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Abstract: Output probability density function (PDF) tracking control of stochastic systems has always
been a challenging problem in both theoretical development and engineering practice. Focused on
this challenge, this work proposes a novel stochastic control framework so that the output PDF can
track a given time-varying PDF. Firstly, the output PDF is characterised by the weight dynamics
following the B-spline model approximation. As a result, the PDF tracking problem is transferred to
a state tracking problem for weight dynamics. In addition, the model error of the weight dynamics is
described by the multiplicative noises to more effectively establish its stochastic dynamics. Moreover,
to better reflect the practical applications in the real world, the given tracking target is set to be
time-varying rather than static. Thus, an extended fully probabilistic design (FPD) is developed based
on the conventional FPD to handle multiplicative noises and to track the time-varying references in
a superior way. Finally, the proposed control framework is verified by a numerical example, and a
comparison simulation with the linear–quadratic regulator (LQR) method is also included to illustrate
the superiority of our proposed framework.

Keywords: tracking control; probability density function; full probability design; B-spline model

1. Introduction

In recent years, there has been a growing interest in stochastic control, as many
systems in the real world, such as those in aerospace, chemical, textile machinery and
ships, can all be modelled as stochastic dynamic systems [1]. In the study of stochastic
system control, for the Gaussian processes, the distribution can be controlled by only
controlling its mean and variance [2]. However, many stochastic systems contain non-
Gaussian processes, such as the scale distribution of flocculating particles in the paper
process [3], the flame shape distribution [4], and the chemical polymerisation reaction
molecular weight distribution [5]. For such stochastic systems with non-Gaussian variables,
the mean and variance cannot describe the full statistical information, so that traditional
methods are no longer productive [6]. In order to solve this problem, Wang proposed a new
stochastic control method by introducing the PDF into the control field in 1996 [7,8]. In this
method, the B-spline function is applied to model the PDF, which releases the limitation
of the Gaussian assumption of the traditional stochastic control methods [9]. Based on
that, a series of stochastic control frameworks have been presented in both practical and
theoretical disciplines. On the practical side, Li applied the PDF control method to the
fibre length distribution in the grinding process to predict the random distribution of the
fibre length and achieved a good control effect [3]. Sun applied this method to the flame
temperature field, realised the modelling of the flame temperature field and its iterative
learning control, and achieved the purpose of improving the control effect [4]. In theoretical
terms, a PDF shape control method using the FPK equation for nonlinear stochastic systems
with an arbitrary expression was proposed in [10], where the exact stationary solution

Entropy 2023, 25, 186. https://doi.org/10.3390/e25020186 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25020186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-9549-3095
https://orcid.org/0000-0001-5179-2384
https://doi.org/10.3390/e25020186
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25020186?type=check_update&version=2


Entropy 2023, 25, 186 2 of 14

of the FPK equation was derived and the controller was designed for a non-polynomial
nonlinear function. Reference [11] presented the rational square root B-spline model and
introduced the concept of the pseudo-weight, which makes the control algorithm almost
unconstrained and the system analysis relatively simple. In these studies, most correlation
methods ignore the model error of the B-spline function or simply assume the error as
steady-state residuals. Thus, the control methods that have been applied in most of these
studies are LQR methods. However, for some complicated practical systems, the PDF
model error can be involved in a stochastic dynamical manner [12]. Ignoring that would
affect the control performance and even lead to divergence. For such complex practical
processes, multiplicative noise, which is also known as state-dependent noise, can better
characterise the uncertainty of the model parameters and be more in line with the actual
systems [13]. In this way, the LQR method is no longer suitable for dealing with noises
and uncertainties, which are strongly dependent on the system state. Thus, finding a more
advanced control algorithm aiming at multiplicative noise is crucial.

Target tracking has always been a hot topic in both theoretical research and practical
applications [14]. Unlike the general tracking problem, for the stochastic systems, it usually
requires the system to track a distribution rather than a single value. For the Gaussian
processes, the controller can be simply designed to track the mean and variance of the given
distribution. For the non-Gaussian processes, there are many algorithms and literature
works published under the B-spline model framework proposed by Wang. For instance,
Zhou designed the observer to control the observed state to track the actual state of the
system [15]. Luan added noise to the model to control the output PDF by the optimal
control algorithm [16]. In most of the related studies, they only considered the static
tracking targets and neglected the time-varying targets. However, in many industrial
plants, in order to meet the field requirements, the tracking target can be time-varying,
which increases the difficulties for controller design.

