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Detection Based on Dynamic Key Points
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Abstract— In recent years, there has been growing interest in
developing oriented bounding box (OBB)-based deep learning
approaches to detect arbitrary-oriented ship targets in synthetic
aperture radar (SAR) images. However, most existing OBB-based
detection methods suffer from boundary discontinuity problems
for bounding box angle prediction and key point regression
challenges. In this article, we present a novel OBB-based
detection algorithm that utilizes ellipse encoding to effectively
exploit the geometric and scattering properties of ship targets.
Specifically, the ship contour is fit by an OBB inscribed ellipse
that is encoded as a set of distances between dynamic key
points on the bow and target center. By combining the bow
angle interval and the decoding process, the negative impact
of the boundary discontinuity problem is avoided. In addition,
we propose an elliptical Gaussian distribution heatmap and a
pooling strategy termed double-peak max-pooling (DPM) to deal
with the challenge of separating densely distributed ships in
inshore scenes. The former can enhance the heatmap’s ship-side
score gap between neighboring ship targets, while the latter can
solve the problem of target center responses being suppressed
after max-pooling. Simulation experiments conducted on the
benchmark Rotating SAR Ship Detection Dataset (RSSDD) and
Rotated Ship Detection Dataset in SAR Images (RSDD-SAR)
demonstrate the superior performance of our method for ship
target detection compared to several state-of-the-art OBB-based
algorithms. Ablation experiments show that elliptical Gaussian
distribution heatmap and DPM can further improve the inshore
detection performance.

Index Terms— Arbitrary-oriented, boundary discontinuity,
ellipse encoding, ship detection, synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is one of the most
effective space-based Earth observation means, which is
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widely used as an effective remote sensing data source for
ground and sea surface targets. It is ideally suited for a wide
range of applications on account of its all-day, all-weather
imaging, large observation area, high imaging resolution, and
other attractive characteristics. In terms of visual and statistical
properties, high-resolution SAR images are more robust than
natural optical images. Ship detection using SAR images is
one of the important research areas in SAR image interpre-
tation, which is widely employed in different fields, such as
marine target monitoring, maritime rescue, port security, and
monitoring [1], [2].

Traditional SAR ship target detection algorithms frequently
rely on established statistical models of sea clutters that are
constrained by threshold settings and human feature extraction,
resulting in poor portability [3], [4]. On the other hand,
these algorithms include complex stages, such as land–sea
segmentation, image preprocessing, and target prescreening
[5], making it challenging to match the detection accuracy
and speed requirements of practical applications.

In recent years, target detection algorithms based on the
deep convolutional neural network (DCNN) have achieved
considerable success due to the development of deep learning
theories and the improvement of processing capacity [6].
These algorithms are mainly based on the horizontal bounding
box (HBB). For oriented ship targets with a large aspect
ratio, which are varied in size and densely distributed in the
inshore scenes, HBBs may contain a lot of background clutter
and overlapping ships, making the subsequent interpretation
process difficult. To improve the detection performance of
direction-sensitive targets, such as ships, researchers have con-
centrated on more effective oriented bounding boxes (OBBs).
In the case of ship targets, the OBB can not only represents
the ship target’s position in the complicated background more
accurately but also collect its heading information. This makes
sense for more advanced tasks, such as track prediction and
situational estimation.

OBB-based detection algorithms have been thoroughly
investigated in recent years; they can be divided into two types:
anchor-based OBB detection algorithms and anchor-free OBB-
based algorithms. Anchor-based algorithms typically have
two stages. After first broadly dispersing the anchor boxes,
the detectors regress the offsets between the target box and
the anchor box parameters to provide region proposals. The
second stage is combining the region of interest (ROI) data in
order to enhance the box parameters and classify the different
item categories. For instance, Jiang et al. [7] and Xia et al. [8]
deliver ROI in the horizontal direction to predict the rotated
bounding box, Ma et al. [9] and R(3)Det [10] generate rotated
ROI (R-ROI) by presetting multiangle anchors, and Ding
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et al. [11] regress the horizontal ROI to the refined R-ROI.
However, the settings for the anchor box must be manually
specified for these algorithms, and they are challenging to
calibrate. In addition, an imbalanced distribution of positive
and negative samples might result in a long learning curve and
suboptimal performance. To address the drawbacks, anchor-
free OBB-based algorithms have been developed and can be
further divided into two types: angle prediction- and key
point regression-based approaches. State-of-the-art methods
based on angle prediction achieve target OBB positioning
by regressing the center point position, length, width, and
rotation angle [12]. The so-called key point regression-based
algorithms represent OBB as a set of key points [13], [14], [15]
and localize the target by regressing the key point position.

Although the shortcomings related to anchor boxes are
effectively solved, the above approaches frequently suffer
from the problem of boundary discontinuity [16], [17], [18],
[19], which primarily includes periodicity of angle (PoA)
and exchangeability of edges (EoE). The former is owing to
the bounded periodicity of the angle parameters, whereas the
latter is due to the way the bounding box is defined. The
primary cause is typically a high loss at the boundary when the
predicted value exceeds the defined range, influencing the con-
vergence consistency of the regression process. Researchers
have also extensively studied the boundary discontinuity prob-
lem [17], [20], [21], [22]. For example, the angle regression
problem has been transformed into an angle classification
challenge by Yang and Yan [17] and Yang et al. [20]. The
boundary discontinuity problem can be efficiently avoided by
combining the long-edge definition approach and the circular
smooth label (CSL). However, for angle classification, it is
challenging to strike a compromise between branch efficiency
and classification accuracy. He et al. [21] propose an OBB
detection approach based on polar coordinate vector group
encoding, while the key points’ selection does not effectively
combine the geometric and scattering characteristics of SAR
ship targets.

To address the boundary discontinuity problem in OBB
detection and the shortcomings of previous methods, in this
article, we propose an SAR ship detection approach based
on ellipse encoding, which utilizes the geometric features and
scattering characteristics of SAR ship targets. Specifically,
we initially employ a set of dynamic key points in the bow
region to estimate the bounding box. The selection of the
dynamic key points is based on the fact that ship targets in
SAR images comprise strong scattering points, which aids in
determining the ship’s direction and position. For this purpose,
we fit the ship contour with an OBB inscribed ellipse and
encode the ellipse as a series of ordered key point distances
from the center point. The location consistency of the key
points and the strong scattering points is ensured in this
manner. For the implementation of the decoding process,
we introduce CSL to classify the bow angle interval. The
position of the dynamic key points is determined by decoding
the set of the ordered key point distances and the angle interval
together, and then, the predicted ellipse and the target OBB
are derived. Through the encoding and decoding processes

of the OBB inscribed ellipse and the classification of bow
angle interval by CSL, the negative effects of PoA and
EoE on network convergence and detection performance can
be effectively prevented. In addition, for the challenge of
distinguishing densely distributed ships in the inshore scenes,
we further present a heatmap based on elliptical 2-D Gaussian
distributions and double-peak max-pooling (DPM) to predict
the target center. By lowering the confidence score of the
ship-side region in the heatmap, the former improves the
score gap between nearby ships, while the latter can greatly
enhance recall in the inshore scenes by selecting a score
threshold with nearly no increase in false alarms. We evaluate
the effectiveness of our dynamic key point-based detection
algorithm, including the proposed elliptical heatmap and DPM,
on the benchmark Rotating SAR Ship Detection Dataset
(RSSDD) [23] and Rotated Ship Detection Dataset in SAR
Images (RSDD-SAR) [24]. Comparative results of our method
against the other existing state-of-the-art OBB-based detection
methods reveal that our method outperforms the others in
terms of detection performance.

The main contributions of this article are summarized as
follows.

1) A novel detection approach is proposed for arbitrary-
oriented SAR ships based on ellipse encoding and
dynamic key points. The approach utilizes geometric
features and scattering points, and effectively prevents
the negative effects of PoA and EoE on network con-
vergence and detection performance.

2) An elliptical Gaussian distribution heatmap and a pool-
ing strategy termed DPM are designed to deal with the
challenge of separating densely distributed ships, which
can significantly improve the network responses to target
centers and the overall detection performance in the
inshore scenes.

3) Experiments are conducted on two benchmark RSSDD
and RSDD-SAR datasets. Comparative results with
state-of-the-art OBB-based detection methods show
that our proposed method outperforms state-of-the-art
OBB-based detection methods in terms of detection
performance.

The rest of this article is divided into four parts.
Section II details the detection method proposed in this article.
Section III describes comparative experiments carried out on
the RSSDD and RSDD-SAR datasets. Section IV analyses the
influence of the CSL window radius and the superiority of
sampling on the OBB inscribed ellipse. Finally, Section V
presents some concluding remarks.

II. RELATED WORK

Fig. 1 demonstrates a summary of the state-of-the-art detec-
tion algorithms based on HBB and OBB. We will go into more
detail about these methods in this section.

A. Algorithms Based on HBB

HBB has a clear geometric meaning and is simple to
describe parametrically, allowing accurate detection of targets
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Fig. 1. Summary of detection algorithms based on HBB and OBB.

in natural scenes that are more uniformly oriented and square-
like. Conventional DCNN-based horizontal detection methods
are generally separated into one- and two-stage detection algo-
rithms. They can automatically and efficiently extract layer-
level characteristics, filter candidate regions, and be trained in
an end-to-end manner. Typical two-stage algorithms adopt the
region proposal network (RPN) to extract candidate regions
[25], while one-stage algorithms discard the step of extracting
candidate regions and are more concise [26], [27]. Anchor-
free methods are the current research hotspot of one-stage
detection algorithms that rely on deep features retrieved by
the network to directly regress the target position, effectively
lowering the model complexity. You Only Look Once (YOLO)
version 1 is one of the first proposed anchor-free algorithms
[28] with a significant performance gap in detection accuracy
compared to anchor-based methods. More recently, a fully
convolutional one-stage (FCOS) object detection scheme has
been developed that introduces a multiscale matching strategy
and a center-ness branch to effectively improve the detection
accuracy [29]. Subsequent development of detection algo-
rithms based on key points’ detection, such as CenterNet and
CornerNet, has provided new ideas for research in this area
[30], [31]. HBB-based detection approaches have also been
widely used in the field of SAR ship detection. Wang et al.
[32] introduce focal loss to alleviate the category imbalance
problem, achieving excellent detection accuracy on multireso-
lution and complicated background datasets. To overcome the
problem of reduced detection performance caused by costly
computing, Zhao et al. [13] use a simplified YOLO version 2

(YOLOv2) network for the detection of SAR ship targets.
Chang et al. [33] design a high-resolution feature pyramid
to make full use of both high-level features and low-level
features, and then generate a high-resolution feature map that
successfully lowers the network’s false alarms in the inshore
scenes. Zhang et al. [34] use a lightweight feature extraction
network to improve YOLO version 3 (YOLOv3) for real-time
applications, such as ocean monitoring and ship rescue, sig-
nificantly increasing model identification speed with little loss
of detection accuracy. Gao et al. [35] present a densely con-
nected attention aggregation network that uses feature reuse to
enhance the network’s generalization performance, achieving
satisfactory SAR ship detection performance, whereas the ship
targets are frequently arranged randomly and packed closely
together. Consequently, adopting the HBB to detect would
cause the bounding boxes to be out of alignment with the
objects.

