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Predicting hourly boarding demand of bus
passengers using imbalanced records from
smart-cards: A deep learning approach

Tianli Tang, Ronghui Liu*, Charisma Choudhury, Achille Fonzone, and Yuanyuan Wang

Abstract—The tap-on smart-card data provides a valuable
source to learn passengers’ boarding behaviour and predict
future travel demand. However, when examining the smart-card
records (or instances) by the time of day and by boarding stops,
the positive instances (i.e. boarding at a specific bus stop at
a specific time) are rare compared to negative instances (not
boarding at that bus stop at that time). Imbalanced data has been
demonstrated to significantly reduce the accuracy of machine-
learning models deployed for predicting hourly boarding num-
bers from a particular location. This paper addresses this data
imbalance issue in the smart-card data before applying it to
predict bus boarding demand. We propose the deep generative
adversarial nets (Deep-GAN) to generate dummy travelling
instances to add to a synthetic training dataset with more
balanced travelling and non-travelling instances. The synthetic
dataset is then used to train a deep neural network (DNN)
for predicting the travelling and non-travelling instances from
a particular stop in a given time window. The results show that
addressing the data imbalance issue can significantly improve the
predictive model’s performance and better fit ridership’s actual
profile. Comparing the performance of the Deep-GAN with other
traditional resampling methods shows that the proposed method
can produce a synthetic training dataset with a higher similarity
and diversity and, thus, a stronger prediction power. The paper
highlights the significance and provides practical guidance in
improving the data quality and model performance on travel
behaviour prediction and individual travel behaviour analysis.

Index Terms—Boarding behaviour prediction, Smart-card,
Bus, Data imbalance issue, Deep generative adversarial network,
Deep neural network.
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HE rapid progress of urbanisation leads to expansion

of population in the urban area, increased demand for
travel and associated adverse effects in traffic congestion
and air pollution [1]-[3]. Public transport has been widely
recognised as a green and sustainable mode of transportation
to relieve such transport problems. As a conventional public
transport mode, buses have always played a dominant role in
passenger transportation [4], [5]. However, unreliable travel
time, bus-bunching and crowding have led to low level-of-
services for buses [6]-[8]. This has decreased the bus ridership
in many cities, particularly with the advent of ride-hailing
services in recent years [9]-[11]. To sustain and increase
bus patronage, bus operators must find a way to improve its
performance and enhance its image and attraction. Advanced
operation and management for bus systems can significantly
improve the level-of-service and service reliability, which in
turn helps increase the bus ridership [12]-[14]. This requires
understanding the spatial and temporal variations in passenger
demand and making necessary changes on the supply side
[15]-[18].

The smart-card system is initially designed for automatic
fare collection. As the system also records the boarding
information, for example, who gets on buses, where and
when, smart-card data has become a ready-made and valuable
data source for spatio-temporal demand analysis [19], public
transport planning [20]-[23], and further analysis of emission
reduction for the sustainable transport [24], [25]. From the
smart-card data, we can easily observe the passenger flow at
bus stops and on bus lines, and from which to derive the spatial
and temporal characteristics of bus trips [26], [27]. However,
extracting useful information from big data automatically still
poses a significant challenge. In recent years, machine learning
techniques have emerged as an efficient and effective approach
to analysing large smart-card datasets. For instance, Liu et al.
[28] captured key features in public transport passenger flow
prediction via a decision tree model. Zuo et al. [29] built a
three-stage framework with a neural network model to forecast
the individual accessibility in bus systems.

In our own recent research [30], we demonstrate that smart-
card data combined with machine learning techniques can be
a powerful approach for predicting the spatial and temporal
patterns of bus boarding. The predictions were found to be
highly accurate at an aggregated level, averaged over all
travellers. However, our research has also thrown light on the
data imbalance issues, when trying to predict travel behaviour
at the level of individual travellers and fine spatial-temporal
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details. For instance, the boarding of an individual smart-card
holder at a specific stop during a particular time window
(e.g. an hour) is a rare event: most of the records would
denote negative (non-travelling, or not boarding at this bus stop
during this time window) instances, and only a few are positive
(travelling, boarding at this stop at this time) instances. Such
data imbalance issues can significantly reduce the efficiency
and accuracy of machine learning models deployed for pre-
dicting travel behaviour at the level of individual travellers and
fine spatial-temporal details. This motivates this current study
where we propose an over-sampling method, deep generative
adversarial nets (Deep-GAN) model (initially developed in the
context of image generation) to address the data imbalance
issue in predicting disaggregate boarding demand (i.e. indi-
vidual passengers boarding behaviour during each hour of the
day). We show that, with the synthesised and more balanced
database, the prediction accuracy improves significantly. The
performance of the proposed approach, based on the Deep-
GAN method, is further benchmarked against other resampling
methods (including Synthetic Minority Oversampling Tech-
nique and Random Under-Sampling) and is shown to have
superior performance.

The rest of the paper is organised as follows. Section II
reviews the key resampling methods and their applications
in transport studies. Section III describes the specific data
imbalance issue in predicting the hourly boarding demand.
Section IV uses a Deep-GAN to provide a synthesised, more
balanced training data sample and a deep neural network
(DNN) to predict the individual smart-card holders’ boarding
actions (boarding or not boarding) in any hour of a day. Section
V applies the proposed method to a real-world case study, and
the results are discussed in Section VI. Finally, Section VII
summarises the main findings and contributions of this paper
and suggests future investigations.

II. DATA IMPUTATION METHODS

Data imbalance is a common issue in many real-world
contexts. Examples include fault diagnosis, anomaly detection,
malware detection [31]. In this section, we review the general
resampling methods developed to re-balance the datasets and
their applications in transport systems.

A. Resampling methods to balance datasets

Classic machine learning models tend to deal with problems
where the number of instances in every class are roughly the
same. It is the case for many standard datasets commonly used
to test models, including the MNIST data for hand-writing
recognition [32], Iris Plants Database for pattern recognition
[33] and ImageNet data of image recognition [34]. In many
real-world problems, however, the data is not all as good as
those standard datasets. A particular issue is data imbalance,
where the positive instances are the minority, and the negative
instances are the majority. For example, when detecting dan-
gerous behaviour [35], [36], the event (dangerous) instances
are much less than the normal (non-dangerous) instances. The
skewed distribution of classes, or imbalanced data, challenges
the traditional machine learning models in a number of ways:
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Fig. 1. Reviewed key resampling techniques.

1) rare minor instances may be mistaken as noise and vice versa
[37]; ii) minor instances overlap with other regions where
the prior probabilities of classes are almost equal [38]; iii)
it is challenging to detect underlying patterns for the minor
instances with high-dimension features [39].

Data resampling methods have been developed to address
such data imbalance issues. The basic idea of resampling is
to produce a more balanced dataset. There are three main re-
sampling methods: over-sampling, under-sampling and hybrid
method [40]. The over-sampling method is to create some
imitated instances belonging to the minority class, while the
under-sampling method is to remove some existing instances
from the majority class. The hybrid method is to combine
over-sampling or the minority and the under-sampling on the
majority instances. Next, we briefly introduce the key models
developed under each of the three main resampling methods
and summarise them in Figure 1.

