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Abstract

The exponential input-to-state stability (ISS) property is considered for systems of con-
trolled nonlinear ordinary differential equations. A characterisation of this property is pro-
vided, including in terms of a so-called exponential ISS Lyapunov function and a natural
concept of linear state/input-to-state L?-gain. Further, the feedback connection of two ex-
ponentially ISS systems is shown to be exponentially ISS provided a suitable small-gain
condition is satisfied.

Keywords: differential equation, exponential input-to-state stability, feedback connection,
global exponential stability, robust stability, small-gain condition.

MSC(2020): 34D20, 34D23, 93B52, 93C10, 93D09, 93D23

1 Introduction

We consider the exponential input-to-state stability (ISS) property for the system of controlled
nonlinear ordinary differential equations

&= f(z,d), (L.1)
where, as usual, x is the state variable and d is an external input.

ISS is a stability concept for controlled (or forced) systems of differential equations, and dates
back to the work of Sontag [25] in 1989. Sontag and others pioneered the concept in the 1990s,
with key works including [11, 26, 27|, and there is a vast literature on the subject. As a brief
illustration, ISS has been considered in the context of discrete-time systems [12] and, writing in
2022, there is much current interest in the infinite-dimensional setting; see [22] and the recent
monograph [14]. For more background on ISS we refer the reader to the survey papers [3]
and [29]. It is no overstatement to write that ISS has over the past 30 years profoundly and
substantially (re)shaped how questions of nonlinear stability within the mathematical systems
and control discipline are posed and answered. Illustrations of this claim include, for example,
the wide-ranging applications of ISS from observer design [1], the analysis of dynamic neural
networks [24], through to ecological modelling [23].

1School of Computing, Engineering & the Built Environment, Edinburgh Napier University, UK, email:
c.guiver@napier.ac.uk

2Corresponding author

3Department of Mathematical Sciences, University of Bath, UK, email: H.Logemann@bath.ac.uk



The input-to-state stability paradigm encompasses asymptotic and input-output approaches to
stability, the latter initiated by Sandberg and Zames in the 1960s, see [4]. The ISS property
for (1.1) is a natural boundedness property of the state, in terms of both the initial conditions
and the inputs. It generalises the familiar estimate

ot + )l < L{e o ()| + dllporin) ) Y8720, (12)

for positive L, A\ (independent of z and d), which is valid for the special case of stable linear
control systems, meaning f in (1.1) is given by f(z,d) := Az + Bd with asymptotically stable
matrix A, to the situation of general nonlinear controlled differential equations of the form (1.1).

In the context of systems of controlled nonlinear differential equations (1.1), the property (1.2)
is called exponential ISS. It seems, at least to the best of the authors’ knowledge, that there
is a dearth of systematic study of this property in the literature. On the one hand, this may
be because exponential ISS is intimately related to stable linear control systems, which the
ISS paradigm successfully moves beyond. Further, simple scalar examples illustrate that many
nonlinear control systems may be ISS without being exponentially ISS. However, there are
interesting classes of nonlinear control systems which enjoy the exponential ISS property.

On the other hand, the exponential ISS estimate (1.2) is closely related to the so-called input-to-
state exponential stability (ISES) property from [8], where the final term on the right-hand side
of (1.2) is replaced by a “gain” of the form a(||d|[ze(s¢+r)), for some function a with certain
qualitative properties. A key result of the 1999 paper [8] is that “asymptotic stability is the
same as exponential stability, and ISS is the same as ISES, up to a (in general nonlinear) change
of coordinates in the state space”. At face value, one could argue that these results render the
exponential ISS property uninteresting. However, and as acknowledged in [8], the change of
coordinates in [8] is not constructive, and need not respect any physical interpretation of the
states of the original model, a key consideration in engineering and applied sciences. Further-
more, it has been argued in [6] that global exponential stability (of uncontrolled differential
equations) is a more natural and important concept than global asymptotic stability as the
former has certain useful robustness properties, whilst the latter does not. Consequently, there
are strong reasons for studying the exponential ISS property.

Our first main result is Theorem 3.4 which provides a characterisation of the exponential ISS
property in terms of the existence of a so-called exponential ISS Lyapunov function. We also
demonstrate that exponential ISS is equivalent to a certain linear state/input-to-state L?-gain
property — in the spirit of [15]. The main difficulty in establishing Theorem 3.4 is proving the
necessity of an exponential ISS Lyapunov function. For which purpose, we leverage a known
characterisation of global exponential stability of (autonomous) nonlinear differential equations,
including a converse Lyapunov result, presented as Theorem 2.2. The second main result of
the paper relates to the behaviour of exponential ISS under (output) feedback connections.
Theorem 4.3 shows that a natural small-gain condition is sufficient for the feedback connection
of two exponentially ISS systems to be exponentially ISS.