B. Anchor-Based Algorithms Based on OBB

Compared with HBB, OBB indicates the target’s position
with the smallest circumscribed rectangle, thereby reducing
redundant information in the detection box and improving the
signal-to-noise ratio (SNR). OBB-based detection algorithms
have been thoroughly investigated in recent years. There are
three types of anchor-based OBB detection algorithms. The
first paradigm delivers ROI in the horizontal direction. For
example, Jiang et al. [7] predict the minimum target rotated
bounding box by extracting multiscale pooling features of
the horizontal ROI. Xia et al. [8] achieve OBB-based target
detection by anticipating the error between the horizontal ROI
and the true bounding box vertices. The second paradigm of
algorithms generates R-ROI by presetting multiangle anchors;
for example, Ma et al. [9] propose rotated anchors comprising
six types of angles, three aspect ratios, and three scales.
R(3)Det proposed by Ma et al. [9] combines the advantages
of the high recall of horizontal anchors and the adaptability
of rotated anchors to dense scenes. R(3)Det introduces rotated
anchors to optimize the horizontal ROI, achieving superior
detection results on the benchmark DOTA [10] dataset across
numerous categories. The third paradigm of anchor-based
OBB algorithms generates R-ROI by horizontal anchors. For
example, Ding et al. [11] design the R-ROI learner, which
regresses the horizontal ROI to the refined R-ROI using ROI
pooling and ROI align. This is shown to deliver accurate
R-ROIs without increasing the number of anchors. In the case
of SAR ship detection, Wang et al. [36] introduce improved
SSD to simultaneously predict the position and ship angle.
An et al. [37] devise a multilayer anchor preconditioning
mechanism ideal for small target detection, as well as a
combination of hard negative mining (HNM) and focal loss
to address the problem of positive and negative sample imbal-
ance. Pan et al. [38] use a multilevel network to optimize the
localization of the bounding box and improve the detection
accuracy. The imbalance between positive and negative anchor
boxes is a problem for such anchor-based solutions. Slow
training and poor detection performance would result from
the problem.
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C. Anchor-Free Algorithms Based on OBB

Anchor-free OBB-based algorithms can be further divided
into two paradigms: angle prediction- and key point
regression-based approaches. State-of-the-art methods based
on angle prediction achieve target OBB positioning by regress-
ing the center point position, length, width, and rotation angle.
For example, R-CenterNet augments the anchor-free detection
network CenterNet with an angle branch to achieve OBB
detection. To address the angle periodicity problem, Zhu et al.
[12] propose encoding the OBB angle with a 2-D periodic vec-
tor. The period of the different dimensions of the vector differs
by π/2, and the angle prediction values at the boundary can be
distinguished by the coded difference of each dimension [12].
The so-called key point regression-based algorithms represent
OBB as a set of key points. For example, PolarDet regresses
the target center, center offset, angle between the four polar
diameters and the reference y-axis, smaller angle between the
width of the minimum bounding rectangle and its height, and
aspect ratio between the shorter sides and polar diameters to
generate the target OBB [13]. Xu et al. [14] select the four
vertices of the bounding box as the key points and localize
the target by regressing the distances of the four OBB vertices
from the corresponding HBB vertices. Yi et al. [15] use the
junction of the two perpendicular hull centerlines and the hull
as the key points. In the case of the Cartesian coordinate
system, the four key points fall in four different quadrants
of the Cartesian coordinates [15]. The OBB is divided into
two types: the HBB and the strict OBB, and their detec-
tion is performed by length–width regression and key point
regression, respectively. Conventional methods based on angle
prediction and key point regression have also been extensively
investigated for SAR ship detection. Chen et al. [39] propose a
multiscale adaptive recalibration network to detect multiscale
and oriented ships in complicated scenes. The sensitivity of
the network to the target angle is improved by recalibration
of the retrieved multiscale features with global information,
which increases the accuracy of localization. To efficiently
collect multiscale features, Sun et al. [40] offer a bidirectional
information interaction module. A random rotation stitching
data augmentation method is also being developed to address
the issue of imbalanced angular distribution in SAR datasets
[40]. However, the above approaches frequently suffer from
the problem of boundary discontinuity.

D. Problem of Boundary Discontinuity

PoA and EoE are the two main components of boundary
discontinuity and have received substantial research [16], [17],
[18], [19]. The angle regression problem has been transformed
into an angle classification challenge by Yang and Yan [17]
and Yang et al. [20]. They offer a CSL and a densely coded
label (DCL) to boost the error tolerance of neighboring angles.
The boundary discontinuity problem can be efficiently avoided
by combining the long-edge definition approach and CSL.
However, CSL directly uses angles as its classification labels,
and the number of labels is proportional to the angle range
and angle interval. Although a small angle interval helps
lower the inaccuracy between the angle prediction and the

TABLE I

DEFINITION OF THE MATHEMATICS SYMBOLS

ground truth, it also increases the thickness of the angle
classification layer and the network parameters. DCL uses gray
code to densely encode the angle values, yet the encoded labels
are uncorrelated to the angle distance, reinstating the PoA
problem. He et al. [21] propose an OBB detection approach
based on polar coordinate vector group encoding, which uses
unique encoding and decoding processes to avoid the harmful
impacts of PoA and EoE on network convergence. However,
the key points’ selection does not effectively combine the
geometric and scattering characteristics of SAR ship targets.
Yang et al. turn the OBB into a 2-D Gaussian distribution
and devise the Gaussian Wasserstein distance loss function,
which is rotational intersect over union (IOU) loss suited for
gradient backpropagation [22]. The periodicity of the Gaussian
distribution, on the other hand, avoids the border discontinuity
problem created by the OpenCV representation and the long-
edge representation. However, the 2-D Gaussian distribution
of the square-like target is a Gaussian normal distribution
with a covariance of zero. The loss generated by the Gaussian
Wasserstein distance loss function is always zero; hence, the
network regression cannot be properly guided.

III. METHODOLOGY

A summary of the definition of the mathematics symbols in
this article is given here in Table I.

Fig. 2 illustrates the overall architecture of the proposed
method in this article, which can be divided into three parts:
the feature extractor, the feature refinement network, and the
center-point-based OBB detector. The feature extractor uses
the SAR ship image as input to extract multilevel features,
which are subsequently fused in the feature refinement net-
work via long skip connections (LSCs) [41]. An attention
module is embedded into the process of upsampling shallow
features to generate the final high-resolution feature map with
strong semantic information. Next, the high-resolution feature
map is processed by four branches in the OBB detectors, from
which we can obtain the center heatmap P, the offset map O,
the distance map D, and the angle map A. In the training
stage, the losses are calculated according to multibranch
outputs and the ground truth to jointly guide the network
regression. In the inference stage, we generate the fit ellipse
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Fig. 2. Overall architecture of our method. The network structure can be divided into three parts: the feature extractor, the feature refinement network, and
the OBB detector. The four branches of the OBB detector output the center heatmap P, the offset map O, the distance map D, and the angle map A.

and circumscribed bounding box through the dynamic key
point positions, which are calculated by the combination of the
multibranch predictions. Finally, the target detection OBBs are
obtained using confidence thresholding. In the ellipse encoding
process, we divide M copies uniformly in the range of [0, π)
to obtain M angle intervals and M sampling angles. The CSL
then smooths the bow angle interval α to form the ground truth
in the bow angle interval prediction, and the sampling interval
[α − θ, α + θ) is obtained. Next, for the OBB inscribed
ellipse, the key points are sequentially sampled at N sampled
angles in the interval [α − θ, α + θ). The distances of the
N key points from the center point are used as the distance
encoding values. Due to the central symmetry of the ellipse,
these N key points can roughly fit the shape of the entire
ellipse. In the ellipse decoding process, the compensated center
points are first obtained from the center heatmap and the offset
map. Following this, the predictions of key point distance and
bow angle interval are retrieved based on the location of center
points in the distance and angle maps. The predicted ellipse is,
finally, restored in two steps: 1) sorting the key points using
the bow angle interval and finding the entire 2N boundary
point sets and 2) using a direct least-squares fitting approach
to obtain the fit ellipse of the point sets. The circumscribed
bounding box of the ellipse is the predicted ship OBB.

Next, we present the network structure and loss function in
further depth.

A. Network Structure and Loss Function

The overall network structure of our method can be divided
into three parts: the feature extractor, the feature refinement
network, and the OBB detector. The detailed structure of each
part is described in the following.

1) Feature Extractor: The network depth is crucial to the
model performance. To effectively extract the multiscale
features of ship targets in SAR images from shallow to
deep, we adopt ResNet-101 [42] as the feature extraction
backbone. ResNet-101 superimposes identity mapping
on the shallow network. In this way, without introducing
additional parameters and computational complexity,

it can effectively avoid model performance degradation
when the network depth increases. The extractor is
composed of multiple convolution stages. With the stage
going deeper, the contained semantic information is
gradually enhanced, and the receptive field increases.
For input SAR image I ∈ R

H×W×3, the extractor
generates multiscale features {F1, F2, F3, F4}.

2) Feature Refinement Network: Deep features with low
resolution typically have strong semantic information,
which helps with target classification but limits detec-
tion. By contrast, shallow features in high resolution
contain more low-level features, which damages the
representation ability of target recognition. To generate
high-resolution feature maps with strong semantic infor-
mation, we introduce LSC to fuse multilevel features
in the feature refinement network. Specifically, we first
upsample the features in lower resolution and perform a
3 × 3 convolution, after which the high-resolution fea-
tures are channelwise concatenated. In the upsampling
process of LSC, the squeeze-and-excitation (SE) atten-
tion module is adopted to further strengthen the saliency
feature representation ability. Then, a 1 × 1 convolution
is employed to reduce the output channel dimension
and generate the output features. The high-resolution
fused feature size finally output by the feature refinement
network is one-fourth of the input image.