In summary, based on the aforementioned problems, the challenges of stochastic
systems include, but are not limited to the following: (1) most existing stochastic control
algorithms are limited to the Gaussian assumption and have poor control performance
once the systems contain non-Gaussianity or nonlinearity; (2) for the published control
frameworks under the B-spline approximation model proposed by Wang [8], even though
they have successfully lifted the Gaussian assumption of the traditional stochastic method,
they have failed to involve the uncertainties and errors of the model parameters in a
stochastic dynamical manner; (3) The majority of stochastic tracking problems consider
static references other than the time-varying reference, which brings problems to practical
applications. To address these issues, this paper proposes a novel B-spline model-based
control framework using the fully probabilistic control design (FPD) [17,18]. In this method,
a linear B-spline model is applied to describe the distribution of the system output [11,16].
Besides the B-spline model, there are other approximation models that can also be used to
fit the PDF curve such as the RBF model [19], the input and output ARMAX model [20],
the neural network PDF model, and so on [21]. For the RBF model, the existing research
shows that there are few intermediate parameters in RBF model control, but the dynamical
relationship between the input and output cannot be reflected. Furthermore, the model
accuracy of the RBF model is relatively poor especially when few basis functions are
chosen. Although the input–output ARMAX model can reflect the dynamic relationship
between the input and output to some extent, it has difficulty controlling the shape of
the system when designing the controller. The neural network PDF model can achieve
satisfactory control results; however, for a multi-input multi-output system, the number
of basis functions will increase exponentially with the increase of the complexity of the
system. Compared with the other types of approximation models mentioned above, the
B-spline model is the most widely used and is easier to convert to the state-space dynamical
weight model. Furthermore, compared to the other types of B-spline model such as the
square root B-spline model [22], rational B-spline model [23], and rational square root
B-spline model [24], the linear B-spline model is relatively simple and unique in expression.
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Based on the B-spline approximation principle [25], this model approximates the system
output probability density function by n pre-selected B-spline basis functions. Due to the
distribution constraints, only n− 1 of the n weights in this model are independent of each
other [26]. Therefore, the control of the system output PDF can be achieved by controlling
n− 1 independent weights. Thus, the control goal is transferred from altering the shape of
the PDF to a desired PDF to controlling the weights of the B-spline model to a pre-selected
weight set. Besides, the PDF model error is characterised as multiplicative noise [27,28],
indicating that the weight error of the PDF model is involved in a dynamical manner.
Considering that, the randomised controller FPD was implemented in this paper to achieve
the control goal [29,30]. The FPD is evaluated by minimising the KL-divergence between
the distribution of the system dynamics and the desired distribution. To better cope with
multiplicative noises, the extended FPD proposed by Zhou [12] was applied in this paper.
This extended FPD is strongly intuitively appealing and provides an explicit minimisation
strategy that exhibits better convergence, as well as shorter response times when dealing
with multiplicative noise [30].

To sum up, under the B-spline framework proposed by Wang, the purpose of this
paper is to design a randomised control method so that the weight of the dynamics can
track a target time-varying weight, thus realising PDF shape tracking and providing a
theoretical basis for PDF tracking for non-Gaussian stochastic systems in the actual industry.
The contribution of this paper can be summarised as follows:

1 The linear B-spline model is implemented to characterise the system PDF, thus con-
verting the PDF shape control problem into the weight control problem;

2 The PDF model error is represented as multiplicative noise, indicating the stochasticity
and dynamics of the weight error;

3 The dynamics of the weights are characterised by the stochastic state space model,
thus providing full stochastic properties;

4 The extended FPD is applied to better cope with the multiplicative noises existing in
the dynamics of the weight model. Compared with the conventional FPD [29], the
extended FPD can better cope with multiplicative noises by modifying the Riccati
equations. Moreover, we improved the extended FPD in [12] so that the system state
can track the time-varying targets.

The rest of this paper is organised as follows. Section 2 states a description of the
problem. In Section 3, the optimal control law is solved based on the performance metrics
and the implementation algorithm is provided. In Section 4, the controller is applied to a
numerical example and a comparison simulation with the LQR method is also included.
Finally, the conclusion and future work are summarised in Section 5.