The paper is organised as follows. Section 2 gathers requisite preliminary material. Sections 3
and Section 4 comprise the heart of the paper, and contain a characterisation of the exponential
ISS property and small-gain feedback connections with exponential ISS (and related output)
properties, respectively. As an application of the material in Section 4, we study the exponential
ISS properties of a Lur’e system in Section 5. The statement and proof of a technical lemma
used in Section 3 can be found in the Appendix.



2 Preliminaries

The mathematical notation we use is standard. The state and input variables x and d in (1.1)
take their values in R™ and RY, respectively. Throughout we shall assume that d appearing
in (1.1) is locally essentially bounded, that is, d € L% (R4, R?). More generally, for an inter-
val J C R, non-empty subspace F C R"™ and 1 < p < oo, the symbol LP(J, E) denotes the usual
Lebesgue space of (equivalence classes of) functions J — FE, with the usual LP norm. If J is
not compact, then Li (J, E) denotes the usual local version of LP(J, E).

We formulate the following assumptions on the function f: R" x R? — R™ in (1.1):

(H1) f is locally Lipschitz (jointly in both variables);
(H2) f(0,0)=0.

From hereon for the sake of brevity, when we write that a function f of two variables is (locally)
Lipschitz, then we mean jointly in both variables. For d € LS (R4, R?) and o > 0, we call (d, x),
where z :[0,0) — R™ is locally absolutely continuous, a pre-trajectory of (1.1) defined on [0, o)
if
t
+/ f(z(s),d(s))ds Vte|0,0). (2.1)
0

A pre-trajectory (d,z) defined on [0,0) is said to be mazimally defined if there does not exist
another pre-trajectory (d, ) with Z : [0,7) — R" such that 7 > o and (g, o)= Z|g,5). We let T
denote the set of all maximally-defined pre-trajectories.

The hypothesis (H1) guarantees that the integral appearing on the right hand side of (2.1)
is well-defined and finite for all (d,z) € 7. The hypothesis (H1) further ensures (from, for
example [28, Theorem 54]) that, for every d € LS (R4, R?) and ¢ € R”, there exists a unique
maximally-defined pre-trajectory of (1.1) with z(0) = £. A pre-trajectory defined on [0, 00) is
called a trajectory, and we denote the set of all trajectories of (1.1) by 7. Hypothesis (H2)
ensures that the zero trajectory (0,0) € T is always a trajectory of (1.1). Obviously, every
trajectory is a maximally-defined pre-trajectory, and thus, 7 C 7. If T = T, then we say
that (1.1) is forward-complete.

We note that the above terminology applies in the situation wherein f is independent of the input
variable, that is, f(z,d) = f(x). Indeed, let g : R™ — R"™ be locally Lipschitz with g(0) = 0.
Recall that the zero trajectory of the differential equation

& =g(x), (2.2)

is called globally exponentially stable (GES) if T = T and there exist k,r > 0 such that every
trajectory x of (2.2) satisfies

lo(t + )l < ke™™|lz(r)] ¥t 7 >0. (2.3)

In this case, we simply write that (2.2) is GES. (We note that since (2.2) is autonomous, the
estimate (2.3) is satisfied if the inequality holds for 7 = 0.) The next result is a characterisation
of the GES property, and includes a converse Lyapunov theorem. It is a key ingredient in
proving the desired characterisation of exponential ISS, Theorem 3.4. Before stating the result,
we recall the definition of a GES Lyapunov function for (2.2).

Definition 2.1. A continuously differentiable function V : R™ — R, is called a GES Lyapunov
function (for (2.2)) if there exist positive constants ai, ag and ag such that

a]z|? < V(2) < agllz||*> VzeR™, (2.4a)



(VV(2),9(2)) < —a3V(z) VzeR". (2.4b)

Theorem 2.2. Consider (2.2) and assume that g is globally Lipschitz with g(0) = 0. Then T =
T and the following statements are equivalent.

(1) (2.2) is GES.
(2) There exist a GES Lyapunov function for (2.2), V, and a positive constant ay such that

IVV) < aallz]l ¥z € R™. (2.5)

(3) There exist p € (0,00) and oy, > 0 such that every trajectory x of (2.2) satisfies
t+7
/ [z(s)[[P ds < apllz(r)[P Vi, 72>0. (2.6)
.