3) OBB Detector and Loss Function: The OBB detector
is composed of four branches: the center prediction
branch, the center offset regression branch, the key
point distance regression branch, and the bow angle
prediction branch. The center prediction and the center
offset regression branches both consist of a 3 × 3 con-
volution concatenated with a 1 × 1 convolution, which
separately outputs the center heatmap P ∈ R

H̃×W̃×1 and
the offset map O ∈ R

H̃×W̃×2. The key point distance
regression and the bow angle prediction branches both
contain two cascaded 3 × 3 convolutions and output
the distance map D ∈ R

H̃×W̃×N and the angle map
A ∈ R

H̃×W̃×M , respectively, where N represents the
key points’ number and M denotes the number of angle
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Fig. 3. Typical gray-scale value distribution map of the SAR image.

intervals. For the center prediction branch, we adopt
focal loss for supervised training; the losses of the other
three branches are calculated by smooth L1 loss. These
four parts of losses are combined to form the overall
loss function and guide the network regression. The four
output prediction maps can be used to achieve the final
detection results by an ellipse decoding method, which
will be introduced in detail in the following.

B. Ellipse Encoding

1) Geometric Features and Scattering Characteristics of
SAR Ship Targets: Different types of ships exhibit distinct
geometric features and physical traits in SAR images due to
regularities in their hull size and structure, superstructure, and
functional equipment distribution. The followings are some
examples of typical ship geometrical features.

1) Contour: It is the basis for extracting azimuth, dimen-
sions, and other geometric features. The ship’s contour
can be approximately fit by an ellipse.

2) Azimuth: The angle between the direction of the lon-
gitudinal axis of the ship and the reference coordinate
system.

3) Aspect Ratio: Ratio of hull length to width.
4) Area: Number of target pixels in the detection area.
The area and aspect ratio are the characteristics that are

easiest to understand and compute for SAR ship targets. They
are also the characteristics that are most frequently employed.
Anchor-based algorithms typically necessitate predetermining
the size and aspect ratio of the anchors based on these
two geometric features. This leads to issues such as difficult
parameter tuning, difficult detection of targets with large-scale
variations, high computational consumption associated with
anchor, and poor generalization ability. The ship azimuth is
one of the important characteristics to describe the target
attitude. The estimation process has many similarities with size
estimation, and there is a correlation between the estimation
accuracy of both. For ship targets with a large aspect ratio, the
OBB IOU is sensitive to angle variation. Directly regressing
the angles produces angular periodicity problems in either the
180◦ or 90◦ representation.

Scattering characteristics are an important physical char-
acteristic of ship targets in SAR images. Fig. 3 shows a
3-D visualization of the ship’s target gray-scale values in an
SAR image. From Fig. 3, we can see the different scattering

intensities of each part of the ship and the location distribution
of the strong scattering points. It illustrates that, compared with
the weak scattering region, the strong scattering points usually
have higher gray-scale values.

The scattering intensity in each component of the ship,
the distribution of the strong scattering centers, and the low
scattering area all reflect the ship’s structural characteristics
to a considerable extent. For example, structures such as ship
decks, which are nearly flat, are usually low-scattering areas.
Structures such as the bow that contain right-angle reflective
surfaces often contain strong scattering points, which appear
in SAR images as a sequence of brilliant spots or bright
lines of a specific shape, forming a unique “trailing cross.”
These strong scattering points facilitate the determination of
the ship’s target position and directional angle. Most existing
OBB-based algorithms, on the other hand, directly regress the
OBB length and width, or key locations on the OBB, without
accounting for the position of the strong scattering points.
At the same time, the key points’ selection did not take use
of the SAR ship targets’ scattering characteristics.

To overcome these issues, the OBB detection network
is designed by combining ship geometric features, such as
ship contour, azimuth, and aspect ratio, and the scattering
characteristics of the ship. First, we determine the position and
orientation of the ship targets by sampling dynamic key point
groups in the bow region based on the scattering characteristics
of this region, which usually contains strong scattering points
in SAR images. Second, to ensure the consistency between the
strong scattering points and the key point positions, as well
as the realizability of the OBB generation based on the key
points’ information, we use an ellipse to fit the hull contour
of the ship and encode the ellipse as a set of distances from
the dynamic key points’ group to the ship center.

The specific design of our method in this article is described
in the following.

2) Sampling Interval and Sampling Step: To ensure the
coverage effectiveness of the dynamic key points on the bow
area and the fitting accuracy of the OBB inscribed ellipse,
we set the sampling step and sampling interval in terms of
the ship azimuth and aspect ratio range. The visualization
of sampling intervals under different azimuths is shown in
Fig. 4. α represents the ship azimuth in the range of [0, π),
which is the included angle between the long side of OBB and
the X-axis of the reference coordinate system. The sampling
interval is defined as the 2θ angle interval centered on the
ship azimuth. When sampling in [0, π), we need to divide the
sampling interval according to the ship azimuth. In particular,
when the ship azimuth α ∈ [θ − 2θ /N, π − θ), continuous
sampling interval can be obtained in [α − θ, α + θ), as shown
in Fig. 4(a), where N denotes the number of the key points.
In the other cases, the sampling boundary exceeds the range
of [0, π); the sampling interval will be divided into two parts,
at the bow and stern, respectively. As shown in Fig. 4(b),
when α ∈ [0, θ − 2θ /N), the lower bound of the sampling
interval is less than zero, and discontinuous sampling interval
can be expressed as [0, α + θ)

⋃ [α − θ + π, π). Simi-
larly, when the upper bound of the sampling interval equals
to or exceeds π , the sampling interval will be divided as
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Fig. 4. Sampling interval under different azimuths. (a) Continuous sampling interval. (b) Discontinuous sampling interval. (c) Discontinuous sampling interval.

[0, α + θ − π)
⋃ [α − θ, π). The number of key points

is an important hyperparameter in the sampling process and
is determined by the sampling interval and sampling step
simultaneously. We set these parameters based on the aspect
ratio information of the ship targets given in [23] and [24].
The aspect ratio distribution of ship targets in SAR images of
the RSSDD and RSDD-SAR datasets is shown in Fig. 5.

To guarantee that the sampling interval effectively covers
strong scattering points and the validity of ellipse encoding,
the ship azimuth α is taken as the central axis for sampling
in the range of π/6, that is, θ = π/6. Furthermore, at least
one key point should be located in the spire area to ensure the
realizability of ellipse fitting through the key points’ position
in the decoding process.

As shown in Fig. 6, in this article, the bow spire area is
defined as the area surrounded by the connection between the
OBB center point and the vertex of the short side. This area
contains strong scattering points with rich feature information.
Through the distance between the center point and the key
points in this area, the long-axis information of the inscribed
ellipse can be efficiently described. When N key points are
sampled in the range of 2θ , the sampling step is 2θ/N . Given
the OBB with height h and width w, (1) should be satisfied
to ensure at least one key point falls in the bow spire area

arctan(w/h) = 1

2
· 2θ

N
= θ

N
. (1)

For the ship OBBs with the largest aspect ratio in the SAR
datasets with w/h = 10, the number of sampling points
should meet N ≥ 6. That is, when the sampling step equals
2θ/N = π/18, at least one key point can be sampled precisely
in the spire area, ensuring the consistency of the positions
of key points and strong scattering points. Thus, we set the
number of the dynamic key points N = 6 to encode the
inscribed ellipse of OBB for the model’s effectiveness and
efficiency.

3) Ellipse Encoding Process: To overcome the boundary
discontinuity problem and effectively exploit the geometric
and scattering characteristics of ship targets, we suggest fitting
the ship contour through an OBB inscribed ellipse. This ellipse
is encoded as a distance set of the ordered dynamic key points,

Fig. 5. Distribution of aspect ratio of ship targets in SAR images. (a) RSSDD.
(b) RSDD-SAR.

which are located on the bow. Fig. 7 shows the process of
encoding OBB inscribed ellipse in the case of continuous
sampling interval, as shown in Fig. 4(a), when the number of
sampling points N = 6 and the sampling step β = 2θ/N =
π/18. The specific process can be described as follows.
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Fig. 6. Sampling interval setting principle.

First, the long and short axis length Ea and Eb of the OBB
inscribed ellipse can be calculated by (2) and (3), respectively,
where h and w denote the height and width of the target OBB

Ea = max(h, w)/2 (2)

Eb = min(h, w)/2. (3)

Second, in the VOC annotation method, the ship target
OBB is represented as the vertex position P0 = {pi |pi =
(xi , yi), i = 1, 2, 3, 4}, and the position of the target center
can be calculated by c = (xc, yc) = ∑4

i=1 pi/4. Then, in the
range of [0, π), the angle set to be sampled � = {k · β|k =
0, 1, . . . , π · N/2θ} and the sequence of actual sampling angle
� = {�i |α − θ ≤ �i < α + θ} can be obtained based on
the sampling step and interval. For every sampling angle in
sequence �, a key point is sampled from the OBB inscribed
ellipse. The points’ set containing N dynamic key points can
be expressed as P = {E1, E2, . . . , EN }. For every key point Ei

in P , the distance di from the center point to Ei can be
calculated by

di =
√

(Ea · Eb)
2

(Ea · sin(�i − α))2 + (Eb · cos(�i − α))2

i ∈ {1, 2, . . . , N} (4)

where α denotes the ship azimuth same as above. The obtained
distance set is served as the ground truth of the distance regres-
sion branch. Because of the central symmetry of the ellipse,
the distance set D = {d1, d2, . . . , dN } can actually represent
2N key points P = {E1, E2, . . . , EN } ∪ {E1′, E2′ , . . . , EN ′ }.
Therefore, the key points can validly cover the bow and stern
parts, so as to completely represent the shape of the ellipse,
realizing the effective encoding of the OBB inscribed ellipse.

4) Continuity in the Boundary Cases: The process of
ellipse encoding is equivalent to sampling from a periodic
function with period π in the interval [0, π). The discontinuity
issue in the key point regression algorithms can be avoided
by this periodicity. An analysis of the specific ideas that
the ellipse encoding uses to solve the boundary discontinuity
problem is given in the following.

The analysis of boundary continuity of ellipse encoding is
illustrated in Fig. 8. The green ellipse denotes the inscribed
ellipse of ground-truth OBB with the azimuth of zero. The
ordered sequence of dynamic key points obtained by sampling

in the range of [0, π) is Pgt = {E1, E2, . . . , E6}, and Dgt =
{d1, d2, . . . , d6} is the corresponding ground truth in the dis-
tance branch. The yellow points’ set Pc = {E1c, E2c, . . . , E6c}
shows the predicted key points’ position on the basis of the
predicted value of the distance branch and the predicted bow
angle interval. The yellow ellipse represents the predicted
ellipse fit by Pc with the azimuth of π − δθ ≈ π ; in the
boundary case, the prediction angle occurs a sudden change
and generates distance errors �Di = {di −dic|i = 1, 2, . . . , N}
between the predicted key points and the ground truth.
As shown in Fig. 8, the distance losses of {E1, E2, E3, E5, E6}
maintain fine continuity. For the key point E4, due to the
symmetry of the inscribed ellipse, the distance between E4 and
the center point is equivalent to the distance between E′′

4 and
the center point. It can be seen that the distance between them
also remains continuous. Therefore, in the boundary case when
the ship azimuth changes from 0 to π , no sharp increase rises
in the losses of the distance branch. On the whole, our method
effectively avoids the aforementioned boundary discontinuity
problems in key point regression detection methods.