2. Problem Description
2.1. PDF Description Based on B-Spline

For the output PDF of the controlled system, if the PDF is obtained by solving partial
differential equations, it is very challenging to model by first principles, thus bringing
difficulties to obtaining an effective control strategy [31]. To address that, the B-spline
model can be applied to fit the PDF curve by the relationship between the weights and
basis functions. Assuming that the interval [a, b] is known and the output PDF γ(y) is
continuous and bounded on the interval [a, b], the output PDF can be represented using n
B-spline basis functions as follows:

γ(y) =
n

∑
i=1

wiBi(y), (1)

where wi, (i = 1, 2, ..., n) is the weight and Bi(y) is the pre-selected n basis functions. There
are different functions that can be chosen as basic functions such as the Gaussian function,
radial basis function, and wavelet basis function. From the properties of the B-spline
function, it can be used to approximate any continuous function defined on a compact
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set [25]. A notable advantage of the B-spline method is the exact and smooth surfacewise
description of the curve [32]. Compared with the RBF basis function, when the number of
basis functions is low, the B-spline basis function is more suitable for curve fitting. This
will be proven later by the comparison simulation results in Section 4. Since γ(y) is a PDF
defined on the interval [a, b], it should satisfy the following constraint:

∫ b

a
γ(y) = 1. (2)

As Equation (2) needs to be guaranteed, it follows that only the n− 1 weights are
independent of each other, for which the distribution can be written in the following form:

γ(y) = C0(y)x + L(y), (3)

x = [w1, w2, ..., wn−1]
T ∈ Rn−1×1, (4)

L(y) = (
∫ b

a
Bn(y)dy)−1Bn(y) ∈ R1×1, (5)

C0(y) =



B1(y)− Bn(y)∫ b
a Bn(y)dy

∫ b
a B1(y)dy

B2(y)− Bn(y)∫ b
a Bn(y)dy

∫ b
a B2(y)dy

...
Bn−1(y)− Bn(y)∫ b

a Bn(y)dy

∫ b
a Bn−1(y)dy



T

∈ R1×n−1, (6)

where x is the weight set, C0(y) is the basis function vector, and L(y) is the basis function
scalar. From Equations (5) and (6), we can see that C0(y) and L(y) are known once the basis
functions are chosen.

According to Equations (1)–(6), we can see that, by using the B-spline model, con-
trolling the output PDF shape can be realised by controlling n− 1 independent weight
vectors [33].

2.2. PDF Tracking Control Problem

Figure 1 demonstrates the tracking diagram of the system B to the system A. The
target system A has an unknown structure and can monitor the output in real time, which
means that for any k moments, the output PDF distribution gk(y) of the system A is known.
System B is a known controlled system with control input u and output γk(y, uk). The
goal here is to make the output distribution of System B track the output distribution of
System A, where D characterises the difference between the two distributions. According
to Figure 1, the system and tracking control problems mentioned above will be described
in detail in the following section.

System
B

System
AD

γk(y, uk)

target gk(y)

Figure 1. Diagram of the tracking system.

Consider the stochastic system with output PDF γk(y), whose dynamics is described by:

γk+1(y) = f (γk(y), uk), (7)
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where the distribution of the system output y is γk(y) and uk is the system input.
By applying the B-spline model (3), the output PDF γk(y) of the tracking system B is

described as follows:
γk(y) = C0(y)xk + L(y), (8)

where xk are the weights corresponding to the basis functions.
The tracking target gk(y) is a dynamic target PDF that varies dynamically with time in

the following form:
gk(y) = C0(y)Vk + L(y), (9)

where Vk are the pre-set target weights corresponding to each basis function.
Note that the B-spline basis functions need to be selected in advance. Then, the shaping

distribution problem of the output PDF γ(y, uk) on the interval [a, b] can be realised by
controlling the weight state xk. Based on the B-spline model framework given in [8], the
dynamics of the weight states xk of the B-spline model-based PDF are described as follows:

xk+1 = Gxk + Huk + DxkEk, (10)

where G ∈ Rn−1×n−1, H ∈ Rn−1×1 are the corresponding weight system parameters and
Ek represents the state-based model randomness whose distribution is given by