The simplest over-sampling method is random over-
sampling [41], which randomly duplicates those minor in-
stances. The new dataset created by the random over-sampling
method can superficially enhance the existing minor instances
which then leads to overfitting. Many repetitive instances may
lead to the specification of the classifier on the dominant
instances. In addition, if some of the instances are mislabelled
or noisy, the error can easily be multiplied. To overcome such
deficiencies, a distance-based over-sampling method, synthetic
minority over-sampling technique or in short SMOTE [42], has
been developed. SMOTE uses the k-nearest neighbours (kNN)
algorithm to calculate the closest instances of each instance
in the minority, and randomly selects several neighbours
according to the imbalance ratio and randomly generates a new
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instance between the central instance and neighbour instances.
Hence SMOTE can reduce the risk of overfitting. However, it
can increase the possibility of overlapping as well, and it does
not provide new instances with useful information. Han et
al. [43] proposed an improved SMOTE method, Borderline-
SMOTE. Unlike the random selection of minor instances in
SMOTE, Borderline-SMOTE does the over-sampling only for
the minor instances which are close to the border of the mi-
nority category. He et al. [44] developed an adaptive synthetic
sampling (ADASYN) method, which adds weight on minor
instances according to the number of nearby major instances
and then generates a different number of new instances. These
methods improve the quality of generated instances compared
to the SMOTE. However, they inherit some common failings
of the SMOTE, namely that: i) the scattered data distribution,
feature redundancy and feature irrelevance in high-dimension
data challenge the algorithm to identify minor instances, and
ii) the SMOTE and associated methods are not suitable for
the categorised features (e.g. weather types, seasons) because
their distances cannot be calculated. Besides distance-based
methods, clustering is another over-sampling method. Jo and
Japkowicz [45] made use of the K-means clustering to cat-
egorise the imbalanced dataset and does the over-sampling
process for each category of data.

The development of machine learning techniques has pro-
moted advanced data-driven models based on the generative
adversarial nets (GAN) for the over-sampling. Shamsolmoali
et al. [46] proposed the capsule adversarial network, an
improved GAN by combining both majority and minority
classes, to recognise highly overlapping classes. Jiang and Ge
[47] enhanced the quality of generated data from the GAN
by using the Mahalanobis-distance-based data filtering method
and the Euclidean-distance-based data purification method,
where the randomness of the generation process of the GAN
reduces the quality of the generated data. Goodfellow et al.
[48] stated that GAN-based models can generate clearer and
more realistic samples compared to other methods. GAN-
based models have been widely applied in image generation,
image super resolution and image inpainting. As far as we
are aware, this is the first time a GAN-based model has been
applied in addressing a public transport data imbalance issue
for predicting the individual travel choices.

As opposed to over-sampling, the under-sampling method
is another technique in resampling. Like the random over-
sampling, the method of random selection is also applied
in the under-sampling, which randomly removes some major
instances. This method abandons a lot of data and information
and may result in bias and overfitting in learning. Similarly,
the distance-based and clustering-based approaches can also
be used in under-sampling. In distance-based methods, Wil-
son [49] proposed the edited nearest neighbour (ENN) to
balance the data. This method looks for and removes the
major instances that are surrounded by the instances in the
minority. Repetitive edited nearest neighbour (RENN) applies
the ENN repeatedly until all neighbours of the major instance
are within the majority class [50]. Besides, Mani and Zhang
[51] proposed four NearMiss-family methods that use the
kNN algorithm to select major instances. NearMiss-1 selects

the major instances with the smallest average distances to
three closest minor instances; NearMiss-2 selects the major
instances with the smallest average distances to three farthest
minor instances; NearMiss-3 selects a predefined number of
the closest major instances for every minor instance; Most-
Distance selects the major instances with the most massive
average distances to three closest minor instances. For the
clustering-based method, Yen and Lee [52] partitioned all the
data into several clusters and randomly selected the instances
from each cluster. Zhang er al. [53] applied k-means clustering
in the partition process and used the number of major instances
in every cluster as a weight to decide the number of selected
major instances. As stated before, the under-sampling method
may miss some information. To overcome the weakness of
missing information, two methods, EasyEnsemble [54] and
BalanceCascade [55], were developed. EasyEnsemble uses
the idea of ensemble learning. It under-samples the majority
with replacement and generates several independent, balanced
training datasets. Then, these datasets are trained for their
base-classifier, and these base-classifiers are combined with
ensemble learning approaches such as Bagging. BalanceCas-
cade uses the idea of boosting learning. It generates a new
balanced training dataset by the under-sampling method and
trains a base-classifier. Then, the method only puts back
the major instances that are wrongly classified for the next-
round under-sampling, and so on. These ensemble methods
contain most of the information from the majority from a
global perspective. However, Ha and Lee [56] showed that the
under-sampled data in the majority do not follow the original
distribution, which tends to build a biased decision boundary.
According to the data size of the minority class, Zhou [57]
and Gonzdlez et al. [58] suggested that the under-sampling
is a more appropriate method for the training data with more
minor instances while the over-sampling is more suitable to
deal with the training data with less minor instances.

For very large training datasets, a hybrid approach that
combines the over-sampling and under-sampling methods has
been applied. For example, the integration of SMOTE with
ENN and SMOTE with Tomek links were developed by Batista
et al. [41]. Jian et al. [59] used SMOTE over-sampling and
multiple random under-sampling with ensemble learning in
support vector machine classification. Song et al. [60] com-
bined SMOTE over-sampling and k-means under-sampling
method to resample the dataset. The hybrid method applies
the over-sampling to the minority and the under-sampling to
the majority, which always yields a better result than either
in isolation [61]. Although the hybrid method shows a greater
ability to rebalance datasets than using a single method, the
performance of the different combinations of methods can
vary significantly (see the examples of [62]-[64]). It requires
significantly computing effort to test which combination is the
best selection for our case.

Given that the under-sampling methods could lose the infor-
mation in the majority (non-travelling) data, the over-sampling
methods are widely used in addressing data imbalanced issues.
In Section II-B, all applications of resampling methods in the
transport domain use the over-sampling methods. Therefore,
we will model the data imbalance issue in predicting the hourly
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boarding behaviour of bus passengers via a GAN-based model.

B. Imbalanced data issue in the transport domain

When data imbalance occurs in real-life applications, it is
often the case that the minority class is usually the more
important one [65]. In the field of transport, the problem
of data imbalance is especially acute in accident detection,
where the data representing accidents are the minority while
the no-accident scenario is in the majority. Appropriate data
imputation has been shown to help improve accident data
analysis and prediction. For example, Park and Ha [66] proved
that over-sampling by the data mining tools, Hive and MapRe-
duce, can improve the precision in predicting traffic accidents.
Parsa et al. [67] compared the performance of the SMOTE,
Borderline-SMOTE and SVM-SMOTE used in over-sampling
the minor accident instances. They found that all three methods
have similar accuracy, but SMOTE tends to have a higher
detection rate and lower false alarm rate. Sharifirad er al. [68]
enhanced the SMOTE method for over-sampling the accident
data, which weights the distance used in the kNN algorithm by
the information entropy of attributes. Cai er al. [69] used the
deep convolutional GAN to generate the matrix of describing
the car crash, which can provide a smoother distribution than
other SMOTE and random over-sampling.

Besides accident recognition, other fields in transport also
face problems with data imbalance, such as vehicle type
recognition [70] and commercial vehicle activity prediction
[71]. Hajizadeh e al. [72] used semi-supervised techniques
of self-training and co-training to identify and add minor
instances for detecting the rail defect from rail image data, and
they showed that semi-supervised techniques perform better
than other classic over-sampling methods such as SMOTE
and random over-sampling. Similarly, Mohammadi er al. [73]
applied the ADASYN method to overcome the imbalanced
data issue when predicting rail defects by track geometry
measurement dataset. Rahaman et al.. [74] predicted the queue
context (various states of queues related to taxis and passen-
gers) in the airport through the imbalanced taxi and passenger
queue contexts. The conclusion of their study suggests that the
balanced dataset with any resampling method is better than the
original dataset in every evaluation index and that the random
over-sampling performs the best.