The process of predicting the position of key points needs to
combine the distance from the key point to the center point and
the angle interval of the bow. Nowadays, the angle prediction
methods based on regression encounter PoA to a certain
extent. One of the main reasons is that the ideal prediction
result exceeds the definition range, resulting in a large loss
function value. In order to solve the boundary problem in
angle prediction, some researchers treat the angle regression
task as a classification problem, avoiding the occurrence of the
predicted value beyond the defined range through limited clas-
sification results. Nevertheless, these methods bring obvious
shortcomings. On the one hand, converting the angle regres-
sion into a classification task is a process from continuous to
discrete, leading to an accuracy reduction in the conversion
process. For example, in the case of 1◦, it is impossible to
predict the result in the step of 0.5, and there will be a large
loss for ship targets IOU with a large aspect ratio. On the other
hand, these methods are incapable of measuring the angular
distance between the prediction and the ground-truth label.

In our methods, the ship angle prediction is transformed
into the classification of the angle interval where the bow is
located. When the sampling step is β, [0, π) is divided into
π/β angle intervals. Once the angle interval of the bow is
confirmed, the sampling interval and the actual sampling angle
sequence can be obtained sequentially. The classification of M
categories for the angle interval of the bow can markedly avoid
the accuracy reduction caused by the direct classification of the
ship angle. In the meanwhile, we adopt CSL to measure the
angular distance between the prediction and the ground-truth
label in the classification process in order to estimate the angle
label distance, and we address the PoA issue by including
periodicity.

When the ship azimuth is in the range of [0, N/2θ),
the azimuth label corresponding to the bow is zero. Fig. 9
illustrates the loss results of the angle branch when one-hot
label and CSL are adopted, respectively. For the one-hot label,
the angle prediction task is regarded as a classification task,
including M = π/β categories. At this time, the cross-entropy
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Fig. 7. OBB inscribed ellipse encoding process.

Fig. 8. Continuity in the boundary cases of ellipse encoding.

loss is used to calculate the loss between the prediction and
ground truth. As shown in Fig. 9, when the bow angle interval
is predicted to be one and two, respectively, the loss calculated
by the cross-entropy loss function is approximately equal.
In this case, it is impossible to estimate the angle label distance
and effectively guide the regression of the angle prediction
branch. Therefore, we introduce CSL to assist in judging the
angle distance without introducing the problem of PoA. First,
we use a Gaussian window function to smooth the one-hot
label of the azimuth. The specific calculation process can be
described as follows:

di = {min(|i − LA|, M−1−|i −LA|)|i ∈ {1, 2, . . . , M}}
Lsmooth =

{
e

−
(

di√
2·σ

)2

|i ∈ {1, 2, . . . , M}
}

(5)

where LA is the azimuth label, di indicates the distance
between the i th position and LA in one-hot label, σ denotes the
Gaussian window radius, and Lsmooth represents the smoothed
label. For different prediction values, the loss calculated by
smooth L1 loss raises with the increase of angle label distance
and remains continuous at the boundary. CSL can effectively
judge the label distance and significantly improve the network
performance in predicting the angle interval of the bow.

C. Ellipse Decoding

The overall diagram of the ellipse decoding process is
shown in Fig. 10. The decoding process extracts the infor-
mation from each branch of the OBB detector and combines
them to obtain the final OBB detection results. Specifically,
K target center points’ set C = {(x j, y j )| j = 1, 2, . . . , K }
with the highest confidence are first extracted from the center
heatmap P ∈ R

H̃×W̃×1, where K denotes the preset maximum
number of targets in a single image. For each center point in
C , its position is compensated by the predicted downsampling
quantization errors (�xi ,�yi), which can be obtained from
the corresponding location of the offset map O ∈ R

H̃×W̃×2.
The refined center points’ set can be represented as Co =
{(x j + �xi , y j + �yi)| j = 1, 2, . . . , K }. Similarly, for each
refined center point in Co, the values of N channels cor-
responding to the position of center points in the distance
regression map D ∈ R

H̃×W̃×N are extracted as the key point
distance prediction vector Dc = {d1c, d2c, . . . , dNc}. At the
same time, the values of M channels in the angle map
A ∈ R

H̃×W̃×M are obtained as the angle prediction denoted
as Ac = {a1c, a2c, . . . , aMc}.

Then, the maximum value among the M channels in Ac

is selected, and its subscript i indicates that the ship bow is
in the i th angle interval, that is, α ∈ [(i − 1)β, iβ). Then,
the sampling angle sequence �c = {θ1, θ2, . . . , θN } corre-
sponding to N key points is obtained. The calculation process
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Fig. 9. Angle branch losses of the one-hot label and CSL.

Fig. 10. Angle branch losses of the one-hot label and CSL.

can be expressed as

�c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
i − N

2

)
β,

(
i − N

2
+ 1

)
β, (i − 1)β, iβ,

(i + 1)β,

(
i − N

2
+ 1

)
β

}
, i ∈

[
N

2
, M − N

2

]
{(

i − N

2

)
β,

(
i − N

2
+ 1

)
β, (i − 1)β,

iβ, (i + 1)β, 0

}
, i = M − N

2
+ 1{(

i − N

2

)
β,

(
i − N

2
+ 1

)
β, (i − 1)β, iβ, 0, β

}
i = M − 1{(

M − N

2
+ 1

)
β, (M − i − 1)β, (i − 1)β,

iβ, (i + 1)β,

(
i − N

2
+ 1

)
β

}
, i = 0{

(M − i − 1)β, 0, (i − 1)β, iβ,

(i + 1)β,

(
i − N

2
+ 1

)
β

}
, i = N

2
− 1.

(6)

Next, the key points’ set S of the OBB can be
restored through the combination of distance set Dc =
{d1c, d2c, . . . , dNc} and the corresponding angle sequence

�c = {θ1, θ2, . . . , θN }. The process can be expressed as
follows:
S = {(dic · cos θi , dic · sin θi), i = 1, 2, . . . , N}

∪ {(dic · cos(θi + π), dic · sin(θi + π)), i = 1, 2, . . . , N}.
(7)

The next step is to fit the points’ set S to the ellipse
by direct least-squares fitting. An ellipse can be denoted as
x2 + Axy + B y2+Cx + Dy + E = 0. According to the general
formula of the ellipse equation and the principle of direct
least-squares fitting, the determination process of parameters
{A, B, C, D, E} is equivalent to find the minimum value of
objective function F(A, B, C, D, E) under the points’ set S,
where F can be calculated by

F(A, B, C, D, E)

=
2N∑
i=1

(
xi

2 + Axi yi + B yi
2 + Cxi + Dyi + E

)2
. (8)

For each parameter in {A, B, C, D, E}, the value can be
derived by making the partial derivative of F(A, B, C, D, E)
to this parameter equal to zero. After the ellipse equation is
determined, (9) is used to obtained the ellipse center point
(x0, y0), the length of the major axis a, the length of the minor
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Fig. 11. Calculation of the radius of elliptical 2-D Gaussian distribution.

axis b, and the ellipse direction angle θ

x0 = 2BC − AD

A2 − 4B

y0 = 2D − AD

A2 − 4B

a =
√

2(AC D − BC2 − D2 + 4B E − A2 E)

(A2 − 4B)(B −
√

A2 + (1 − B)2 + 1)

b =
√

2(AC D − BC2 − D2 + 4B E − A2 E)

(A2 − 4B)(B +
√

A2 + (1 − B)2 + 1)

θ = arctan

(
sqrt

(
a2 − b2 B

a2 B − b2

))
. (9)

For each generated ellipse, its circumscribed rectangle is
taken as the predicted OBB of the ship target. The length
and width of OBB are twice the major and minor axes
of the ellipse, and the direction angle is the same as that
of the ellipse. Through the above ellipse decoding process,
we compute circumscribed rectangles of all generated ellipses
as the final detection results.

D. Elliptical Heatmap and DPM

Ships are more dispersed and challenging to detect in com-
plex inshore senses compared to ship targets in the offshore
senses. Anchor-free approaches offered by CenterNet require
anticipating the position of the desired center point, in contrast
to anchor-based algorithms. Specifically, for each ship center
in the SAR image, a 2-D Gaussian distribution is generated at
the corresponding position of the target center point to gener-
ate the ground truth. The closer to the target point, the greater
the activation value is. The center point branch calculates
the loss through the prediction and ground truth to guide the
network training. Instead of directly regressing the key point
coordinates, heatmap regression can include the relationship of
the target’s parts in the heatmap to explicitly suppress nonkey
points and provide directional advice for network training.
For targets with relatively small aspect ratio in the natural
scenes, the standard 2-D Gaussian distribution is currently
commonly utilized to generate ground truth for the center
points, whereas the standard 2-D Gaussian distribution cannot
successfully incorporate the ship OBB shape information for
targets with large aspect ratios, such as ships. For instance,
while dealing with the densely distributed ships in the inshore
scenes, since the ship-side prediction score is not sufficiently
differentiated compared to the center points, the center point
positions may not be accurately obtained during the screening
process by max-pooling.

To combine the ship OBB aspect ratio information with the
ground truth, we, therefore, use an elliptical 2-D Gaussian dis-
tribution. The score divergence between the ship-side regional
predictions and the center point predictions is expanded
by raising the gradient of the ship-side activation values.
Yang et al. [10] and Ding et al. [11] calculate the Gaussian
radius of a standard 2-D Gaussian distribution by setting a
specific IOU threshold for the prediction box and the ground-
truth box. In this article, we use their IOU threshold setting
to calculate the long and short axes ra and rb in the elliptical
2-D Gaussian distribution, which satisfies rb/ra = h/w . The
relationships between the three positions of the prediction box
and the ground-truth box for a particular IOU threshold are
shown in Fig. 11. The prediction box is represented by the
green box, the ground-truth box by the gray box, and the vertex
positions of the prediction box are shown by the orange dots.
The distance between the vertices of the prediction box and
the ground truth for each of these three positional relationships
satisfies the following relationships:
√

w2 + h2 − 2r1√
w2 + h2

= √
IOU ⇒ r1 =

√
w2 + h2(1 − √

IOU)

2√
w2 + h2 − r2√

w2 + h2
=
√

2IOU

1 + IOU
⇒ r2 =

(
1 −

√
2IOU

1 + IOU

)

×
√

w2 + h2√
w2 + h2

√
w2 + h2 + 2r3

= √
IOU ⇒ r3 =

√
w2 + h2(1 − √

IOU)

2
√

IOU
.