Ek v (0, M), (11)

where M is the variance of Ek.
The control flow chart is shown above in Figure 2. After pre-selecting the B-spline

basis function, the time-varying target weight Vk in Figure 2 can be obtained according to
the target distribution through the B-spline principle. The system input uk is obtained by
evaluating the target weight and the system weight through the FPD controller, which will
be introduced in the next section. The weight xk+1 is then updated by B-spline principle
modelling and input uk. According to the relationship between the weight and the basis
function, the output distribution is then obtained. In addition, it should be noted that the
model error part Ek is represented by multiplicative noise, and D is the weight matrix with
the appropriate dimension. Finally, the weights are iteratively updated according to the
model to achieve output distribution control.

target gk(y)

B-spline

Vk FPD controller
uk xk+1 = Gxk +Huk

+DxkEk

xk+1

B-spline

B-spline
xk

output γ(y, uk)

Feedback session

Figure 2. System control structure diagram.

Following this sequence, our control goal was to design a randomised controller
so that the weight xk can follow the target weight Vk. The PDF shape-tracking control
problem is transformed into a weight tracking control problem. The controller design will
be introduced in the next section.

3. Control Algorithm

In this section, the FPD control algorithm is introduced to achieve the tracking goals
for the weight state. The main reason we chose FPD is that we considered the multiplicative
noise in the weight dynamical system. Moreover, FPD not only fully respects the stochastic
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nature of the system, but also provides a very detailed implementation procedure. The
details will be given as follows.

3.1. General Control Solution of FPD

In FPD, the difference between the actual distribution f (D) of the system and the
target distribution f I(D) is measured by the Kullback–Leibler divergence (KLD) [34], where
D = (xk, uk) represents the observation data. The closer the distance between the output
distribution and the target distribution, the greater the degree of similarity and, conversely,
the smaller the degree of similarity [35]. The formula for the KLD is given by

D( f || f I) =
∫

f (D)ln
f (D)

f I(D)
dD, (12)

where D is the relative entropy, directional divergence, or KLD and D has the key property
of non-negativity, i.e., D( f || f I) ≥ 0.

Assuming that uk is the input to the system and k ∈ k0, k1, ..., kn, all states xk of the
system are assumed to be measurable; the joint PDF of the closed-loop system from moment
k0 to moment kn is:

f (D) =
kn

∏
k=k0

s(xk|xk−1, uk−1)c(uk−1|xk−1), (13)

where s(xk|xk−1, uk−1) denotes the distribution of the system dynamics at moment k and
c(uk−1|xk−1) denotes the distribution of the controller at moment k. Similar to the joint
PDF system, the target PDF f I(D) is given by

f I(D) =
kn

∏
k=k0

sI(xk|xk−1, uk−1)cI(uk−1|xk−1), (14)

where sI(xk|xk−1, uk−1) denotes the desired distribution at moment k, while cI(uk−1|xk−1)
denotes the desired distribution of the controller at moment k.

The control strategy is to find an optimal randomised controller to bring the distribu-
tion of the system dynamics as close as possible to a target distribution, thus minimising
the KLD given in Equation (12). The following performance indicators can be established
according to Equations (12)–(14):

−ln(γ(xk−1)) = min{
c(uk−1|xk−1)

kn
τ>k

} kn

∑
τ=k

∫
f (Dτ |xk−1)×

ln(
s(xτ |xτ−1, uτ−1)c(uτ−1|xτ−1)

sI(xτ |xτ−1, uτ−1)cI(uτ−1|xτ−1)
)d(Dτ),

(15)

where, for any τ ∈ k0, k1, ..., kn, the recursive form of Equation (15) can be obtained accord-
ing to the dynamic programming method as follows:

−ln(γ(xk−1)) = min
c(uk−1|xk−1)

∫
s(xk|xk−1, uk−1)c(uk−1|xk−1)

×
[

ln(
s(xk|xk−1, uk−1)c(uk−1|xk−1)

sI(xk|xk−1, uk−1)cI(uk−1|xk−1)
− ln(γ(xk))

]
d(xk, uk−1).