C. Research gaps and scopes

To sum up, researchers have contributed to developing
resampling methods for the imbalanced datasets, and some
works have been aware of the detriments of data imbalance
issue in transport systems. However, there are still some
research limitations in the existing work.

o The data generated by SMOTE and ADASYN are sus-
ceptible to outliers. They may generate some data in the
majority data space due to minority outlier instances (usu-
ally noisy data), causing blurred classification borderlines
and making the learning difficulties of the classification
model.

o The under-sampling methods usually have to pay the
price of losing parts of the information of the majority

of data because they have to remove a part of the data.
Although the EasyEnsemble and BalanceCascade tried to
solve the problem of lost information, they increased the
number of models tens of times, significantly increasing
the computational burden.

o Little study has noticed the loss caused by the data
imbalance issue in the public transport system. There is
also no research to validate the efficiency of the existing
resampling methods on imbalanced data in the boarding
prediction task.

In general, the data imbalance issue is more acute in
predicting individual behaviour or a particular type of event. In
our previous study of predicting public transport board demand
[30], we showed that the prediction is good at the aggregated
level, but is poor when we tried to predict the hourly boarding
behaviour of individual bus users, due to the data imbalance
issue. In Section III-A, we introduce this particular data
imbalance issue relating to public transport demand prediction.
Therefore, this study proposed the Deep-GAN as the over-
sampling method to address the data imbalance issue in
the boarding behaviour prediction task for creating a more
balanced data sample. The Deep-GAN is based on the deep
learning approaches, which has the advantages of dealing
with the massive-amount and high-dimension data compared
with the existing works. Additionally, the Deep-GAN learn
the feature pattern of minority data, while the other over-
sampling methods generate the data in the space of minority
data. Compared to other over-sampling methods, Deep-GAN
is more able to ensure the similarity of the synthetic data to
the real data and, at the same time, makes the generated data
diverse. This capability allows the synthetic training dataset
not to over-enhance some features and avoids the learning bias
in the prediction model.

III. FORMULATING BOARDING BEHAVIOUR INSTANCES
FROM THE SMART-CARD DATA

A. Description of the data imbalance issue

The target of this study is to predict the hourly boarding
demand for bus systems. We select one hour as a prediction
time slot in this study. We then model individual passengers’
boarding status, travelling or not, for any hour during the
operation period as the measure of demand. Thus, the instance
in this study is the trip made by a passenger during a specific
time slot. The state of a trip in this study is characterised as
travelling or non-travelling. The instance consists of a feature
vector describing the passenger and the time of travel, and a
label identifying the state of trips. The instance is expressed
as follows:

i = (=}, y;) (1)

where r! denotes the trip 7 of passenger p during the time
slot ¢; x¥ is a feature vector describing the trip r7; and o
is the label to estimation on the travel behaviour of trip 7.
Feature vector, x, contains several features that characterise
the trip (e.g. the hour in which the boarding was made), the
environment (e.g. temperature of the day), and the past travel
history of the trip-maker (e.g. the number of trips made on
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the previous day). The individual features are denoted as v,
vg, etc. Features selected in this study will be introduced in
Section V-B. The label, y, represents the state of the trip: 1
denotes a travelling instance, and 0 denotes the non-travelling
instance.

.1':(1}1,'112,'[13,"') (2)

1, travelling
y= . 3)
0, non-travelling.

Since the non-travelling instances are much more frequent
than travelling instances, the dataset is therefore imbalanced.
For example, for a typical 19-hour operation time of a day, we
find that in the dataset used in this study, there are just 43 thou-
sand travelling instances, compared to over two million non-
travelling instances in a day. The ratio of minority (travelling)
class to majority (non-travelling) class is 1:44, or only 2% is
travelling instances while the remaining 98% represents non-
travelling instances. As stated before, the skewed distribution
can lead to bias in learning towards the pattern of non-
travelling instances for the sake of achieving a good fit and
significantly decrease the accuracy of the machine learning
model. In Section IV, we introduce a method based on deep
generative adversarial nets to produce a more balanced dataset
for the prediction of hourly bus boarding demand.

B. Data pre-processing to prepare an original dataset

The smart-card data used in this study includes time-
stamped boarding records along with the user ID. At first,
we make the following assumptions to clean the data:

o Each card ID corresponds to a single passenger, and each
passenger swipes the card only once for a single boarding.
In real-life situations, some passengers may (accidentally)
swipe their cards more than once when boarding, which
causes two or more transactions during a short period.
We consider these data as repetitive data and retain only
the first-appearance record.

o The number of bus trips made by each smart-card user
during a day is limited to a maximum value. There is a
situation in the smart-card data that an ID appeared over
50 times in one day and never showed up on any other
day. For IDs that appeared more than 19 times a day (i.e.
more than one trip an hour), we consider them as testing
smart-cards from the bus company and remove them from
the database.

o This study only focuses on the regular smart-card users
who travel at least once a week. We exclude users who
travelled less than five times during the one-month study
period. This is to avoid the excess non-travelling instances
associated with such infrequent users.

After the initial data cleaning, we transform the remaining
smart-card data into instances described in Eq. (1) and label
them according to Eq. (3). The cleaned and transformed
smart-card dataset will then be combined (fused) with other
supplementary data, to create the baseline dataset used in this
study.

{ Preparing original dataset
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(e.g. weather conditions) E

Smart card Dat.a Transforming smart card Data fusion |
data cleaning H

logs to instances
Original dataset le—d
(imbalanced data)
i
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Fig. 2. The flow chart on predicting the boarding behaviour from an originally
imbalanced dataset.
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IV. SMART-CARD DATA IMPUTATION AND PASSENGER
BOARDING DEMAND PREDICTION

This section introduces the methods developed to produce a
more balanced dataset for the prediction of hourly passenger
boarding demand. Figure 2 illustrates the processes involved.
The pre-processed smarted card data are first transformed into
travelling instances as described by Equations (1)-(3).

Additional supplementary data are added to the instances,
and these include weather data that provides the impacts of
weather conditions on the boarding behaviour. The combined
data forms the baseline dataset for the study and is divided into
three sub-datasets: training, validation and testing dataset.

As explained in Section III-A above, the original training
dataset is severely imbalanced at a ratio of 1:44 between
travelling and non-travelling instances. We will apply the deep
generative adversarial nets (Deep-GAN) to generate artificial
travelling instances and add them to the original training
dataset to create a synthetic training dataset that is more
balanced. The real travelling instances are data inputted to
Deep-GAN, which then generates many artificial travelling
instances that do not exist in the real world but have the same
characteristics as real travelling instances.

The more-balanced synthetic training dataset will then be
used to train a DNN-based predictive model to predict the
state, travelling or not, and the validation dataset will be
used to evaluate the performance of the training process.
The architecture of the predictive model will be described in
Section IV-B. Finally, we apply the testing dataset to the well-
trained model to measure the performance of the model in
Section IV-C.

