negligible performance drop. They present a simple version to distill edges:

f l+1
i = Λj∈N(i)Φ1(f

l
j)− Φ2(f

l
i ). (2)

Equation (2) passes neighbor point features (f l
j) through MLPs (Φ1) and

directly applies the aggregation function Λ(·) to obtain only one neighbor. Then,

the resulting features (f l+1
i ) are subtracted from the distilled neighbor features.210

Such rule can nearly achieve 20-40 (k number) times reduction in computational

cost. In a similar way, we modify the local features updating rules of PointGS

to compact semantic features aggregation process.

Local Features Updating on Classification and Part Segmentation In

our work, the information within the first local features updating is not sim-

plified since geometric priors can serve as a cheap and effective way to boost

model accuracy [8, 42]. Thus, the first local features updating function can be

written as follows:

f l+1
i = Λj∈N(i)Φ(p

l
j − pli||plj ||rlθX ||rlφX

||rlθY ||r
l
φY

||rlθZ ||r
l
φZ

||distl). (3)

11



The first layer inputs are spatial coordinates p, f means the semantic features

after MLPs (Φ), and distl is Euclidean distance between neighbors and center.

In order to provide more initial information, we not only use edge information

(plj − pli), but also employ spherical coordinate angle relation (rlθX , rlφX
...) as

geometric priors supplement. Here we do not use the coordinates of center

points for efficiency purpose, which can be directly computed from the neighbor

coordinates (plj) and edges. From the second local feature aggregation, we start

to distill features while repeatedly injecting original spatial relation to supply

geometric information. The proposed updating rule is as follows:

f l+1
i = Λj∈N(i)Φ1(f

l
j ||f l

supply)− Φ2(f
l
i ),

f l
supply = Φ3(p

l
j − pli||plj ||rlθX ||rlφX

||rlθY ||r
l
φY

||rlθZ ||r
l
φZ

).
(4)

Different form Equation (2), we propose to inject extra spatial relation within

each features updating process as the geometric information supplement that215

the supplemented features form (fsupply) is similar with Equation 3 but without

aggregation function and Euclidean distance. Then, the concatenation results

of supplemented features and neighbor features (fj) are directly processed by

aggregation function in order to achieve redundancy reduction as Equation (2).

As demonstrated in Equation (4), the neighbor indexes (j) within fsupply is the220

same with fj . Thus, the neighbor points selection in geometric space is based

on the results of semantic space learning which belongs to our dual-space fusion

mechanism and we detailed in Section 3.3. On the other hand, we notice that

Euclidean distances (distl) would largely hamper the performance after the first

local aggregation. The reason could be that the Euclidean distance in geometric225

space mismatches with features in semantic space. As analyzed in Section 1, the

Euclidean distances of same-category points are big in geometric space (Figure 1

(a)) but the feature distances are small in semantic space. As a result, we discard

this geometric space information after the first local features updating. Table 2

lists out the model performance with/without Euclidean distance after the first230

local feature aggregation on ModelNet40 and ShapeNetPart, where the results

clearly support our analysis.
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Table 2: Comparison of with/without Euclidean Distance (ED).

ModelNet40 ShapeNetPart

Model Input mAcc OA Input Cls. mIou Ins. mIou

Without ED 1k 88.2 92.9 2k 82.4 86.1

With ED 1k 90.9 93.8 0.9 ↑ 2k 82.8 86.6 0.5 ↑

Local Feature Aggregation on Semantic Segmentation Unlike the first

two tasks, where the input data exclusively consists of 3D coordinates, semantic

segmentation benchmark combines RGB color values as extra inputs. Built upon

our analysis in Section 3.2, we present the following rule for this task in the first

local feature aggregation:

f l+1
i = Λj∈N(i)Φ(p

l
j − pli||plj ||rlθX ||rlφX

||rlθY ||r
l
φY

||rlθZ ||r
l
φZ

||distl||distlrgb). (5)

In Equation (5), there is only one modification that the Euclidean distance

form of RGB values is introduced to the updating rule as an extra relevant

relation. Since the physical significance is irrelevant between the 3D coordinates235

and RGB information, we consider these two kinds of representations separately.

In contrast to conventional methods, we transform RGB values to the Euclidean

distances form (distlrgb) as a relevant relation for the first updating function.