(10)

We choose the smaller value in {r1, r2, r3} as the distance
between the two box vertices for the specific IOU threshold,
that is, r = min{r1, r2, r3}. The elliptical 2-D Gaussian distri-
bution satisfies the relationship as in (11), from which we can
calculate the long axis ra = √

2 · r(w/(w2 + h2)1/2) and the
short axis rb = √

2 · r(h/(w2 + h2)1/2)

(r · cosθ)2

r2
a

+ (r · sin θ)2

r2
b

= 1

cos θ = w√
w2 + h2

, sin θ = h√
w2 + h2

. (11)

After calculating the ellipse long and short axes, we generate
the elliptical 2-D Gaussian heatmap, as shown in Fig. 12. The
normal variance of the standard Gaussian distribution is set as
σ = r/3 in [11]. The generated standard Gaussian heatmap is
shown in Fig. 12(a), where the red box is the ship target OBB
and the yellow bounding box denotes the Gaussian heatmap
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Fig. 12. Elliptical 2-D Gaussian heatmap generation process. (a) Circular 2-D Gaussian heatmap. (b) Ellipse 2-D Gaussian heatmap. (c) Ellipse 2-D Gaussian
heatmap with boundary restrictions.

area generated for this target. In this article, we set σa = ra/3
and σb = rb/3 in the elliptical Gaussian distribution. In this
case, the 2-D Gaussian distribution without the OBB angle
information can be expressed as (12), where m is the value of
the horizontal and vertical coordinates of the Gaussian map
(x, y) position, μ is the OBB center point coordinates, and S
is the variance matrix. The heatmap is shown in Fig. 12(b)

N(m|μ, S) = exp

(
−1

2
(m − μ)T S−1(m − μ)

)
m = (x, y), μ = (xc, yc)

S
1
2 =

(
σa 0
0 σb

)
. (12)

In our method, the Gaussian distribution is rotated using (13)
to make sure that it is consistent with the OBB direction, where
θ is the OBB orientation angle in the range of [−90◦, 90◦),
R is the rotation matrix, and the elliptical 2-D Gaussian
distribution after rotation can be expressed as N(m|μ,
). The
box surrounded by yellow dashed lines in Fig. 12(c) shows the
rotated Gaussian region distribution

N(m|μ,
) = exp

(
−1

2
(m − μ)T 
−1(m − μ)

)


 = RS
1
2 RT

=
(

cos θ − sin θ
sin θ cos θ

)(
σa 0
0 σb

)(
cos θ sin θ

− sin θ cos θ

)

=
(

σacos2θ + σbsin2θ (σa − σb) sin θ cos θ
(σa − σb) sin θ cos θ σasin2θ + σbcos2θ

)
.

(13)

In the rotation process, the Gaussian distributions at the
center points of the densely distributed ships may cover each
other, so we design a scheme illustrated in (14) to constrain the
rotation area. We first calculate the circumscribed rectangular
of the rotated Gaussian heatmap region and use half of the
outer rectangular length and width as the border value of the
final Gaussian heatmap region

Bleft

= abs

⌊
1

2
Min(−σa cos θ + σb sin θ,−σa cos θ − σb sin θ)

⌋

Bright

= abs

⌊
1

2
Max(σa cos θ + σb sin θ, σa cos θ − σb sin θ)

⌋
Btop

= abs

⌊
1

2
Min(−σa sin θ − σb cos θ, σa sin θ − σb cos θ)

⌋
Bbottom

= abs

⌊
1

2
Max(σa sin θ + σb cos θ,−σa sin θ + σb cos θ)

⌋
.

(14)

In the process of predicting the center points, Ding et al.
[11] first apply a max-pooling operation to the center point
prediction map. Then, a set of predictions for the ship centers
is obtained by finding the points whose positions in the pooled
map are equal to those in the original prediction map. Standard
max-pooling can give an effective estimate of the ship centers
for targets in the natural scenes, effectively replacing the
nonmaximum suppression (NMS) postprocessing procedure.
However, for densely distributed ship targets, because the
proximity of the target centers in the prediction map is not
a standard 2-D Gaussian distribution, strong response points
between adjacent target centers may occur. This causes the true
center point responses to be suppressed in the max-pooling
procedure, resulting in the missed detection of the correspond-
ing targets. For this reason, we recommend that (15) van be
used to perform two rounds of maximal screening to reduce
missed detections, and this method is called DPM

Peak1 = (Maxpool2d(Fp) == Fp)

F ′
p = Fp − Fp · Peak1

Peak2 = (
Maxpool2d

(
F ′

p

) == F ′
p

)
Peak = Peak1 + Peak2. (15)

In (15), Fp is the center point prediction map, Maxpool2d
represents the 3 × 3 max-pooling, Peak1 represents the peak
values obtained from the first pooling, F ′

p denotes the pre-
diction map after removing the current cluster of peak points,
and Peak2 represents the peak values obtained from the second
pooling process. The concatenation of Peak1 and Peak2 serves
as the final set of predicted center points. The visualization
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TABLE II

DETAILED INFORMATION OF THE RSSDD AND RSDD-SAR

Fig. 13. Visualization process of DPM.

process of DPM is shown in Fig. 13, where the red points
represent Peak1 and the green points denote Peak2. By setting
the score threshold, DPM can significantly improve the recall
metrics in the inshore scenes with little increase in false
alarms, and a detailed comparison of the effectiveness of
standard max-pooling and DPM for key points’ detection will
be presented in the subsequent ablation experiments.

IV. EXPERIMENTS

This section presents in-depth results from experiments
performed on the RSSDD and RSDD-SAR datasets. First,
the RSSDD and RSDD-SAR datasets are introduced. Next,
experimental visualization results to compare our method and
other OBB-based detection methods are presented to verify
the effectiveness of our method. Next, we carried out ablation
experiments on the RSSDD for the elliptical 2-D Gaussian
distribution heatmap and DPM, respectively. In the discussion
section, comparative experimental results of Gaussian window
radius for the CSL, and the OBB and OBB inscribed ellipse
sampling continuity analysis are given.

A. Dataset Description and Experimental Setup

We conduct experiments on the benchmark RSSDD and
RSDD-SAR datasets to verify the effectiveness of our pro-
posed method compared to state-of-the-art approaches. Details
of the two benchmark datasets are shown in Table II.

The dataset RSSDD includes 1160 SAR images with mul-
tiple resolutions, multiple polarization modes, and multiple
sea surface conditions. There are 2540 SAR ship targets in

this dataset, with each SAR image containing an average
of 2.12 ship targets. The multiresolution coverage ensures
adequate detection performance of the training model for
multiscale targets. In the experiments conducted in this study,
the training set and the test set are divided according to an
8:2 ratio. The RSSDD contains a variety of scenes, including
the inshore scenes with more land clutter than the offshore
scenes, making it more difficult to detect the ship targets, with
the number of images also being smaller. In order to better
distinguish the detection performance of our model in different
scenes, the test set is divided into two parts: inshore and
offshore, comprising 39 and 193 SAR images, respectively.

The dataset RSDD-SAR contains 127 scenes of data, includ-
ing 84 scenes of HSPA-3 data, 41 scenes of TerraSAR-X data
slices, two scenes of uncropped big images, and 7000 slices
representing various imaging modes, polarization techniques,
and resolutions, along with 10 263 ship targets. Rich scenes,
including typical scenes, such as harbor, waterway, offshore
low resolution, and offshore high resolution, can be found
in the RSDD-SAR dataset. Several slices of rich scenes in
the RSDD-SAR dataset are shown in Fig. 14. In summary,
the dataset features arbitrary rotation direction, a large aspect
ratio, a high percentage of small targets, and rich scenes. In the
experiments reported in this article, the training set and the test
set are divided according to a 5:2 ratio. A total of 159 inshore
scene slices and 1841 offshore scene slices make up the test
dataset, which is used to assess how well each model performs
in various scenes.

The details of our experimental setup remain the same for
both datasets. During the training process, the parameters
of the feature extractor ResNet-101 are initialized through
a pretrained model. We adopt an adaptive moment estima-
tion (Adam) method [43] to optimize the training process
with the weight decay set to 0.0005. We set the initial
learning rate as 1.25 × 10−4. The learning rate is reduced
by a factor of 10 at the 100th epoch. We set the number of
small batch samples for random gradient descent to 6, for a
total of 120 training epochs. Our code for the experiments
is implemented using the Pytorch framework [44], and the
comparison methods are implemented using OBB detection
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Fig. 14. Rich scenes in the RSDD-SAR datasets. (a) Harbor. (b) Waterway.
(c) Offshore. (d) Arranged. (e) Offshore large-scene image. (f) Inshore large-
scene image.

and MMrotate based on MMDet [45]. All experiments are
conducted on an Ubuntu 18.04 system with 16-GB RAM and
a Tesla P100 GPU.

B. Evaluation Metrics

In this article, we use nine widely used evaluation met-
rics: precision, recall, average precision (AP), F1 score,
precision–recall curve (PR curve), detection rate (Pd), false
alarm rate (Pfa), detection time, and FLOPs to comprehen-
sively evaluate the model performance.

Precision represents the percentage of the number of correct
targets detected out of the total number of targets detected,
and recall denotes the ratio of the number of correct targets
detected to the actual total number of targets. These two
metrics can be calculated by the following equation:

precision = TP

TP + FP

recall = TP

TP + FN
(16)

where TP, FP, and FN denote the number of correct targets
detected, the number of incorrect targets detected, and the
number of correct targets not detected, respectively. The PR
curve, with recall as the horizontal coordinate and precision
as the vertical coordinate, measures the combined detection

performance of the model under multiple thresholds. The
higher the PR curve is, the better the overall performance of
the model. The AP quantifies the comprehensive performance
of the detector through the area enclosed by the PR curve
and the x-axis, which is calculated as shown in the following
equation:

AP =
∫ 1

0
P(R)d R. (17)

Ideally, we would like to achieve both high recall and
high accuracy, but, in practice, there are often tradeoffs to
be made. The F1 score represents the harmonic average
evaluation metric of recall and precision, taking into account
the reconciled values of recall and precision. With one of them
unchanged, upgrade the other one, and the F1 becomes higher.
F1 can be calculated as shown in the following equation:

F1 = 2 · precision · recall

precision + recall
. (18)

For a more intuitive comparison of the detection perfor-
mance of our method and state-of-the-art methods, we evaluate
these methods with two classical metrics used in the field
of radar target detection, specifically the detection rate (Pd)
and the false alarm rate (Pfa). Pd represents the proportion
of the number of real targets that are correctly detected in
the entire dataset, which is similar to the evaluation criterion
of recall. Pfa denotes the proportion of incorrectly classified
targets among all detected targets in the entire dataset. The
two classical metrics are both influenced by the detection
threshold, and the comparisons of detection performances
should be under the same detection threshold. The number
of false alarms generally declines as the detection threshold
rises, but the number of missed detections increases. These
two metrics can be calculated by (19) as follows:

Pd = TP

TP + FN

Pfa = FP

TP + FP
. (19)

The detection efficiency of the model is equally important
in practical applications. In this article, the efficiency of the
model is evaluated by the detection time and FLOPs. Detection
time refers to the average detection time required to detect
one image of the test set. FLOPs are used to measure the
time complexity of the model, which solves the problem of
comparing the processing time of different models on different
hardware platforms. The larger the FLOPs, the higher the time
complexity of the model.