A. Deep generative adversarial nets to balance the dataset

The generative adversarial nets (GAN), firstly introduced
by Goodfellow et al. [48], is a deep learning architecture that
consists of two multi-layer perceptrons (a generator and a
discriminator). Figure 3 illustrates the basic architecture of
the GAN model. The generator utilises a noise vector, which
is made of random numbers, to produce synthetic data. The
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Fig. 4. The architecture of Deep-GAN. The number of layers and nodes are
only examples. The basic framework is from [48].

synthetic data from the generator needs to imitate the real data
in the same format and similar characteristics. In our study,
the real data is the travelling data formulated in Section III-A,
while the synthetic travelling data will be a feature vector with
the same dimension and similar correlations among features.
The discriminator tries to distinguish between real data and
synthetic data by giving the full knowledge of real data. The
generator learns from the feedback of the discriminator in
order to generate more similar data.

The naive GAN, as originally proposed by [48], applies
two artificial neural networks (ANNs) as the generator and
discriminator. Later studies have applied different neural net-
works of the generator and discriminator in GAN according to
the characteristics of input data and the task of the algorithm.
An example is the deep convolutional GAN which replaces
ANN with two deep neural networks (DNN) to generate the
image data [75]. Figure 4 illustrates the general framework of
Deep-GAN. DNN will be introduced in the next subsection.

We define a discriminator D to identify if data is sampled
from the distribution of real travelling data pgetq(z). The
performance of the discriminator is measured by a logarithmic
loss function of the positive instances that data are recognised
as the real travelling data:

FD - wavpdam(w) [log D(‘T)] (4)

where E[-| denotes the expectation. Maximising Eq. 4 means
that D can correctly predict D(xz) = 1 when « follows the
probability density of real travelling data. That is to say, that
the discriminator correctly labels the real travelling data, which
is expressed as:

D(Z) = 17 T~ pdata(x) (5)

On the other side, the role of generator G is to deceive D by
generating synthetic data. Here, we build up the loss of gen-

erator using a logarithmic loss function of negative instances
so that data cannot be recognised as the real travelling data:

Fg = EZNPz(z) [log(1 — D(G(x)))] (6)

where we premise that p. (2) is the prior distribution of random
noise z used in the generator. The objective of the GAN model
is formulated as follows:

maxmin V(G, D) =
G D

Eonpiara(@) 108 D(2)] + Eonp. 2y log (1 = D (G(2)))] (D

The process of training Deep-GAN is that D and G play
a two-player minimax game with value function V(D, G). D
tries to maximise the value of V, which represents the best
ability to discriminate between real and synthetic travelling
instances. At the same time, G tries to minimise the value
of V' when the distribution of generated synthetic travelling
instances is much closer to real travelling instances.

After the training process, the generator G can capture
the distribution of real travelling instances and produce the
synthetic travelling instances. An input random noise vector
can be transferred and reshaped through the DNN in generator
G and the output is a synthetic travelling instance with a
similar data pattern of real travelling instances. The number
of synthetic travelling instances depends on a given imbal-
ance ratio (i.e. the ratio between travelling to non-travelling
instances). Krawczyk [65] suggests that a good imbalance ratio
for the training dataset is around 1:4, and in Section V-C
we examine the relative performances of different imbalance
ratios. Grouping with the real and artificial travelling instances
and non-travelling instances, we can obtain a more balanced
training dataset compared to the original dataset.

B. A deep neural network for predicting the boarding demand

As shown in Figure 2, Deep-GAN, described in the previous
section IV-A, outputs a set of artificial travelling instances that
do not really happen. A combination of artificial travelling in-
stances from Deep-GAN and real travelling and non-travelling
instances from the original dataset produces a more balanced
dataset. Trained by this synthetic balanced dataset, we predict
the boarding behaviour using a DNN-based predictive model.
Compared to a simple ANN model, DNN has more hidden
layers, as illustrated in Figure 5. As the number of features
increases, a simple ANN model cannot capture the entire non-
linear relationship among features. The DNN model, due to
the larger network with more hidden layers and nodes, is able
to describe the implicit and non-linear relationship and build
up a complex model for the high-dimension input data [76].

A DNN model includes one input layer, one output layer
and several hidden layers. In the input layer, there are several
nodes. The feature vector x comes into the DNN model via
the nodes in the input layer, where each node represents a
feature v in = in Eq. (2). Several hidden layers follow the
input layer, which are consists of some fully-connected nodes
and one bias node. The values of the fully-connected nodes
are calculated by:

I
i=1
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Fig. 5. An example of DNN’s architecture [76].

where aé- represents the value of the node j in layer [ (input

layer is the first layer, [ = 1); zé is the weighted accumulating
results from the nodes in the layer [ — 1 and the bias parameter
bé_l, and o (-) represents the activation function. The weighted
accumulation process is based on the value of each node 1 to
I in layer [ — 1 and the weight wﬁj from node i in layer [ — 1
to node j in layer [.

Following the architecture of DNN, the information in the
feature vector will be revised and transferred through the
hidden layers and to the output layer. The output of this
DNN is a binary (0-1) classification result of travelling or
non-travelling instances.

C. Evaluation measurements

1) Evaluation the synthetic travelling instances: This sec-
tion introduces a measurement, Fréchet distance (FD) [77],
to examine the similarity of the synthetic travelling instances
by over-sampling methods and the real travelling instances.
Fréchet Inception Distance [78] is an important index to
evaluate the generation performance of GAN, which uses
an Inception V3 network to extract the features of images
and calculation the FD value between the features of the
real and produced images. However, the data in our case
is structure (tabular) data, whose feature vectors are gained
directly. Therefore, we adopt the FD value for evaluating the
similarity of synthetic and real data. The FD value calculates
the distance between two groups of instances in the feature
space, which is formulated as:

FD(z,2) =
o = pally + 77 [Ca + Co = 2(C2C2)E] @)

Where p, and p, are respective means of real travelling
instances = and synthetic travelling instances z. C, and C,
are the co-variance matrix of = and z, respectively. T[] is
the trace of matrix. A smaller value of FD represents that two
groups of data are more similar.

2) Evaluating the prediction results: In previous sections,
we apply our proposed Deep-GAN method, together with the
DNN-based predictive model to predict the boarding actions of
individual smart-card users at any hour of a day. To illustrate
the performance of the prediction, this section introduces
indices for measuring the direct predictive performance of
DNN and the predicted hourly ridership of bus lines. Con-
fusion matrix (CM) is one of the most used measurements
for the classification problem [79]. The CM for the binary

Real boarding behaviour
Confusion matrix

(CM)

Travelling instances
(positive)

Non-travelling instances
(negative)

=)
% _ Travelling instances Ture-positive False-positive
g3 (positive) (TP) (FP)
a3

T ®©

25 . " "
52 Non-travelling instances False-negative Ture-negative
B (negative) (FN) (TN)

o

Fig. 6. Confusion matrix for binary classification of predicting travelling or
non-travelling instances [79].

classification problem is shown in Figure 6. CM has two
dimensions: real and predicted travelling behaviour, and each
dimension has two situations: positive (travelling) and negative
(non-travelling). So, each instance can be assigned to only one
of the following four situations:

o True-positive (TP): travelling instance is correctly pre-
dicted as travelling instance.

o Ture-negative (TN): non-travelling instance is correctly
predicted as a non-travelling instance.

o False-negative (FN): travelling instance is wrongly pre-
dicted as a non-travelling instance.

o False-positive (FP): non-travelling instance is wrongly
predicted as travelling instance.