But the subsequent updating rules keep the same as Equation (4) for avoiding

features mismatch problem between geometric and semantic space.240

We present an example to explain the Euclidean distance form of RGB values

in Figure 4 where similar parts or objects have the similar colors, and vice versa.

Subfigures A and B are examples of similar parts containing closer RGB colors

for which their Euclidean distances are also small (0.5751). In contrast, for

the different object parts like A, C and B, C, the RGB Euclidean distances245

are bigger which are 0.6336, 0.7909 respectively. According to this observation,

we believe the Euclidean distance form of RGB is helpful for our model to
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Table 3: Comparison results of with/without RGB Euclidean Distance (RGB ED) on S3DIS

Area5 dataset.

S3DIS

Model OA mAcc mIou

Without RGB ED 86.0 66.4 57.5

With RGB ED 87.7 70.0 61.7 4.2 ↑

distinguish detailed structure information in more complex scenes. Table 3 lists

the comparison experiments in order to verify the superiority (4.2% gain) of

adopting the Euclidean distance form of RGB values, and Section 4.4 provides250

more supportive experiments.

Figure 4: Illustration of the relevant relation among point cloud with RGB colors where similar

points have closer RGB color and smaller Euclidean distance of RGB.

3.3. Dual-Space Information Fusion

To achieve information fusion learning between geometric space and seman-

tic space, we explore a novel architecture as illustrated in Figure 2(c). In the

process of Geometric to Semantic Fusion (GSF), we adopt MLP to transform255

original coordinates into semantic space for feature extraction. In semantic

space, kNN is adopted on each point features to filter out similar neighbours for

local feature aggregation. After that, we start Semantic to Geometric Fusion
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(SGF) to select corresponding points in geometric space as the information sup-

plement for the next GSF process. Particularly, kNN indexes of semantic space260

are utilized to select corresponding points which avoids the spatial limitation

of searching in geometric space. As demonstrated in Equation (4), the supple-

mentary geometric information are encoded by GSF (Φ3) and the transformed

features (f l
supply) are concatenated with semantic features (f l

j) for the following

local features updating. With such dual-space fusion structure, we showcase two265

advantages. 1) Geometric information is vital to boost model performance [8, 42]

and is iteratively feeded into PointGS, making our model become more robust.

2) The same-category coordinates selection according kNN indexes of semantic

space can detour Euclidean distance restriction and aggregate more long-range

same-category points for geometric prior supplement.270

4. Experiments

In this section, we evaluate PointGS on several benchmark tasks including

shape classification, part segmentation, and semantic segmentation. We also

conduct ablation studies to examine extensively the effectiveness of our PointGS.

For fair comparison, we follow the same data processing and evaluation protocols275

as used in PointNet++ [9].

4.1. Shape Classification

Data and Metric We first evaluate PointGS on the ModelNet40 [29], which

contains 9,843 objects for training and 2,468 objects for testing meshed CAD

models belonging to 40 categories. We randomly sample 1,024 points from each280

CAD objects which is more difficult than uniformly sample. The mean accuracy

within each category (mAcc) and the overall accuracy (OA) are adopted to

evaluate model performance.

Performance Analysis The shape classification results are presented in Ta-

ble 4. As observed, compared with PointNet++ and DGCNN, performance285

gains of our model are 3.1% and 1.6%. Compared with the other popular meth-
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Table 4: Shape classification results.