(16)

Thus, the optimal control law c∗(uk−1|xk−1) that minimises the performance index (16)
can then be evaluated as follows based on FPD:

c∗(uk−1|xk−1) =
cI(uk−1|xk−1)exp[−β1(uk−1, xk−1)− β2(uk−1, xk−1)]

γ(xk−1)
, (17)
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where γ(xk−1) =
∫

cI(uk−1|xk−1)exp[−β1(uk−1, xk−1)− β2(uk−1, xk−1)]duk−1,

β1(uk−1, xk−1) =
∫

s(xk|xk−1, uk−1)[ln
s(xk |xk−1,uk−1)
sI(xk |xk−1,uk−1)

]dxk,

β2(uk−1, xk−1) = −
∫

s(xk|xk−1, uk−1)ln(γ(xk))dxk.
The proof of Equation (17) can be found in [12].

3.2. FPD Control Solution for the Weight Dynamic System

To apply the FPD, all the variables will be characterised as stochastic distributions.
Based on Equation (10), the weight dynamic distribution is given as follows with µk as the
mean and Zk as the covariance:

s(xk|xk−1, uk−1) v N(µk, Zk), (18)

where
µk = Gxk−1 + Huk−1,

Zk = cov(xk|xk−1, uk−1)

= E
{
(xk − µk)(xk − µk)

T
}

= E
{

Dxk−1ET
k−1xT

k−1DT
}

= Dxk−1MxT
k−1DT .

The ideal weight distribution is assumed to be

sI(xk|xk−1, uk−1) v N(Vk, Rk), (19)

where Vk is the target weight of the system distribution at instant k and Rk is its ideal covari-
ance. Note that Vk is dynamic and time-varying, so as to better simulate the real situation.

The distribution of the ideal controller can also be formulated as

cI(uk−1|xk−1) v N(θk−1, Γ), (20)

where Γ is the ideal covariance of the controller and θk−1 is the ideal mean of the optimal
control signal at each moment of the controller, which can be evaluated as follows:

θk−1 = (HT H)−1HT(Vk −GVk−1). (21)

Therefore, given the system output distribution (18) and the target distribution (19)
and (20), following the general PFD scheme Equation (17), the optimal distribution of the
tracking controller is given by the following theorem.

Theorem 1. Under the PDF (18) describing the dynamic weights of the system, the optimal
controller distribution for minimising the performance index function (17) is given as follows:

c∗(uk−1|xk−1) v N(ūk−1, Γk−1), (22)

where

ūk−1 = −Kk−1xk−1 + dk−1,

Kk−1 = Γk−1HTQkG,

Qk = R−1
k + Sk,

Γk−1 = (Γ−1 + HTQk H)−1,

dk−1 = Γk−1[Γ
−1θk−1 + HT R−1

k Vk − 0.5HTPT
k ], (23)
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and we establish the following performance indicator function:

− ln(γ(xk−1)) = 0.5xT
k−1Sk−1xk−1 + 0.5Pk−1xk−1 + 0.5qk−1, (24)

where

Sk =−GTQk HΓk−1HTQT
k G + GTQkG + Dxk−1MxT

k−1DT ,

Pk−1 =(Pk − 2V T
k R−1

k )G + 2θT
k−1Γ−1Γk−1HTQkG + 2V T

k R−1
k HΓk−1HTQkG

− Pk HΓk−1HTQkG, (25)

where Equation (24) is the Riccati expression of the performance index, Sk is the quadratic Riccati
equation, Pk is the linear term of the Riccati equation, and qk−1 stands for some normal numbers that
do not contribute to the controller, thus omitted here. In addition, ūk−1 is the mean of the optimal
controller, Γk−1 stands for the covariance, and Kk−1 is the controller feedback gain. Moreover, dk−1
is a linear shift caused by the considered tracking control problem.

Proof. The proof of this theorem can be evaluated following the same procedure in our
previous publication [12], thus omitted here.

Remark 1. The FPD algorithm given by Equation (17) is the general solution to the fully prob-
abilistic control design irrespective of the type of distribution describing the system dynamics or
whether the system is linear or nonlinear. It can be derived numerically or analytically. The specific
solution of the FPD given by Theorem 1 is the analytical solution for this specific case.

The proposed control framework for the B-spline modelled PDF shaping using the
FPD method is summarised by Algorithm 1.

Algorithm 1: Tracking control framework with output probability density function.