According to CM, we calculate the precision and recall
performance of the model. Precision is the fraction of TP
instances among all the predicted travelling instances, which
reflects the ability to identify only the relevant instances;
Recall is the fraction of TP instances among all the real trav-
elling instances, which expresses the ability to find all relevant
instances. The precision and recall describe the two sides of
the model, which are mutually constrained. An increase in the
value of one index usually results in a decrease in the value
of the others. Thus, the F-measure, the weighted harmonic
mean of Recall and Precision, in Eq. (12) has been proposed
in order to have a comprehensive consideration of precision
and recall [80]. The parameter 5 (in Eq. (12a)) adjusts the
weight of the focus of the model on precision and recall: with
B < 1, , the F-measure gives more weight to the precision,
while 8 > 1, more weight is given to the recall. The most
common use is 5 = 1, which means the precision and recall
are equally considered in this evaluation. We can obtain the
most common and classic performance metrics, F1-measure
in Eq. (12b), to evaluate the overall performance of machine
learning models.

TP
pTGCiSiOTL = m (10)
TP
== 11
recall TP+ FN an
(B2 + 1) x precision x recall
Fg = 12
p B2 (precision + recall) (122)
9 .
P = X precision X recall (12b)

precision + recall



SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

TABLE I
AN EXCERPT FROM SMART-CARD DATA.

COMPANY | LINE | VEHICLE | ENGINE D TYPE DATE TIME
200 6 202111 159804 18725002 1 2016/8/1 | 11:43:15
200 6 202311 61502 18725002 1 2016/8/1 14:32:59
200 147 201674 128150 18729273 1 2016/8/1 | 16:14:51
200 123 201869 145477 17991759 1 2016/8/1 | 16:14:51

Next, we calculate the root mean square percentage error
(RMSPE) and root mean square error (RMSE) to measure the
accuracy of hourly ridership and analyse the distribution of bus
ridership based on the individual estimation results of machine
learning models.

H 4 . 2
1 Ridery,, — Ridery,
RMSPE = | — 13
H }; Ridery, (13)
1L 2
RMSE = | = h§71 ‘Riderh — Ridery, (14)

where Rider), and Ridery, represent the predicted and ob-
served ridership at hour i and H is the total time slots, which
equals 19 in our case.

V. CASE STUDY
A. The smart-card data source

The smart-card data used in this study records the trips
made on seven bus lines from the bus network in the city
of Changsha, China. The dataset covers the period from 1%
August to 1% September 2016. The operation time is nineteen
hours between 5 am to 1 am of the next day. The raw
dataset includes 2,917,272 transactions with 564,803 unique
smart-card IDs. Following the screening criteria of Section
III-B, 1,279,290 transactions from 101,850 smart-card IDs are
retained. As shown in Table I, the smart-card data records eight
fields: bus company, bus line, vehicle, engine ID of vehicle,
smart-card ID, smart-card type, data, and boarding time. There
are no specific boarding stops in the smart-card data. In this
study, we are concerned only with whether to travel or not;
we do not consider (or estimate) the bus line and stops they
used.

B. Feature selection

We choose the features from three domains: boarding time,
weather conditions and travel history, because these three
domains all have impacts on passengers’ decision-making
during bus trips [22], [81]. In the domain of boarding time,
we use the season and day of the week to describe the date,
and a binary feature, holiday, to distinguish between holidays
including weekends and working days. Additionally, we use
the time slot to restrict the time of travelling behaviour. To
avoid multiple trips in a time slot, we determine that a time
slot is one hour so there are 19-time slots in a day. For

the domain of weather conditions, we include a range of
independent weather indices in features listed in Table II. Also
included as a weather feature is the air pollution index (AQI)
as a potential influencing factor on travelling behaviour. Travel
history describes the passengers’ regularity of using the bus
services. This study considers two time-points: the previous
day (expressed as day-1 in the table) and the same day in last
week (expressed as day-7 in the table), and the period between
these two time-points. Table II shows the full list of features
considered in this study.

Features are described in two data types: numerical and
categorical. Numerical features can be used directly for the
calculation. However, different features have different dimen-
sions and units, which results in non-comparability between
features. Here, a min-max normalisation on all numerical
features is carried out, as follows:

UV — Umin

V= ——— (15)
Umaz — Umin
where v is the value of a numerical feather in feature vector x
and v, and vy, respectively represent the minimum and
maximum value and v is the value after min-max normali-
sation. After the normalisation, all the numerical features are
converted to a dimensionless value between 0 and 1.
Categorical features are each assigned a unique value simply
to register their categories; there is no direct relation or
comparison that can be made between categories. Here, we
use One-hot Encoding to present a categorical feature as a
sparse vector. For example, the feature of the holiday has
two categories: ‘holiday day’ and ‘working day’. We use a
vector with two dimensions to describe this feature. The vector
(0,1) represents the category of holiday and the vector (1,0)
represents the category of working days. A special categorical
feature is the nominal feature of Card ID. The process of One-
hot Encoding can generate sparse vectors with extremely high
dimensions for this nominal feature. Thus, we use the feature
hashing [82] to represent such categorical/nominal features. In
total, there are 18 features and 49 dimensions in the feature
vectors.

C. Experimental design

The resampling and prediction processes are conducted
via Keras [83] in Python programming language. All the
experiments are run on an Aliyun cloud graphics processing
unit (GPU) platform with one NVIDIA® V100 Tensor Core
GPU and 32 GB GPU memory.

As the features include the travel behaviour on the previous
seven days, we use data from 8" to 31°! August as the
combined training and validation dataset and 1°¢ September
as the testing dataset. 80% instance of the combined dataset is
randomly selected to be the training dataset and the rest of 20%
instance is used as the validation dataset. After the data pre-
processing, it retains 101,850 smart-card users and 1,935,150
instances in a day (19 instances per smart-card user). The
number of instances in the original datasets are listed in Table
1.

The resampling method is applied to the training dataset
only. As the baseline (BL), the original data without any
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TABLE I
INVESTIGATED DOMAIN OF FEATURES EMPLOYED IN MACHINE LEARNING MODELS.
Feature domains Features Dimensions | Feature types Explanation
Season 4 Categorical Spring; summer; autumn; winter.
Boarding time Day of the week 7 Categorical Mon., Tues., Wed., Thurs., Fri., Sat., Sun.
Holiday 2 Categorical Holidays and working days.
Time slot 1 Numerical One-hour time slot from 6 am on a given to 1 am on the next day
Temperature 1 Numerical The average temperature during the time slot
Precipitation 1 Numerical Total precipitation during the time slot
Humidity 1 Numerical Average relative humidity during the time slot
Weather condition Visibility 1 Numerical Minimum visibility during the time slot
Wind speed 1 Numerical Maximum instantaneous wind speed during the time slot
Weather events 6 Categorical Clear, Cloudy, Fog, Overcast, Rain, Unknown
AQI 1 Numerical Air quality index
Card ID 17 Nominal Unique ID to identify the card users
Total number of trips on day-1 1 Numerical Number of trips made by the passengers on the previous day
Total number of trips on day-7 1 Numerical Number of trips made by the passengers on the same day last week
Travel history Total number of trips from day-7 to day-1 1 Numerical Number of trips made by the passengers on all previous seven days
Total number of trips in the same time slot on day-1 1 Numerical Number of trips made by the passengers in the same time slot on the previous day
Total number of trips in the same time slot on day-7 1 Numerical Number of trips made by the passengers in the same time slot on the same day last week
Total number of trips in the same time slot from day-7 to day-1 1 Numerical Number of trips made by the passengers in the same time slot on all previous seven days
TABLE III TABLE V
INVESTIGATED DOMAIN OF FEATURES EMPLOYED IN MACHINE LEARNING THE SYNTHETIC TRAINING DATASETS BY DIFFERENT RESAMPLING
MODELS. METHODS (WITH IMBALANCED RATIO OF 1:5).
Types of instances Training dataset | Validation dataset | Testing dataset Experiments Resampling methods The number of instances
Travelling instances 819,278 204,820 45,159 Groups Methods Travelling | Nontravelling | = p,\,
(minority) (majority)
Non-travelling 36,335,602 9,083,900 1,889,991 BL (original) None 819,278 36,335,602 | 37,154,880
imbalance ratio 1:45 1:45 1:42 Epeep-can Deep-GAN
Eros Random Over-Sampling
Total 37,154,880 9,288,720 1,935,150 Eevrors | O SMOTE 67120 1 36.335.602 ) 43,602,722
Eapasyn ADASYN
Erus Random Under-Sampling
TABLE IV — ENN
THE SYNTHETIC TRAINING DATASETS WITH DIFFERENT IMBALANCE e K means clustering 819278 | 4098390 | 4.915.668
RATIOS (BY DEEP-GAN). ENecarMiss NearMiss-1