ModelNet40 ModelNet10

Method Input #Points mAcc OA mAcc OA

ECC [20] xyz 1k 83.2 87.4 90.0 90.8

PointNet [8] xyz 1k 86.0 89.2 - -

Kd-Net [30] xyz 1k 86.3 90.6 92.8 93.3

PointNet++ [9] xyz 1k - 90.7 - -

KCNet [43] xyz 1k - 91.0 - 94.4

PointNet++ [9] xyz, normal 5k - 91.9 - -

3D-GCN [26] xyz 1k - 92.1 - -

SpecGCN [23] xyz 1k - 91.8 - -

Grid-GCN2 [25] xyz 1k 89.7 92.0 95.3 95.8

PointCNN [15] xyz 1k 88.1 92.2 - -

DGCNN [10] xyz 1k 90.2 92.2 - -

PointWeb [13] xyz 1k 89.4 92.3 - -

PCNN [44] xyz 1k - 92.3 - 94.9

SpiderCNN [35] xyz, normal 5k - 92.4 - -

KPConv [12] xyz 7k - 92.9 - -

ASSANET(L) [19] xyz 7k - 92.9 - -

InterpCNN [14] xyz 1k - 93.0 - -

DRNet [45] xyz 1k - 93.1 - -

PointASNL [46] xyz, normal 1k - 93.2 - 95.7

PCT [38] xyz 1k - 93.2 - -

SO-Net [47] xyz, normal 5k - 93.4 - 95.7

AdaptiveGraph [24] xyz 1k 90.7 93.4 - -

PointPG (Ours) xyz 1k 90.9 93.8 95.8 95.7
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ods, our simple network attains the best performance in both metrics with only

1k points on ModelNet10 and ModelNet40 datasets.

Table 5: Part segmentation results.

Method Cls. mIouIns. mIouairplane bag cap car chairearphoneguitarknifelamplaptopmotorbikemugpistolrocketskatebpardtable

Kd-Net [30] 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

PointNet [8] 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

SO-Net [47] 80.8 84.6 81.9 83.5 84.8 78.1 90.8 72.2 90.1 83.6 82.3 95.2 69.3 94.2 80.0 51.6 72.1 82.6

PCCN [16] 81.8 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8

PointNet++ [9] 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

DGCNN [10] 82.3 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0

3D-GCN [26] 82.7 85.3 82.8 86.1 84.8 79.2 91.9 74.9 91.6 87.4 83.6 95.8 69.3 94.9 82.4 61.1 75.6 82.2

SpiderCNN [35] 82.4 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

PointConv [34] 82.8 85.7 - - - - - - - - - - - - - - - -

SGPN [48] 82.8 85.8 80.4 78.6 78.8 71.5 88.6 78.0 90.9 83.0 78.8 95.8 77.8 93.8 87.4 60.1 92.3 89.4

PointCNN [15] 84.6 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80.0 83.0

PointASNL [46] - 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2

ASSANET(L) [19] - 86.1 - - - - - - - - - - - - - - - -

RS-CNN [49] 84.0 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6

InterpCNN [14] 84.0 86.3 - - - - - - - - - - - - - - - -

DRNet [45] - 86.4 84.3 85.0 88.3 79.5 91.2 79.3 91.8 89.0 85.2 95.7 72.2 94.2 82.0 60.6 76.8 84.2

KPConv [12] 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

PCT [38] - 86.4 85.0 82.489.081.291.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7

AdaptiveGraph [24] 83.4 86.4 84.8 81.2 85.7 79.7 91.2 80.9 91.9 88.6 84.8 96.2 70.7 94.9 82.3 61.0 75.9 84.2

PointPG (Ours) 82.8 86.6 85.2 85.3 86.0 80.5 92.0 73.9 92.3 88.5 85.9 96.2 63.3 94.9 82.2 59.4 75.8 83.2

4.2. Object Part Segmentation

Data and Metric We conduct experiments on ShapeNetPart [50] dataset290

containing 16 shape categories, where 14,006 3D objects are used for training

and 2,874 for testing. The part number for each category is between 2 and 6,

and there are 50 different parts in total. We use the same input sample strategy

for fairness. In this dataset, category mIou and instance mIou are reported.

Performance Analysis Table 5 lists the model performance on ShapePartNet.295

Intuitively, our method demonstrates clear superiority to the existing popular

methods. Compared with PointNet++ and DGCNN, our network attains 0.9%,

0.5% gains on class mIou and 1.5% improvement on instance mIou. Note that

we did not adopt loss-balancing during the training process, which is supposed

to be able to boost the performance further.300
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4.3. Semantic Segmentation

Data and Metric We next test PointGS for 3D semantic segmentation on

the challenging Stanford Large-Scale 3D Indoor Spaces (S3DIS) dataset [51].