C. Experiment Results

To verify the effectiveness of our method, comparison
results with multiple detection metrics and visualization results
in the inshore and offshore scenes between our method
and several state-of-the-art OBB-based detection methods are
given. In addition, in order to quantitatively evaluate the
effectiveness of each module, we conduct ablation experi-
ments on the elliptical 2-D Gaussian distribution heatmap
and DPM, respectively. In the discussion section, comparison
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TABLE III

DETECTION PERFORMANCE OF DIFFERENT METHODS ON THE RSSDD

experiments of the Gaussian window radius of CSL and the
results of OBB and OBB inscribed ellipse sampling continuity
analysis are given.

1) Comparison With Other OBB-Based Ship Detection
Methods: In this section, we compare our method with several
state-of-the-art OBB-based ship detectors. These methods are
described as follows.

1) BBAVectors: A one-stage anchor-free OBB detection
method. OBBs are classified into horizontal and rota-
tional categories, and accurate detection of horizontal
OBBs is achieved by regression of length and width.

2) Polar Encodings: A one-stage anchor-free OBB detec-
tion method. The OBB is encoded as an ordered set
of distances of the boundary points on the OBB from
the center point. The boundary discontinuity problem is
avoided by training and inference directly according to
the Polar Encodings.

3) Gliding Vertex: A two-stage anchor-based OBB detec-
tion method developed on Faster R-CNN. It first detects
the HBB of the target and then determines the OBB
corner points by regressing the offset of the OBB
vertices relative to the HBB vertices.

4) ROI Transformer: A three-stage anchor-free OBB detec-
tion. It proposes a strategy to convert the horizontal ROI
output from RPN into R-ROI, which can be obtained
accurately without increasing the number of anchors.

5) FRCNN-OBB: A two-stage anchor-based OBB detection
method with an OBB angle prediction branch is added
in the second stage of Faster R-CNN.

6) Double Heads OBB [46]: A two-stage anchor-based
OBB detection method. Specifically, a fully connected
layer is used for classification, a convolutional layer is
designed for bounding box parameters regression, and
an angle prediction branch is added.

7) Rotated IOU Loss [47]: Rotated IOU Loss first obtains
all vertices at the intersection of OBBs, then sorts
them, and calculates the area by the shoelace formula
to achieve differentiable IOU calculation for oriented
boxes.

8) Oriented R-CNN [48]: A two-stage anchor-based OBB
detection method. Two branches are added in the RPN
to regress the midpoint bias loss and, thus, directly
obtain the rotational proposals. A fixed-size feature
vector is then extracted from each proposal using R-ROI
alignment to perform classification and regression.

Comparison experiments are all implemented using the
MMDet except for BBAVectors and Polar Encodings. ResNet-
101 with 101 convolutional layers is used as the feature
extractor. The training and test hyperparameters for each
comparison experiment are set as suggested in DarkNet [48] or
MMDet, and early stopping is adopted to mitigate the network
overfitting.

Tables III and IV show the detection performance metrics
of each method in the cases of inshore and offshore scenes of
RSSDD and RSDD-SAR, respectively, to demonstrate a quan-
titative comparison of their detection effectiveness. From the
comparative experimental results in Tables III and IV, it can
be seen that our method achieves the highest performance in
all metrics for the case of inshore scenes and has a substantial
lead over other OBB-based methods on both datasets. For the
RSSDD, our method outperforms the other methods by at least
5% and 3% for the F1 and AP metrics, reaching 85.71% and
80.22%, respectively. For the case of training and inferencing
on the RSDD-SAR, our method has a lead of at least 0.93%
and 5.89% compared to the other methods for the F1 and AP
metrics, reaching 80.10% and 76.70%, respectively. Among
the compared methods, BBAVectors and Polar Encodings have
better overall detection performance in the inshore scenes.
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TABLE IV

DETECTION PERFORMANCE OF DIFFERENT METHODS ON THE RSDD-SAR

For the RSSDD, Polar Encodings have an advantage over
BBAVectors in several metrics; for example, a lead of 5.34%
and 2.32% in recall and F1, respectively, is delivered in the
inshore scenes. The two methods perform quite well on the
RSDD-SAR dataset, with BBAVectors producing the highest
recall of all methods for the offshore scenes (95.37%), which
is 0.09% higher than our method. However, under several other
evaluation metrics, both methods still have a large gap with
our proposed method. This is because the two methods are
both based on key point detection and solve the boundary
discontinuity problem by preclassification of OBB or special
encoding and decoding process. In the inshore scenes of
RSSDD, the anchor-based FRCNN-OBB and Rotated IOU
Loss significantly lag behind the other methods in terms of
precision metric. The accuracy of Double Heads OBB is
significantly lower (only 27.50%) compared to that of other
methods for inshore scenes of the RSDD-SAR dataset. Also,
we found from visualization experiments that this method has
a high number of false alarms, and the double heads structure
may not enable the network to achieve better detection results.
Comparatively, experimental results that show our proposed
method is capable of achieving satisfactory detection perfor-
mance on a variety of datasets, demonstrating the method’s
efficacy and solid robustness. The enhanced performance can
be mainly attributed to two factors. On the one hand, the
negative impact of the boundary discontinuity problem on
network training is avoided. On the other hand, the adoption
of an elliptical Gaussian heatmap and DPM improves the
differentiation degree of inshore ships and network prediction
performance for ship centers. In the offshore scenes, the AP of
our method on the RSSDD is slightly lower than that of Polar

Encodings by 0.06%, while the precision, recall, and F1 met-
rics all exceed those of the other methods, and Gliding Vertex
and BBAVectors both achieve similar results with our method
on the two datasets. This is due to the less clutter, significant
target location, and less distinction in the offshore scenes,
which leads to all methods delivering comparable detection
results. Overall, due to the full utilization of ship geometry
and scattering characteristics and targeted optimization for
inshore scenes, our method can effectively avoid the boundary
discontinuity problem in OBB detection and achieve better
detection results compared with other methods.

Fig. 15(a)–(d) shows the PR curves for each OBB-based
method for the cases of inshore scenes and offshore scenes
on the RSSDD and RSDD-SAR datasets, respectively. From
Fig. 15(a) and (c), we can see that the PR curve of our method
is higher and fuller than that of other comparison methods
across a wide range. This shows that the detection performance
of our method in the inshore scenes is comprehensively better
and verifies its effectiveness in detecting inshore ship targets.
FRCNN-OBB shows a significant decrease in accuracy with
a recall of 0.65, and the curve is clearly located on the
inner side, indicating poor detection performance. For the
case of offshore scenes, as shown in Figs. 15(b) and (d),
the PR curves of our method and Polar Encodings are located
more outwardly compared to other methods. The enhanced
detection performance is demonstrated by the accuracy, which
is maintained in the case of a high recall rate.

To comparatively evaluate all methods with classical metrics
used in the field of radar target detection, Tables V and VI
show the number of false alarms, the number of missed
detections, the false alarm rate Pfa , and the detection rate Pd of
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Fig. 15. PR curves for OBB-based methods. (a) PR curves in the inshore scenes of RSSDD. (b) PR curves in the offshore scenes of RSSDD. (c) PR curves
in the inshore scenes of RSDD-SAR. (d) PR curves in the offshore scenes of RSDD-SAR.

each method in the inshore and offshore scenes on the RSSDD
and RSDD-SAR, respectively. From the experiment results in
Tables V and VI, several conclusions can be drawn.

1) Our proposed method can provide much better detec-
tion performance compared to the other state-of-the-
art methods in terms of the false alarm rate Pfa and
the detection rate Pd on both benchmark datasets. This
demonstrates that our method can significantly improve
network responses to target centers by extracting fea-
tures and introducing an attention module, as well as
mitigate the detrimental effects of background clutters
on network performance.

2) Our method has half many missed detections as the
anchor-free method Polar Encodings and BBAVectors,
with only five and six missed detections in the offshore
and inshore scenes of RSSDD, and 39 and 38 missed
detections in the offshore and inshore scenes of RSDD-
SAR, respectively. This is due to our targeted improve-
ment in the network prediction performance of the target
center point. For example, the elliptical 2-D Gaussian
distribution heatmap contributes to improving the score

gap between nearby ships, and the DPM can greatly
enhance the detection ratio in the inshore scenes with
nearly no increase in false alarms.

3) As shown in Table V, with training and inferencing
on the RSSDD, the anchor-free OBB-based methods,
BBAVectors, and Polar Encodings generate more false
alarms while producing fewer missed detections com-
pared to the other anchor-based methods. The number
of false alarms of Polar Encodings is about 2.5 times
of Gliding Vertex and ROI Transformer, five times our
proposed method. The missed detection performance of
the anchor-based methods deteriorates in the inshore
and offshore scenes due to the poor generalization
ability caused by the manually set anchor parameters
and postprocessing of NMS. Among these anchor-based
methods, Rotated IOU Loss generates the most missed
detections, with 43 missed detections in the inshore
scenes.

4) For practically all methods, the false alarm rate Pfa rises
to variable degrees, as shown in the Table VI, on the
RSDD-SAR dataset. This might be because, in contrast



5240528 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

TABLE V

EXPERIMENT RESULTS UNDER RADAR TARGET DETECTION METRICS OF DIFFERENT METHODS ON THE RSSDD

to the RSSDD, the RSDD-SAR dataset contains more
reefs, sea clutters, and other distracting targets and fewer
ship targets in the slices of the offshore scenes. Among
the anchor-based methods, oriented R-CNN yields rel-
atively outstanding detection performance compared to
our method. Double Heads OBB produces the highest
Pfa out of all the methods, with 390 and 825 false
alarms in the inshore and offshore scenes, respectively.
Its performance is consistent with the corresponding
precision metric in Table IV.