Types of instances BL E1.20 Ei.10 Eis Ei2 Ei:1
(original)
Real travelling instances 819,278
Synthetic data 0 997.502 2,814,282 6,447,842 17,348,523 | 35,516,324
Non-travelling 36,335,602
imbalance ratio 1:45 1:20 1:10 1:05 1:02 1:01
Total 37,154,880 | 38,152,382 | 39,969.162 | 43,602,722 | 54,503,403 | 72,671.204

resampling method is directly used to predict the travelling
behaviour. To analysis the impact of the balanced rate (minor-
ity to majority), we design a set of experiments, denoted as
Ei.1, E1.2, Ei:5, E1:.10 and Ej.99, where the subscript 1 : m
indicates the imbalance ratio. Table IV records the number of
synthetic data and their imbalance ratio of training datasets
where the synthetic data is generated by Deep-GAN.

In order to compare the different performance of Deep-GAN
to other existing over- and under-sampling methods, we select
two of the most commonly used over- and under-sampling
methods, including the methods of random over-sampling
(ROS), SMOTE, ADASYN, random under-sampling (RUS),
ENN, k-means clustering and NearMiss-1 respectively. The
imbalance ratio is decided by the best performance from the
five variants of the synthetic data presented in Table IV. Here,
we adopt an imbalance ratio of 1:5. The experiments with
over-sampling methods (Eros, Esmore and Eapasyn)
have the same size of training dataset with Epeep—gan,

and the experiments with under-sampling methods (Erys,
EegnnN, Ex—means and Eneqrnriss use all of the true travelling
instances and part of non-travelling instances. The number of
instances in the training dataset produced by under-sampling
methods is much less than over-sampling methods. The de-
tailed components of training datasets in these experiments
are presented in Table V.

D. Model configuration

There are two DNNs in the Deep-GAN for generation and
discrimination. Table VI displays the configurations of the
generator and discriminator in Deep-GAN for Eq.99 to Ej.1.
There are six layers in the generator, including the input layer.
The generator is to reshape and transform the noise vector
with eight dimensions sampled from the uniform probability
distribution and to produce a 49-dimension tensor following
the distribution of real travelling data. We use the ReLU
function for the activation function between two layers and
the tanh function for the activation function of the last layer.
Moreover, we use a layer after the generator to normalise a
batch of instances. The discriminator receives the tensor from
both the generator and the real data and uses a five-layer deep
neural network to distinguish whether the tensor is from the
generator or the real data. In the discriminator, the Leaky
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THE CONFIGURATIONS OF THE GENERATOR A’II‘\I/})B;IF;CVRIIMINATOR IN DEEP-GAN FOR E1.20 TO Eq.1.
Networks No. | Name of Layer Configurations
1 Input layer input_shape = (batch_size, 8); output_shape = (batch_size, 8)
2 Dense layer neurons = 8; input_shape = (batch_size, 8); output_shape = (batch_size, 8); activation = ‘relu’
Generator 3 Dense layer neurons = 16; input_shape = (batch_size, 8); output_shape = (batch_size, 16); activation = ‘relu’
4 Dense layer neurons = 32; input_shape = (batch_size, 16); output_shape = (batch_size, 32); activation = ‘relu’
5 Dense layer neurons = 36; input_shape = (batch_size, 32); output_shape = (batch_size, 36); activation = ‘relu’
6 Dense layer neurons = 49; input_shape = (batch_size, 32); output_shape = (batch_size, 49); batch_normalization = Yes; activation = ‘tanh’
1 Input layer input_shape = (batch_size, 49); output_shape = (batch_size, 49)
2 Dense layer neurons = 36; input_shape = (batch_size, 49); output_shape = (batch_size, 36); activation = ‘leakyrelu’; leaky_relu_alpha = 0.2
Discriminator 3 Dense layer neurons = 25; input_shape = (batch_size, 36); output_shape = (batch_size, 25); activation = ‘leakyrelu’; leaky_relu_alpha = 0.2
4 Dense layer neurons = 16; input_shape = (batch_size, 25); output_shape = (batch_size, 16); activation = ‘leakyrelu’; leaky_relu_alpha = 0.2
5 Dense layer neurons = 1; input_shape = (batch_size, 16); output_shape = (batch_size, 1); activation = ‘sigmoid’

TABLE VII
THE CONFIGURATIONS OF THE DNN-BASED PREDICTIVE MODEL.

No. | Name of Layer

Configurations

Input layer

input_shape = (batch_size, 49); output_shape = (batch_size, 49)

Dense layer

neurons = 36; input_shape = (batch_size, 49); output_shape = (batch_size, 36); activation = ‘relu’;

Dense layer

neurons = 32; input_shape = (batch_size, 36); output_shape = (batch_size, 32); activation = ‘relu’

Dense layer

neurons = 25; input_shape = (batch_size, 32); output_shape = (batch_size, 25); activation = ‘relu’

Dense layer

neurons = 25; input_shape = (batch_size, 25); output_shape = (batch_size, 16); activation

‘relu’

AN |~ |W[IN]|—

Dense layer

neurons = 1; input_shape = (batch_size, 16); output_shape = (batch_size, 1); activation = ‘sigmoid’

ReLU function (A = 0.2) is the activation function between
two layers while the sigmoid function is the activation function
for the output layer. The learning rate for both generator and
discriminator is 0.0005; the batch size is 512; the loss function
is the binary_crossentropy function.

Table VII displays the configurations of the DNN-based
predictive model with six layers. The input of this model is
a 49-dimension tensor. The ReLU function is used to be the
activation function after the hidden layers, and the sigmoid
function is the activation function between the last hidden
layer and the output layer. The learning rate for the predictive
model is 0.0005; the batch size is 512; the loss function is the
binary_crossentropy function.

VI. RESULTS AND DISCUSSIONS

In this section, we analyse the performance of the predictive
models for the set of experiments designed above. We first
examine the level of imbalance ratio on the accuracy of the
predictive model the most. We then compare the performances
of three different resampling methods using the best-balanced
rate. After that, we discuss the prediction results on hourly
demand.