Input: Target PDF γg(y, k) with time dynamics
Output: PDF

1 Choose n B-spline basis functions;
2 Model the PDF, and obtain the weight dynamics using B-spline models as

Equation (10);
3 Initialise: u0 ← m, x0 ← m, Sk ← m, Pk ← m, γ0 ← C0(y)x0 + L(y), and m here

denotes random generation;
4 for k = 0 do
5 Model the target PDF, and obtain the target weight distribution using the

B-spline model inEquation (19);
6 Evaluate Sk, Pk following Equation (25);
7 According to Equation (22), formulate a randomised optimal controller by

calculating Kk, dk, using the obtained Sk, Pk;
8 Update the new weight distribution as (18);
9 Obtain the PDF using the updated weight distribution xk+1 and B-spline

model (8);
10 k = k + 1;
11 end
12 return result

4. Simulation Result

In this section, the proposed framework is tested on a numerical example to illuminate
the effectiveness of the proposed control method. Moreover, to better demonstrate the
advantages of the proposed framework, two comparison simulations are also included.
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For the discrete system, the following B-spline basis functions were selected to approx-
imate the linear model.

B1(y) = 0.5(y2 + 6y + 9)I1 + (−y2 − 3y− 1.5)I2 + 0.5y2 I3,

B2(y) = 0.5(y2 + 4y + 4)I2 + (−y2 − y + 0.5)I2 + 0.5(y2 − 2y + 1)I4,

B3(y) = 0.5(y2 + 2y + 1)I3 + (−y2 + y + 0.5)I4 + 0.5(y2 − 4y + 4)I5,

B4(y) = 0.5y2 I4 + (−y2 + 3y− 1.5)I5 + 0.5(y2 − 6y + 9)I6, (26)

where Ii =

{
1 y ∈ [i− 4, i− 3]
0 others

, i = 1, ..., 6.

Firstly, the comparison simulation of the approximation between the B-spline model
and the RBF model with the following Gaussian basis function is presented to show the
advantages of the B-spline model.

hj(y) = exp(−
(y− cj)

2

b2
j

) i = 1, ..., nj, (27)

where j is the order of nodes, nj is the total number of nodes of the RBF basis function, cj
and bj are the centre value and width, and variable y ∈ [a, b]. The same as the B-spline
model, four basis functions of the RBF model were chosen to fit the target PDF curve.
The simulation result is shown in Figures 3 and 4. Figure 3 shows the fitting effect of the
B-spline basis function and RBF basis function on the curve, where the red real line is the
fitting curve of the B-spline model, the green real line is the fitting curve of the RBF model,
and the black dotted line is the target curve. Figure 4 demonstrates the fitting errors of
the two models, where the red line is the fitting error of the B-spline model and the green
solid line is the fitting error of the RBF model. From Figure 3, it can be seen that, for the
same number of basis functions, the B-spline model has a better fitting performance than
the RBF model. It can also be proven by Figure 4, which shows clearly that the B-spline
model has a much smaller fitting error than the RBF model. Therefore, the result proves
that the B-spline model is more suitable for PDF fitting when the number of basis functions
is low. As a state space model, the weight dynamic system from the approximation model
generally has a lower number of basis functions, which makes the B-spline model more
suitable in such cases.

Figure 3. B-spline and RBF basis function fitting curve.
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Figure 4. Error of fitting .

To verify the control effectiveness of the proposed control algorithm, the following
example, which uses the same four basis functions (26), is given as below. Due to the
existence of the constraint condition (2), only three corresponding weights will be required
out of four B-spline basis functions. The fourth weight is linearly related to the first three
weights so that the model order is reduced to three. The coefficient matrix of the system
model is

xk+1 = Gxk + Huk + DxkEk, (28)

with G =

 0.555 −0.098 −0.041
−0.1 −0.734 0.181
−0.292 0.02 0.291

, H =

0.275
0.302
0.302

, D =

 0.41 1.66 0.51
−0.11 0.215 0.16
0.31 0.02 −1.005

,

where G is the state weight matrix, H is the control matrix, D is the random weighting
matrix of the noise term, and Ek is the Gaussian noise. The target weight is given by Vg =[
0.4229 0.1217 0.1487

]T for the first 100 steps and Vg =
[
0.5908 0.1701 0.2077

]T for the

remaining steps. In addition, the system initial weight state is x0 =
[
0.2673 0.0969 0.1897

]T ;
the covariance of the noise is subjected to the distribution given by Ek v N(0, 0.004); the
ideal state covariance R was chosen as R = diag

[
0.4 0.004 10

]
.