S3DIS consists of 271 rooms in six areas. The points of scene are assigned

a semantic label from 13 categories (e.g. table, floor, wall). Following the305

conventional evaluation protocol [52, 9], our model is evaluated in 2 modes: (1)

Area 5 is withheld during training and is adopted for testing, (2) 6-fold cross-

validation. Mean class-wise intersection over union (mIou), mean of class-wise

accuracy (mAcc), and overall pointwise accuracy (OA) are used as metrics.

Table 6: Semantic segmentation results on the S3DIS dataset, evaluated on Area 5.

Method OA mAccmIou ceiling floor wall beam colimnwindow door table chair sofa bookcase board clutter

PointNet [8] - 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2

SegCloud [52] - 57.4 48.9 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6

TangentConv [53] - 62.2 52.6 90.5 97.7 74.0 0.0 20.7 39.0 31.3 77.5 69.4 57.3 38.5 48.8 39.8

PointNet++ [9] 82.8 60.2 53.1 88.9 97.6 72.8 0.0 10.4 56.7 6.8 70.5 79.8 36.1 62.9 61.8 46.3

DGCNN [10] 85.0 61.6 54.5 93.1 98.0 81.2 0.0 7.8 61.6 34.1 71.2 76.8 19.6 58.2 63.8 43.8

PointCNN [15] 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

SPGraph [37] 86.4 66.5 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2

PCCN [16] - 67.0 58.3 92.3 96.2 75.9 0.3 6.0 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2

PiontWeb [13] 87.0 66.6 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5

PCT [38] - 67.7 61.3 92.5 98.4 80.6 0.0 19.4 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3

Ours 87.7 69.9 61.7 92.2 97.9 82.6 0.0 25.9 53.4 69.8 74.9 80.3 38.6 66.2 69.6 51.1

Table 7: Semantic segmentation on S3DIS, evaluated with 6-fold cross-validation.

Method OA mAccmIou ceiling floor wall beam colimnwindow door table chair sofa bookcase board clutter

PointNet [8] 78.5 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 42.0 54.1 38.2 9.6 29.4 35.2

RSNet [54] - 66.5 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 60.1 59.7 50.2 16.4 44.9 52.0

PointNet++ [9] 84.1 70.4 60.1 93.3 91.7 76.1 33.2 27.6 57.4 59.0 63.5 70.5 41.3 55.7 57.3 54.6

SPGraph [37] 85.5 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

DGCNN [10] 86.4 71.7 62.3 94.0 94.0 81.7 37.9 35.6 61.1 59.2 67.1 68.4 30.5 55.7 59.1 55.5

A-CNN [55] 87.3 - 62.9 92.4 96.4 79.2 59.5 34.2 56.3 65.0 66.5 78.0 28.5 56.9 48.0 56.8

PointCNN [15] 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6

Ours 87.7 76.5 66.5 93.1 94.7 82.4 35.3 47.4 63.0 73.8 67.3 72.9 52.8 61.0 62.0 58.5

Performance Analysis We present the comparison results on Area 5 (Ta-310

ble 6), and 6-fold cross-validation (Table 7). In this complex indoor scenario,
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the multi-scale coordinates can be used to guide and maintain various objects

spatial location at the global level, meanwhile, rich relevant relation informa-

tion supports the model to distinguish boundaries of different objects at the

local level. Thus, our model attains superior performance even with the simpler315

network structure. According to the experimental results, our model attains

8.6% and 7.2% performance gain on mIou when compared with PointNet++

and DGCNN under Area5 evaluation mode. Moreover, such superiority can

also be observed on 6-fold cross-validation evaluation.

4.4. Ablation Analysis320

Channel Number in Branches. Our model maintains a small constant

channel number in four branches from end-to-end for efficiency purpose. We

investigate how the channel number may affect the performance in this part

in Table 8. Following the dual-space fusion learning architecture, our model

achieves gratifying performance even with a very limited channel number (16).325

As observed, the model performance is gradually improved when the channel

number is smaller than 64, which saturates once we adopt bigger value (128).

Although bigger channel number may construct stronger model expression for

semantic segmentation task, channel number fine-tuning is not pursued in this

work. Thus, we simply use 64 in this work.330

Table 8: Performance Comparison of different trunk channel number.