A. Sensitivity analysis on imbalance ratio 1 : m

We use the same setting in our Deep-GAN to generate
different training datasets with different imbalance ratios and
apply these training datasets to the same predictive model.
Figure 7 shows the performance metrics, on the precision,

recall and F1 of the predictive models trained by the different
training datasets with different imbalance ratios. The BL
uses the original imbalanced training dataset of which the
imbalance ratio is up to 1:44. In the cases of E;.29, E1.10, E1.5,
Ei.2 and E;.;, we gradually increase the number of synthetic
travelling instances in the training dataset, and hence reducing
the imbalance ratio of the training dataset.

We can see from Figure 7 that the predictive model based
on BL has the worst performance, where all three metrics
are measured around 0.55. This result of BL is only slightly
better than that from a random classification. This suggests that
using an imbalanced training dataset can result in very poor
predictive models and with extremely imbalanced data, the
predictive model is no better than a random classification. As
noted in Section II-A earlier, the reasons for poor performance
on imbalanced data are: i) few travelling instances may be
recognised as the noise and ii) a large number of non-travelling
instances leads to learning the pattern from non-travelling
instances.

With reduced imbalance ratios, the performance of the
predictive models improves. Figure 7 shows that as the im-
balance ratio in Eq.59, E1.19, E1.5, E1.20 and E;.; reduces, the
performance metrics increase. With an absolutely balanced
training dataset (Ep.;), the values of all three metrics are
over .88, suggesting that a more balanced training dataset
will get a more accurate prediction result. However, a more
balanced training dataset with a significantly increased number
of instances requires a higher-performance computer and a
significantly longer time to train. We note in Figure 7 that,
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Fig. 7. The performance metrics (Precision, Recall and F1) and computation
time for the training datasets with different rates of imbalance.

TABLE VIII
THE RMSPE AND RMSE OF HOURLY RIDERSHIP BY DIFFERENT
IMBALANCE RATIO.

Experiments BL E1:20 E1.10 Ei5 E1.2 E1.1
RMSPE 0.74 0.49 1.09 0.56 0.38 0.18
RMSE 2483.44 | 712.35 1114.84 | 281.26 | 912.15 785.62

there is a significant improvement in the performance of the
predictive models between E;.1o and E;.5, and the improve-
ments in E;.5, E1.2 and E;.; are relatively small. On a balance
of computational burden and model prediction accuracy, we
consider Eq.5 with an imbalance ratio of 1:5 as an acceptable
choice.

We can also see from Figure 7 that the model precision is
lower than the recall in all the experiments. The main issue of
the imbalanced dataset is that the trained model learns more
on major negative instances, which predicts more FN instances
and fewer FP instances (FP;FN). This learning bias leads to a
higher recall than precision score.

For a further analysis of the sensitivity on imbalance ratio,
we then analyse how the predicted results perform at the
aggregated level of hourly demand with imbalance ratio 1 : m.
Table VIII presents the RMSPE and RMSE of hourly ridership
of the first group of experiments (Ei.20, Ei.10, E1.5, E1:2
and Eq.1) in Table IV. The result shows that from the view
of hourly ridership E;.5 has the lowest RMSPE and RMSE,
although the measurements of precision, recall and F1 in Eq.5
is slightly lower (worse) than E;.5 and E;.;. We will analyse
this situation with the help of the profile of hourly ridership
in Section VI-C. Cooperating the results in Figure 7 and VIII,
rebalancing the dataset with an imbalance ratio of 1:5 leads to
a great performance of predictive model and the best accuracy
in hourly ridership with a low computation time; and this
finding agrees with that of Krawczyk [65].

B. Best-balanced method among resampling methods

Table IX shows the FD values between the real and syn-
thetic travelling instances generated by different over-sampling

TABLE IX
THE FD VALUES BETWEEN DIFFERENT DATA GROUPS BY DIFFERENT
OVER-SAMPLING METHODS.

Synthetic travelling instances The values of FD
by method Real travelling instances | Non-travelling instances
Real travelling instances 455.24
Epeep—can 87.17 315.32
Eros <1074 455.23
Esmore 0.53 452.15
EapasynN 16.96 341.00

methods. We also calculate the FD values between travelling
and non-travelling instances, to check whether the synthetic
data overlaps with the non-travelling data in the feature space.
As shown in Table IX, the big FD value between real travelling
and non-travelling instances shows a significant difference
between these two kinds of instances. The synthetic travelling
instances by different over-sampling methods are close to the
real ones and far from the non-travelling instances, indicating
that the selected over-sampling methods can produce synthetic
travelling instances that have similar characteristics to the real
ones. Since the instances by ROS are the repetition of the real
data, the FD values are almost the same as the real travelling
instances. The instances produced by SMOTE and ADASYN
are more similar to the real data than by Deep-GAN. SMOTE
and ADASYN over-sample the instances in the same feature
space, which can lead to the risk of overemphasising a certain
condition in feature space. Accordingly, it may result in a
learning bias when training the following prediction model on
those data. Overall, the Deep-GAN is able to produce synthetic
travelling instances that are similar to the real instances and
are significantly different from the non-travelling instances. In
addition, the Deep-GAN ensures that there is a diversity in the
synthetic data so that the subsequent prediction model does not
over-fit some data characteristics.

Next, we compare the performances of different resampling
methods designed in Table V: Deep-GAN, ROS, SMOTE,
ADASYN, RUS, ENN, k-means and NearMiss-1, in these ex-
periments denoted Epeep—can, Eros, Esmore, EADAsy N,
Ervus, EENN, Bk—means and Eneqrariss. The same imbal-
ance ratio (1:5) is applied. Figure 8 displays the performance
metrics of the predictive models for these experiments. Over-
all, the prediction results with improved training data are
much better than in BL, suggesting that the accuracy of the
predictive model will be improved as long as the imbalance
ratio can be reduced by any resampling method. Compar-
ing over-sampling methods (Deep-GAN, ROS, SMOTE and
ADASYN), Epeep—can produces more accurate predictions
than other methods in all three performance metrics, suggest-
ing that the synthetic training dataset produced by Deep-GAN
more benefits the following prediction model than that by
the other three over-sampling methods. Eros has the second
top Recall value but the lowest Precision value. As the FD
values (in Table IX) increase from Egros to Egyrorre to
Eapasyn to Epeep—can, their Precision and F1 values rise
from 0.65 to 0.78 and from 0.72 to 0.79, respectively. It proves
that enriching the diversity of synthetic training data would
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Fig. 8. The performance metrics (Precision, Recall and F1) for the training
datasets generated by different resampling methods.

help the precision of the prediction model. Looking at the
under-sampling methods (RUS, ENN, k-means clustering and
NearMiss-1), the result shows an opposite performance to the
over-sampling methods in that the precision values are greater
than the recall values. According to the F1 values, Egrygs,
Egnvny and Ex_jeqns have a better prediction ability than
Eros and Esyrore, and Eneqrariss has similar performance
t0 Epeep—can. Erus shows a strong power in the precision
with a high value of 0.83. However, the recall of Erys only
scores 0.69, which indicates that the learning bias is towards
the non-travelling instances. It could be argued that the under-
sampling methods produce a more reliable training dataset
than most over-sampling methods. However, the proposed
Deep-GAN significantly improve the quality of the synthetic
training dataset and contributes to greater overall performance,
especially the recall, of the prediction model. Therefore, Deep-
GAN provides a sound method for over-sampling data in
situations where, for example, the overall sample size and the
sample size of the majority of data are small.