In order to verify the tracking performance of the algorithm proposed in this paper,
the results were compared with the conventional LQR algorithm. The following simulation
results can be obtained following Algorithm 1. The state feedback gain matrix K =[
−0.2544 −2.2287 0.535

]
is calculated according to Equation (23). The state feedback

gain matrix KL =
[
0.2814 −0.9455 0.3609

]
is calculated according to LQR algorithm.

Figure 5 shows the four weights of the FPD algorithm and LQR algorithm and their target
reference curves, respectively. More specifically, in Figure 5, the red line is the weight-
tracking curve under the FPD algorithm, while the blue line represents the weight-tracking
curve under the LQR algorithm. Note that the weights V1, V2, and V3 are the controlled
states, while the weight V4 has a linear relationship with the other three weights, which
is not included as the controlled state due to the existence of the constraints. Therefore,
the weight V4 is represented by a dotted line. From Figure 5, it can be seen that, even with
the effect of the multiplicative noises, both the FPD algorithm and the LQR algorithm can
successfully track the given references and manage to keep tracking the new reference
values when the target changes at the 100th step. Compared with the LQR algorithm,
we can see that the FPD algorithm shows a better tracking effect and smaller tracking
error under the effect of multiplicative noise. Figure 6 indicates the system control inputs,
where the red line is the control input curve under the FPD algorithm and the blue line is
the control input curve under the LQR algorithm. The results of Figure 6 show that, due
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to the change in the shape of the target, the input of the control target will also change
synchronously. Compared with the LQR algorithm, the input of the FPD algorithm contains
less randomness under multiplicative noise. Figure 7 shows the iterative process of the
two algorithms controlling the output PDF curve. Compared with the results of the system
under the action of the two algorithms, the FPD algorithm has a smaller error and a
smoother tracking process from the initial curve to the target curve. When the target curve
changes, the system control output curve will still track the new target. Therefore, it can be
concluded that, compared with the LQR algorithm, the extended FPD algorithm can show
a better tracking effect in the dynamic random B-spline function-based weight dynamical
system with multiplicative noise and time-varying target.

Figure 5. Weight-tracking curve.

Figure 6. Control input curve.
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Figure 7. System output PDF of 3D drawings.

5. Conclusions

This paper investigated the output distribution shape-tracking problem for a class of
stochastic distribution systems under the B-spline model framework. The linear B-spline
model was implemented to fit the PDF curve and simplified the PDF shaping problem
to a dynamic weight-altering problem. At the same time, the randomness and the model
error of the dynamic weight system were characterised as state-dependent noises, which
more realistically simulate the actual complex system. In addition, the target distribution
shape of the system was changed from a fixed shape to a time-varying shape, which makes
the control goal more realistic and convenient to operate in the actual working process.
The extended FPD algorithm was then implemented to achieve the time-varying tracking
goal under the effect of the multiplicative noises. Moreover, the implementation procedure
was provided step by step. Finally, the simulation results were obtained following the
implementation procedure. Meanwhile, to make the experimental results more convincing,
the conventional LQR algorithm was also added for comparison. As a result, the simulation
showed that the proposed control framework can make the dynamic weights track their
time-varying targets under the effect of multiplicative noises. Compared with the LQR
algorithm, the proposed extended FPD algorithm has smaller tracking errors and stronger
robustness to the multiplicative noises in the model. In addition, in order to better illustrate
the suitability of the B-spline model selected in this paper, the RBF model was also added
for comparison. By analysing the simulation results, it was concluded that the B-spline
model has a smaller fitting error than the RBF model when the number of basis functions
is small.

Overall, the method proposed in this paper can effectively solve the time-varying
distribution shape-tracking problem for a class of stochastic systems. In practice, the
application of the B-spline framework can productively model the non-Gaussian PDF,
where most of the practical systems contain non-Gaussian variables. Moreover, using
stochastic distributions to characterise the dynamics of weights can fully represent the
stochastic properties. In addition, the proposed controller structure is simple and easy to
follow for practical application. Thus, the proposed control method can further promote
the application of PDF control. In future work, we will consider the application of the
proposed framework to real-world systems.
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