ModelNet40 ShapeNetPart

Channel Number Input mAcc OA Input Cls. mIou Ins. mIou

16 1k 89.8 92.6 2k 80.5 85.2

32 1k 90.2 92.9 2k 81.5 85.6

64 1k 90.9 93.8 2k 82.8 86.6

128 1k 90.7 93.0 2k 82.8 86.3
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Global Information Guidance and Geometric Relation SupplementWe

conduct an ablation study to demonstrate the effectiveness of the two mecha-

nisms in our geometric space learning. Table 9 demonstrates the obvious per-

formance improvement of these two mechanisms on classification and part seg-

mentation tasks. In addition, we observe that the contributions of these two335

mechanisms are different on classification and segmentation. Since information

replenish is one of effective way to enhance model performance, our geometric

relation supplement brings bigger accuracy improvement (0.8%) on relatively

simple classification tasks. By introducing multi-scale object structure repre-

sentations, geometric information guidance demonstrates equal significance for340

both tasks.

Table 9: Effectiveness demonstration of Global Information Guidance (GIG) and Geometric

Relation Supplement (GRS) on ModelNet40 and ShapeNetPart.

ModelNet40 ShapeNetPart

GRS GIG mAcc OA Cls. mIou Ins. mIou

× × 89.3 92.2 80.8 85.4

✓ × 90.1 93.0 0.8 ↑ 82.0 85.8 0.4 ↑

✓ ✓ 90.9 93.8 0.8 ↑ 82.8 86.6 0.8 ↑

Geometric Relation Supplement Frequency Acknowledging that the struc-

ture relation is critical, we inject these spherical coordinate relation before each

local feature updating process. In this part, We now examine the importance

of geometric relation supplement frequency. Concretely, we evaluate the model345

performance when supplying the relevant relation only in the first local feature

updating or in all local feature updating. By replenishing more geometric rela-

tion, PointGS achieves an improvement of 1.1% and 0.5% on ModelNet40 and

ShapeNetPart respectively.

RGB Features Application By default, the RGB information is concatenated350
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Table 10: Ablation study of different geometric relation supplement frequency on ModelNet40

and ShapeNetPart.

ModelNet40 ShapeNetPart

Frequency Input mAcc OA Input Cls. mIou Ins. mIou

1 1k 89.4 92.7 2k 82.6 86.1

4 1k 90.9 93.8 1.1 ↑ 2k 82.8 86.6 0.5 ↑

with coordinates to form input data. However, we argue that the physical

meaning is irrelevant between spatial coordinates and color values. Instead

of feeding them directly, we encode the RGB information into the Euclidean

distance form as relevant feature relations. In this part, we investigate the

model performance with three RGB information forms in S3DIS. The Area355

5 evaluation results are listed in Table 11. As the mixed inputs may limit

extracting distinct feature relation, the model performance is the worst once

applying color values and the Euclidean distance forms together. By contrast,

single data representation form is more effective, and the Euclidean distance

form introduces more gains (2.6%) than adopting color values directly.360

Table 11: Model performance with different RGB information forms on S3DIS Area 5. Dist

means transforming color values to the Euclidean distance form, Value means inputting color

values directly.

S3DIS

Model OA mAcc mIou

Dist and Value 86.1 65.3 56.5

Value 86.0 68.1 59.1 2.6 ↑

Dist 87.7 70.0 61.7 2.6 ↑
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4.5. Model Robustness and Efficiency

Model Robustness In the real scenes, we are also interested in ensuring

that our method tolerates defective inputs. Here we plot models classification

accuracy as the proportion of points dropped increases in Figure 5. It can be

observed that PointNet++, DGCNN and our approach can retain high accuracy365

with 75% of points are randomly dropped. However, when over 75% points are

dropped, the performance of PointNet++ and DGCNN degrades rapidly. On

the contrary, our method could still attain over 60% accuracy even 95% points

are dropped. Adversarial training strategy [56] and optimizer adjustment [57]

are effective methods to further reinforce the robustness of models which will370

be attempted in our future works.

Figure 5: Robustness comparison on ModelNet40. Even if 95% of the points are randomly

dropped, our method still obtains accuracy over 60%.