We note in Figure 8 that the precision scores of over-
sampling methods are greater than their respective recall
scores, while the opposite is true for under-sampling methods.
The number of false-negative instances is less than false-
positive ones in the datasets by over-sampling methods. Eros,
Esyvore, Eapasyn and EDeep—GAN tend more toward
predicting to be positive (travelling instances). This is because
the over-sampling methods artificially enhance the weight
(number) of the travelling instances, so the models are more
likely to predict actual non-travelling instances as positive.
Accordingly, their precision value will be lower, such as Erps.
However, improving the diversity of data, as the increasing FD
values in Table IX, benefits for reducing the learning bias of
the prediction model and improving the precision, where the
Deep-GAN makes a great achievement. On the contrary, the
under-sampling method deletes some non-travelling instances,
which also reduces the information redundancy. Thus, the
number of true-negative instances increases and the number

of false-positive instances decreases, which contributes to the
improvement of the precision score.

C. Results of hourly demand

In this section, we analyse the profiles of hourly ridership
for answering the question at the end of Section VI-A, why
there is an opposite conclusion of E; .5, E1.5 and E;.; in model
performance and hourly demand. Figure 9 shows the profiles
of hourly ridership observed from smart-card data (ground
truth) and predicted by BL, E1;20, El:lO: E1:5, E1;2 and E1:1~
The observed ridership has two peaks: the morning peak at 7
to 9 am and the evening peak at 6 to 7 pm. The prediction
based on BL (original imbalanced data) produced a delayed
morning peak to 10 am, and a very poor prediction on the
amplitudes of two peaks: a much lower morning peak and
a much higher afternoon peak, than the ground-truth. E;.5
and Ej.19 with minor improvements in balancing the dataset
also predicted a delayed morning peak, and underestimate the
magnitude of the morning peak and overestimate the magni-
tude of the afternoon peak. In contrast, the prediction with
E;1.1 (absolutely balanced data) and E;.o accurately identified
the timings of the two peaks. However, both E;.; and E;.»
significantly overestimate the magnitude of the morning peak
and to a less degree underestimate the magnitude of the
evening peak. By comparison, using dataset E;.5, the model
accurately predicted both the timing and the magnitude of the
peaks. It is understandable why BL performs poorly compared
to E1.90 to Ej.5, as imbalanced data leads to inaccuracy in
machine learning models. We speculate the errors in E;.o and
E;.; estimation may be caused by information redundancy and
repetition. The synthetic data follows not only the distribution
of features but also the distribution of travelling instances. That
is to say, the generated data has more data representing the
travelling instances in two peaks. It emphasises the peaks and
therefore causes bias in the hourly ridership. Even though E; .4
has the best performance metrics, it does not lead to the best
profile of ridership. It is because that the profile of ridership
is produced by the positively-predicted instances including TP
and FP in Figure 6.

VII. CONCLUSION

The motivation of this study was because we have faced
the challenge of imbalanced data when we used the real-
world bus smart-card data to prediction the boarding behaviour
of passengers at a time window. In this research, we pro-
posed a Deep-GAN to over-sample the travelling instances
and to re-balance the rate of travelling and non-travelling
instances in the smart-card dataset in order to improve a DNN-
based prediction model of individual boarding behaviour. The
performance of Deep-GAN was evaluated by applying the
models on real-world smart-card data collected from seven bus
lines in the city of Changsha, China. Comparing the different
imbalance ratios in the training dataset, we found out that in
general, the performance of the model improves with more
imbalanced data and the most significant improvement comes
at a 1:5 ratio between positive and negative instances. From the
perspective of prediction accuracy of the hourly distribution of
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Fig. 9. The profile of hourly ridership observed from smart-card data and predicted by different synthesised datasets. (a) including BL, E1.20 and Ej.2¢. (b)

including E1;5, E1;2 and E1;1.

bus ridership, the high rate of imbalance will cause misleading
load profiles and the absolutely balanced data may over-
predict the ridership during peak hours. Comparison of differ-
ent resampling methods reveals that both over-sampling and
under-sampling benefits the performance of the model. Deep-
GAN has the best recall score and its precision scores best
among the over-sampling methods. Although the performance
of the predictive model trained by the Deep-GAN-data is
not significantly beyond other resampling methods, the Deep-
GAN also presented a powerful ability to improve the quality
of training dataset and the performance of predictive models,
especially when the under-sampling is not suitable for the data.
The contributions of this study are:

o The data imbalance issue in the public transport system
has received little attention, and this study is the first to
focus on this issue and propose a deep learning approach,
Deep-GAN, to solve it.

o This study compared the differences in similarity and di-
versity between the real and synthetic travelling instanced
generated from Deep-GAN and other over-sampling
methods. It also compared different resampling meth-
ods for the improvement of data quality by evaluating
the performance of the next travel behaviour prediction
model. This is the first validation and evaluation of the
performance of different data resampling methods based
on real data in the public transport system.

o This paper innovatively modelled individual boarding
behaviour, which is uncommon in other travel demand
prediction tasks. Compared to the popular aggregated
prediction, this individual-based model is able to provide
more details on the passengers’ behaviour, and the results
will benefit the analysis of the similarities and hetero-
geneities.

As technology and computing power develop, predicting
models will become more and more refined. In the field of
demand prediction of the public transport systems, the target

will gradually evolve from the bus network and bus lines
to individual travel behaviour. This advancement can greatly
benefit public transport planning and management, such as the
digital twin of the public transport system. It is foreseeable
that future prediction work in public transport systems will
also encounter the challenge of imbalanced data. Our research
proposes a Deep-GAN model to address the data imbalance
issue in travel behaviour prediction. The validation via real-
world data illustrated that the Deep-GAN showed a better
ability to deal with the data imbalance issue and benefits the
predictive models compared to other resampling methods. This
research provides valuable experience for more researchers
and managers in dealing with similar data imbalance issues,
especially in public transport.

It may be noted that despite the great performance of Deep-
GAN and DNN models, there are still some limitations. First,
in this research, Deep-GAN is solely applied for the over-
sampling. However, there is also a hybrid variant of Deep-
GAN where positive instances are over-sampled and negative
instances are under-sampled. The promising results of the
Deep-GAN oversampling serve as a motivation to test the
performance of the hybrid Deep-GAN in future research.
Second, this study makes the prediction at the individual level,
which creates an explosion of information and makes the
computation more difficult. Classifying the passengers (using
clustering methods for instance) may be useful in terms of
reducing the size of the dataset. Third, the current Deep-
GAN does not consider the spatio-temporal characteristics of
boarding behaviour. Customising the networks of generator
and discriminator in GAN based on the characteristics of
the boarding behaviour will further improve the quality of
generated dummy travelling instances and the performance of
the following predictive models. Finally, the proposed Deep-
GAN selected the features and variants of the data augmen-
tation independently. So, the improvements are likely to be
sub-optimal. Jointly selecting the features and the optimum
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imbalance ratio is likely to result in further improvements but
at the cost of computational complexity. This can be tested in
future. Similarly, the optimum rate of imbalance for Deep-
GAN has been assumed to be the optimum rate for other
resampling methods. This assumption needs to be tested in
future research.

Even in its current form, this research demonstrates the
extent of improvement offered by the Deep-GAN method in
addressing the data imbalance issue in modelling boarding
behaviour. By better predicting the boarding behaviour, the
findings can help the public transport authorities to improve

the

level-of-service and efficiency of the public transport

system. It can also be extended to other components of the
public transport usage behaviour — better prediction of the
alighting or transfer behaviour, for instance.
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