In order to demonstrate the detection efficiency of each
method, Fig. 16 visualizes the test time and FLOPs of our
method and other comparative methods. As shown in the
figure, since different fully connected convolutional layers
are used in the second stage for classification and regres-
sion, Double Heads OBB requires far larger FLOPs than the
other methods, while the required test time is also twice as
long as the FRCNN-OBB, which has the lowest detection
efficiency. Our method, Polar Encodings and BBAVectors
are all based on the one-stage anchor-free frame. Anchor-
free methods do not involve anchor-related calculations and
NMS algorithm; the required FLOPs are significantly better
than other anchor-based methods, with 80.58G, 74.36G, and
76.52G, respectively. Compared with our method and BBAvec-
tors, Polar Encodings does not require the angle branch and,
therefore, requires lower FLOPs. Since our method needs to
predict by combining the angle branch and the distance branch,
and the process of direct least-squares fitting is performed on
the CPU, the test time is slightly higher than that of some
two-stage networks; however, the difference is not significant.

To visually compare our proposed method with other
methods, the detection results of different methods on the
inshore and offshore scenes are given in Figs. 17–20. Columns
(1)–(10) represent the ground truth, the detection results of our
method, BBAVectors, Polar Encodings, Gliding Vertex, ROI
Transformer, FRCNN-OBB, Double Heads OBB, Rotated IOU
Loss, and Oriented R-CNN, respectively.

As can be seen from Figs. 17(b) and 18(b), our method
can successfully distinguish and provide specific locations and
orientations for densely distributed ship targets in the inshore
scenes, resulting in fewer missed detections and false alarms.
False alarms often appear for slices that contain small targets.
For instance, one missed detection is generated in the third
image of Fig. 17(b) and the second and seventh images of
Fig. 18(b). Figs. 17(c) and (d) and 18(c) and (d) illustrate that,
for BBAVectors and Polar Encodings, which are key point-
based methods, small ship targets and those positioned closely
together in the inshore scenes frequently escape detection,
while the offshore scene’s reefs are frequently mistaken for
true targets. For instance, in the second row of Fig. 17 and
the fourth and seventh rows of Fig. 18, when multiple targets
are distributed densely or the scale is very small when docked
in a close-to-shore environment, the targets cannot be detected
successfully. This is due to the fact that, when the standard
Gaussian distribution heatmap is adopted, the scores on the
ship side of adjacent ship targets are not well differentiated.
In this case, the true center response will be suppressed
during the max-pooling process, directly leading to missed
detections of the target. As shown in Figs. 17(e) and 18(e), the
anchor-based Gliding Vertex can generate accurate detection
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TABLE VI

EXPERIMENT RESULTS UNDER RADAR TARGET DETECTION METRICS OF DIFFERENT METHODS ON THE RSDD-SAR

Fig. 16. Comparison of test time and FLOPs for different methods.

results for densely distributed targets of similar scales. How-
ever, for adjacent targets with large-scale differences, small
targets are often missed, such as the second, fourth, and
fifth rows in Fig. 17 and the bottom three rows in Fig. 18.
This is because of the high overlap ratio between the two
detection boxes, and the detection box of small targets is
suppressed in the NMS process, resulting in missed detections.
The detection results in Figs. 17(f) and 18(f) indicate that
ROI Transformer also appears to detect multiple targets with
large differences in adjacent scales as the same target. From
Figs. 17(g) and (h) and 18(g) and (h), we can see that
FRCNN-OBB and Double Heads OBB show clearly wrong
angle predictions and missed detections. This is on account

of both methods directly adding an angle prediction branch
to the two-stage HBB detection method without any targeted
improvements for boundary problems. The detection results of
Rotated IOU Loss are shown in Figs. 17(i) and 18(i); it can
be seen that, when using Rotated IOU Loss to guide network
regression, the final detection confidence for many targets in
the inshore scenes is low and not shown in the visualization.
As can be seen from Figs. 17(j) and 18(j), anchor-based
Oriented R-CNN can accurately detect target orientation, but
there are also cases where multiple adjacent targets with
large-scale differences are detected as the same target.

From the visualization results from Figs. 19(b)–(j)
and 20(b)–(j), we can draw the following conclusions: all
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Fig. 17. Visualization of detection results of different methods in the inshore scenes of RSSDD. (a) Ground truth. (b) Our method. (c) BBAVectors. (d) Polar
Encodings. (e) Gliding Vertex. (f) ROI Transformer. (g) FRCNN-OBB. (h) Double Heads OBB. (i) Rotated IOU Loss. (j) Oriented R-CNN.

methods are effective in providing the true location and orien-
tation of the ship targets in the offshore scenes for the case of
less clutter and significant target locations. However, BBAVec-
tors and Polar Encodings based on center point detection
produce more obvious false alarms compared to other anchor-
based methods, and the surface reefs are wrongly detected
as ship targets in the three given rows shown in Fig. 19 and
the bottom three rows in Fig. 20. Our method generates only
one false alarm in the third image due to the addition of the
spatial attention module to suppress background clutter and
enhance the target saliency response during feature fusion.
In general, it can be seen from all visual detection results in
Figs. 17–20 that our proposed method achieves more accurate
detection results for the case of both inshore and offshore
scenes compared to state-of-the-art methods.

We further conducted detection experiments on two
large-scene images from the RSDD-SAR dataset in order to
more thoroughly assess the generalization capability of our
model. Nine representative regions, including slices of ports
(slice 2), docks (slice 3), channels (slice 4), sea surfaces
with low and high resolution (slices 1, 5, and 7–9), and
dense distributed (slice 2), were chosen from the two large-
scene images. Fig. 21 illustrates the detection results, includ-
ing where the slices are cropped. It can be seen from the
comparative detection results that our model can effectively
detect multiscale targets in both inshore and offshore scenes
although there are still some missed detections in scenes with
densely packed targets. It can be concluded that our model
demonstrates excellent detection performance and generaliz-
ability for the case of both the slice detection results of the
two datasets mentioned above and the detection results of the
two large-scene images of RSDD-SAR.

Fig. 22 shows several detection results of our proposed
method in the inshore and offshore scenes, where the red
points denote the regressed dynamic key points, the yellow
points are the ship centers, and the green boxes represent the

final detection results by finding the circumscribed rectangle
of the ellipse obtained by direct least-squares fitting. The
following can be observed from Fig. 22.

1) The key points sampled on the ellipse can be accurately
restored by the prediction results of the distance branch
and the angle branch. It indicates the feasibility of
the encoding and decoding process, and verifies that
accurate classification of the bow angle can be achieved
using CSL.

2) The key points are accurately included in the strong
scattering region of the ship bow. It not only illustrates
that using the OBB inscribed ellipse to fit the ship
contour for encoding is sensible but also shows that
using these strong scattering points with rich feature
information as sampling key points can achieve effective
OBB regression.

3) When sampling dynamic key points in the bow region,
the key points can fit the bow contour well for each
aspect ratio of the ship target, and the predicted OBBs
can completely enclose the ship target. In summary,
for the ship targets in the inshore and offshore scenes,
the representation method based on the OBB inscribed
ellipse encoding proposed in this article can effectively
localize the ship targets, reflecting the effectiveness of
our method.

2) Ablation Experiments: The proposed elliptical Gaussian
distribution heatmap and DPM are subjected to ablation exper-
iments on the RSSDD and RSDD-SAR datasets to show
their utility and statistically evaluate their impact on network
performance.

Tables VII and VIII show the ablation experiment results
of the elliptical Gaussian distribution heatmap. By comparing
the detection precision, recall, F1, and AP metrics of the
network when generating heatmaps using a standard Gaussian
distribution and elliptical Gaussian distribution, the following
conclusions can be drawn.
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Fig. 18. Visualization of detection results of different methods in the inshore scenes of RSDD-SAR. (a) Ground truth. (b) Our method. (c) BBAVectors.
(d) Polar Encodings. (e) Gliding Vertex. (f) ROI Transformer. (g) FRCNN-OBB. (h) Double Heads OBB. (i) Rotated IOU Loss. (j) Oriented R-CNN.

Fig. 19. Visualization of detection results of different methods in the offshore scenes of RSSDD. (a) Ground truth. (b) Our method. (c) BBAVectors. (d) Polar
Encodings. (e) Gliding Vertex. (f) ROI Transformer. (g) FRCNN-OBB. (h) Double Heads OBB. (i) Rotated IOU Loss. (j) Oriented R-CNN.

1) When the elliptical Gaussian distribution is used to
generate the heatmap, the network achieves better per-
formance in both inshore and offshore scenes in all
metrics compared to the use of a standard Gaussian
distribution.

2) The improvement in the inshore scenes is particularly
significant, with a 3.19% improvement in precision

and a 1.54% improvement in recall on the RSSDD,
and a 1.24% improvement in precision and a 0.70%
improvement in recall on the RSDD-SAR. This indicates
that the degree of distinction of densely distributed ships
can be effectively improved by increasing the ship-side
score distance and verifies the feasibility of using the
elliptical Gaussian distribution to generate the heatmap.
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Fig. 20. Visualization of detection results of different methods in the offshore scenes. (a) Ground truth. (b) Our method. (c) BBAVectors. (d) Polar Encodings.
(e) Gliding Vertex. (f) ROI Transformer. (g) FRCNN-OBB. (h) Double Heads OBB. (i) Rotated IOU Loss. (j) Oriented R-CNN.

TABLE VII

ABLATION EXPERIMENT RESULT OF ELLIPTICAL GAUSSIAN HEATMAP ON THE RSSDD

TABLE VIII

ABLATION EXPERIMENT RESULT OF ELLIPTICAL GAUSSIAN HEATMAP ON THE RSDD-SAR

TABLE IX

ABLATION EXPERIMENT RESULT OF DPM ON THE RSSDD

Tables IX and X show the ablation experiment results
of DPM. By comparing the detection precision, recall, F1,

and AP of the network when extracting the ship centers
from the center point prediction map using a standard
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TABLE X

ABLATION EXPERIMENT RESULT OF DPM ON THE RSDD-SAR

Fig. 21. Detection results on the large-scene image.

3 × 3 max-pooling and DPM, the following conclusions can
be drawn. Using DPM to extract center points effectively
improves the detection precision and recall of the network
in the inshore and offshore scenes, with a 2.97% and 0.76%
precision improvement, respectively, in the inshore scenes of
RSSDD, and 1.01% and 0.60% recall improvements, respec-
tively, in the inshore scenes of RSSDD. This indicates that
the DPM designed in our method avoids missed detections of
densely distributed targets to a certain extent by extraction of
twice the maximum values. At the same time, when combined
with the score threshold, it does not introduce more false

alarms to the detection results, which can guarantee high
precision while improving recall.

From the ablation experiment results, it can be seen that:
1) compared to DPM, the elliptical Gaussian distribution
heatmap improves the network performance more significantly
and 2) when the two methods are used together, the network
detection performance improves even more.

V. DISCUSSION

In this section, first, we conduct experiments on RSSDD
to determine the effect of the Gaussian window radius of
CSL on the comprehensive performance of the network and
the classification performance of the angle branch. Then,
we perform a detailed comparison with the sampling method
of Polar Encodings to demonstrate the superiority of sampling
on the inscribed ellipse of the OBB compared to sampling
directly on the OBB.