Model Efficiency We report the inference speed, i.e. throughput (sam-

ples/second), for our proposed PointGS in comparison with several models in

Table 12. The numbers of input points in ShapeNetPart and S3DIS datasets

are 2048 and 4098 respectively, and more input points lead to slower inference375

speed. For clarity, we report model inference speed on ModelNet40 dataset

(1024 input points). All the comparison models were run on one Nvidia 3090Ti

GPU and Inter(R) Xeon(R) Silver 3.20GHz CPU. The batch size is set to 10 and

Pytorch 1.8 is applied. We report the average speed over 200 runs. As observed,
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DGCNN and AdaptiveGraph avoid to use the Farthest Point Sampling (FPS) al-380

gorithm, which is inefficient on CPU. FPS is however necessary for PointNet++

and our method. Therefore, DGCNN and AdaptiveGraph may usually be faster

than PointNet++ and our method. Compared with PointNet++, PointGS is

marginally slower however leads to significantly higher accuracy than Point-

Net++. On the other hand, our proposed PointGS demonstrate higher or the385

same accuracy than PointConv and GDNet but exhibits much faster speed.

It is noted that there is still room to improve further the efficiency of the

proposed PointGS. For example, some works [58, 18, 17] manage to compile the

FPS algorithm by C++ for GPU implementation. Similarly, We implemented

the FPS cuda implementation of [58] which proves able to improve substantially390

our model efficiency as seen in Table 12 (PointGS (Ours)*). We will leave the

further exploration of our model’s efficiency as future work.

Table 12: Inference speed comparison between PointNet++, DGCNN, AdaptiveGraph, and

PointGS. We reporte the speed of some open sourced methods by samples/second tested on

one NVIDIA 3090Ti GPU and Inter(R) Xeon(R) Silver 3.20GHz CPU. * means we adopt

GPU implementation of FPS algorithms.

ModelNet40

Model #Points ThroughPut OA

PointNet++ [9] 1k 68 90.7

DGCNN [10] 1k 2920 92.2

PointConv [34] 1k 5 92.5

AdaptiveGraph [24] 1k 1567 93.4

GDNet [59] 1k 7 93.8

PointGS (Ours) 1k 45 93.8

PointGS (Ours)* 1k 113 93.8
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5. Visualization Analysis

In this part, we provide more typical visual illustration comparison to in-

tuitively demonstrate the superiority of PointGS. With the mutual supervi-395

sion mechanism on geometric and semantic spaces, PointGS enables to ob-

tain stronger discriminative capability on different objects. Both the first and

the second columns of Figure 6 show ground truth point cloud examples of

ShapeNetPart dataset but in two different angles. For clarity, we adopt black

circles to highlight the failure predictions of PointNet++ and DGCNN in the400

third and fourth columns, respectively. As observed, PointNet++ and DGCNN

exploit simple network structures based on features from one single space; this

lead to a lot of failures and limits their performance. As shown in Airplane3,

Chair1, Motorbike, and Rocket, PointNet++ and DGCNN generate obvious

prediction errors. In contrast, PointGS combines the strength of geometric405

structure and semantic representation and obtains more accurate results on

these challenging objects. In addition, PointGS shows robust performance to

handle even small parts segmentation (as observed in Airplane1,2 and Car1,2).

6. Conclusion

In this work, we explore a simple yet powerful architecture named PointGS410

for point cloud analysis. The key insight behind our method is that the sin-

gle space learning may not be sufficient for better model performance. We

propose to alternately learn in the geometric and semantic space to boost the

performance. We first utilize FPS downsampling in the geometric space to form

pyramid inputs which are helpful for rich global information extraction and415

avoids prohibitive computational pooling in the semantic space further. Then,

we transform coordinates into semantic space and design local feature updating

process for similar feature aggregation and features distillation. To reinforce the

information fusion and interaction between two spaces, we iteratively perform

dual-space fusion process which enables PointGS to establish a mutual super-420

vision mechanism. Without sophisticated operations and elaborated feature
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Figure 6: Visual comparison between PoitnNet++, DGCNN and PointGS. The first column

provides intuitive viewpoint to demonstrate data. The third and fourth columns show predic-

tion results of PointNet++ and DGCNN, and black circles denote the failure predictions of

these two methods. Better to zoom in.
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extractors, experimental results have shown that PointGS outperforms most

popular works on different tasks. We hope that the work will provide a new

sight for the community to rethink network design for point cloud analysis.
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