A. Gaussian Window Radius of CSL

CSL smooths the one-hot label using a Gaussian window
function, and the window radius Sigma is critical to angle
classification performance. The Gaussian window function
converges to the impulse function when the window radius
Sigma is too small, which is equivalent to a direct hard
classification of the angle category. Angle classification is
also challenging when the window radius Sigma is too large
since the scores of nearby angle groups are not sufficiently
distinct. In order to assure the angle prediction branch’s great
classification performance, it is vital to choose the proper
window radius Sigma. Yang and Yan [17] classify the target
angle into 180 categories and experimentally demonstrate that
the best results can be achieved on the DOTA [8] dataset with
Sigma = 6. Our method needs to classify M = 18 bow
angle intervals in the case of key points N = 6. The
thickness of the classification branch is much smaller than
that of [32], so experiments are needed to rechoose the most
suitable Gaussian window radius Sigma. Fig. 23 shows the
network precision, recall, F1, and AP under different Gaussian
window radii of CSL. From Fig. 23(a), it can be seen that
the network achieves a good combined detection performance
under the given several window radii in the offshore scenes,
where the network achieves the best detection performance
for Sigma = 1. This is because there is less surface clutter
and more emphasis on the ship targets’ directional properties,
allowing for relatively simple correct categorization of the bow
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Fig. 22. Detection results of our proposed method. The red points denote the regressed dynamic key points, the yellow points are the ship centers, and the
green boxes represent the final detection results.

angle interval. As can be seen in Fig. 23(b), the window radius
Sigma has a significant impact on the comprehensive detection
performance of the network in the inshore scenes. Specifically,
the overall performance shows a trend of the first improvement
and then decreases as the window radius Sigma increases,
and the best detection precision, recall, F1, and AP metrics
are achieved simultaneously at Sigma = 1. Considering the
performance metrics of the network under different window
radii in the inshore and offshore scenes, in our method, the
Gaussian window radius Sigma = 1 is selected.

The impact of various window radii on the performance of
the angle branch is then more specifically compared. In this
article, the principal component analysis (PCA) [49] is used
to first show the angle characteristics learned from RSSDD,
as shown in Fig. 24. Fig. 24(a)–(d) shows the visualization of
the angle features learned by this branch at window radius
Sigma = 0.5, Sigma = 1, Sigma = 2, and Sigma = 3,
respectively. Fig. 24(a) illustrates that this branch does not
learn the angle information well when Sigma = 0.5; some
of the angle features are indistinguishable after dimension
reduction and are reflected in the visualization as marker
points overlapping each other. At this point, the Gaussian
window function converges to an impulse function, which is
equivalent to a hard classification of the angle interval directly.
Fig. 24(b) shows that, when Sigma = 1, the angle features
learned by the prediction branch present as a ring structure
with uniform distribution. The adjacent angle features are close
to each other and partially overlap, and this feature reflects
the principle that CSL can calculate angle distances without
introducing boundary problems compared to a one-hot label.
As can be seen in Fig. 24(c) and (d), the angle branch learns
the ring angle features equally well when Sigma = 2 and
Sigma = 3. However, at this point, more randomly distributed
points show up in the circle’s center, and the overlap degree
of angle characteristics grows noticeably. This is because,
as the window radius increases, the scoring distinction between
neighboring angles decreases, and the classification of angles
becomes somewhat more challenging. Second, for all ship
targets in both scenes of the RSSDD dataset, we count the
angle classification results of the angle prediction branch and
compare them with the true values of the bow angle interval.

Fig. 23. PR curves for OBB-based methods. (a) PR curves in the offshore
scenes. (b) PR curves in the inshore scenes.

Accuracy is then computed to evaluate more precisely the
effects of different Gaussian window radii on angle branch
prediction performance. Accuracy is defined as follows:

Accuracy = Nc

Nc + Nw
= Nc

Nall
(20)
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Fig. 24. Visualization features of angle branch under the RSSDD dataset. (a) Sigma = 0.5. (b) Sigma = 1. (c) Sigma = 2. (d) Sigma = 3.

TABLE XI

CLASSIFICATION ACCURACY OF THE ANGLE BRANCH UNDER

DIFFERENT WINDOW RADII

where Nc denotes the number of targets correctly classified,
Nw denotes the number of misclassified targets, and Nall

represents the number of all targets. In the RSSDD test set
divided in our method, there are 193 inshore scenes containing
422 ship targets and 39 inshore scenes containing 71 targets.
The classification accuracy of the angle interval prediction
branch under different window radii is shown in Table XI.

Combining the four parts in Fig. 24 and the experi-
ment results in Table XI, these conclusions can be derived:
1) the experiment findings of the classification accuracy
of the angle branch are consistent with the visualization
of the angle features learned under various window radii
and 2) the angle branch’s classification accuracy has a direct
impact on the network’s detection performance, and both
remain consistent. When the window radius Sigma = 1,
the network has the best angle classification and detection
performance, which verifies the appropriateness of choosing
Sigma = 1 as the window radius of CSL in our method.

B. OBB Inscribed Ellipse and OBB Sampling Continuity
Analysis

Polar Encodings encodes the OBB as an ordered set of
distances of the boundary points on the OBB from the center
point, effectively solving the problems of PoA and EoE.
However, the scattering characteristics and geometry of the
ship targets are not effectively exploited, and the continuity of
the sampling distance is affected by the number of sampling
points N . In order to visualize the continuity of the sampling
distance during the sampling process, Fig. 25(a) and (b) gives
the sampling distance d(ϕ) when sampling on the OBB and
the OBB inscribed ellipse, respectively. In the OBB sampling
process, we set the number of sampling points to 8 in the case
of Polar Encodings, and the OBB inscribed ellipse sampling
process adopts this work’s normal setting of six sampling
points. Given the target OBB B0 with height h and width w,

the OBB obtained by rotating it clockwise by θ is Bθ . The
corresponding inscribed ellipses of B0 and Bθ are E0 and
Eθ , respectively. When sampling in the range of [−π, π], the
distances of the sampling points on the OBB and the OBB
inscribed ellipse from the center of the OBB are shown in
Fig. 25(a) and (b). The yellow curve represents the distance
from the center as a function of the sampling angle on B0 and
E0, and the blue curve represents the distance from the center
as a function of sampling angle on Bθ and Eθ .

We can find the following from Fig. 25(a) and (b).
1) The sampling distance function d(ϕ) is a periodic func-

tion with a period of π either for OBB or the OBB
inscribed ellipse. The maximum sampling distances are
(w2 + h2)1/2/2 and w/2, respectively.

2) The rotation angle θ , i.e., the angle error, is to make
d(ϕ) shift θ .

3) When sampling on OBB and the sampling angle is
around the diagonal angle arctan(h/w), the sampling
distance on Bθ tends to increase and then decrease more
sharply. At this point, the sampling distance error will
spike at arctan(h/w) due to the smooth decrease of the
sampling distance on B0.

In order to visually compare the sampling distance error
s(ϕ) generated on OBB and the OBB inscribed ellipse in the
case of angular error is equal to θ , s(ϕ) can be calculated
by
∑N

i=1 |d0(ϕi) − dθ (ϕi)|/N , where N denotes the sampling
points. The sampling points are shown as blue and yellow
points in Fig. 25. Fig. 26(a) and (b) shows the s(ϕ) when
sampling on an OBB inscribed ellipse and an OBB with the
aspect ratio of two. Fig. 26(c) illustrates the s(ϕ) for an OBB
with the aspect ratio of one. s(ϕ) at different sampling points
is given in each graph. From Fig. 26(a) and (b), it can be seen
that the following holds.

1) For the target with the aspect ratio of two, when the
angle error varies within the range of [0, π], s(ϕ)
generated by sampling on the OBB and OBB inscribed
ellipse tends to increase first and then decrease, which
is consistent with the actual situation. The target overlap
is lowest, and s(ϕ) is highest when the angle error
equals π/2.

2) As the sampling points increase, s(ϕ) curve gradually
smooths out.

3) s(ϕ) from sampling on the OBB inscribed ellipse is
much smaller than that on the OBB using the same
or fewer sampling points, and the error curve is much
smoother.

As can be seen from Fig. 26(c), for a target with the aspect
ratio of one, the distance error period generated by direct
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Fig. 25. Sampling distance d(ϕ) on OBB and OBB inscribed ellipse. (a) d(ϕ) when sampling on OBB. (b) d(ϕ) when sampling on OBB inscribed ellipse.

Fig. 26. Sampling distance error s(ϕ). (a) s(ϕ) when sampling on an OBB inscribed ellipse with the aspect ratio of two. (b) s(ϕ) when sampling on an
OBB with the aspect ratio of two. (c) s(ϕ) when sampling on an OBB with the aspect ratio of one.

sampling on the OBB is π/2, and the maximum s(ϕ) is
generated around the angular error π/4. Since the long and
short axes of the inscribed ellipse of OBB are equal to the
standard circle at this time, the distance of each sampling point
equals the radius, and s(ϕ) is zero, which is, thus, not shown
in the figure.

In summary, sampling on the OBB inscribed ellipse not only
generates a periodic loss function to overcome the boundary
discontinuity problem but also has significant advantages over
sampling directly on the OBB. On the one hand, there is no
sudden change in sampling distance. On the other hand, the
overall generated average distance error is smaller, and the
variation is smoother, which can guide the network regression
more effectively.

VI. CONCLUSION

In this article, we proposed an OBB detector based on
dynamic key points’ detection for arbitrary-oriented ship

detection in SAR images. To mitigate the negative impact
of the boundary discontinuity problem on network perfor-
mance and to effectively utilize the geometric and scattering
characteristics of ship targets, the ship contour is fit by an
OBB inscribed ellipse and encoded as a distance set of the
dynamic key points on the bow from the ship center. The
predicted OBB is obtained by a combination of the bow
angle interval classification and a special decoding process.
To improve the network performance for the detection of
densely arranged ship targets in the inshore scenes, we further
designed an elliptical Gaussian distribution heatmap and a
pooling approach termed DPM. A series of experiments con-
ducted on the RSSDD and RSDD-SAR datasets demonstrate
that our method can accurately predict the target position and
orientation, and effectively deal with the boundary disconti-
nuity problem. Ablation experiment results demonstrated that
the elliptical Gaussian distribution heatmap and DPM can
further improve the inshore detection performance. Overall,
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our method outperformed other state-of-the-art OBB-based
methods, demonstrating its effectiveness as a new benchmark
resource for ship target detection in SAR images. Future
work will carry out a more exhaustive comparison with other
state-of-the-art approaches, including complexity and real-time
implementation challenges. We will also explore innovative
semisupervised approaches building on our work in [50].
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