4) For every p € (0,00), there exists o, > 0 such that every trajectory x of (2.2) satis-
P

fies (2.6).

Theorem 2.2 combines known results from the literature. Indeed, the equivalence of state-
ments (1) and (2) is contained in [17, Theorem 11.1, p.60], as well as [2, Theorem 1, Remark
6] and [16, Theorems 4.10, 4.14].

The integral characterisation of GES, namely the equivalence of statements (1) and (3), follows
from [30, Theorem 2] (which considers more general differential inclusions). The equivalence of
statements (1) and (3) in the specific case that p = 2 essentially appears in [20, Proposition
1]. Tt is clear that statement (1) implies statement (4), which in turn implies statement (3).
Statements (1) and (3)/(4) (with p > 1) are equivalent for strongly continuous operator semi-
groups associated with linear evolution equations on Banach spaces, where this result is known
as the Datko-Pazy Theorem; see, for example [5, Theorem 1.8 p. 300].

By way of further remarks, the assumption that g is globally Lipschitz is imposed in Theo-
rem 2.2 to ensure that the gradient of V is linearly bounded, that is, so that (2.5) holds. If
the assumption that g is globally Lipschitz is replaced by g is locally Lipschitz and satisfies the
linear bound condition
o)
p

< 00,

(which together are weaker than g being globally Lipschitz), then the equivalence of state-
ment (1) and the existence of a GES Lyapunov function for (2.2) appears in [10, Theorem 3.11,
p.167].

3 The exponential ISS property

The following definition underpins the present section.

Definition 3.1. The zero trajectory of (1.1) (or just (1.1)) is said to be exponentially input-
to-state stable (ISS) if T = T, and there exist positive constants L, A such that every trajec-
tory (d,z) of (1.1) satisfies (1.2). o



Associated with the concept of exponential ISS is that of a so-called exponential 1SS Lyapunov
function for (1.1), namely, a continuously differentiable function V : R® — Ry and a; > 0, i €
{1,2,3,4}, such that

ar||z|? < V(2) < agz||*> VzeR", (3.1a)

and

(VV(2), f(z,w)) < —azV (2) + asl|w||* V¥ (z,w) € R™ x R?. (3.1b)
The next lemma is routinely established by adjusting arguments from, for example, [19, Theorem

5.41]. The proof is thus omitted.

Lemma 3.2. Assume that [ satisfies (H1) and (H2). If (1.1) admits an exponential 1SS
Lyapunov function, then (1.1) is exponentially ISS.

The following definition is inspired by [15, Definition 5].

Definition 3.3. The zero trajectory of (1.1) (or just (1.1)) is said to have linear state/input-
to-state (SIS) L?-gain if T = T and there exist oy, az > 0 such that every trajectory (d,z)
of (1.1) satisfies

2] L2747y < cnllz(T)]| + a2lldl 2 pry VE T 2>0. o

As we shall see, one characterisation of the exponential ISS property is in terms of the concept
of weak robust exponential stability, which we discuss next. It will be convenient to collect a
certain subset of pre-trajectories of (1.1), namely

7—D = {(d,x)e7~’ : dEMD},

where D C RY is non-empty and compact, and M p denotes the set of measurable d : Ry — D.
Clearly, Mp C L™®(R,,R?). The set of all trajectories in Tp is denoted by Tp. Given such D,
consider the time-varying differential equation (1.1) where d € Mp. We call (1.1) uniformly
globally exponentially stable (UGES) with respect to D if Tp = Tp and there exist k,r > 0 such
that, for all d € Mp, every trajectory (d,z) of (1.1) satisfies (2.3). Note that this definition
requires that f(0,d) = 0 for all d € D and so is a different stability notion for (1.1) to that of
exponential ISS.

Now consider the following time-varying differential equation

&= f(z,do(z)), (3.2)

where ¢ : R®™ — Ry is locally Lipschitz and d € Mp, with D C R? denoting the closed
unit ball centred at zero. We let Tp(¢) and Tp(¢) denote the sets of pre-trajectories and
trajectories associated with (3.2), respectively, where d € Myp. It is clear that if (d, x) € Tp(¢),
then (¢(x)d,x) € T. We recall from [26, p. 356] that (1.1) is called weakly robustly stable if
there exists positive definite, radially unbounded, infinitely-differentiable! ¢ such that (3.2) is
uniformly globally asymptotically stable (UGAS) in the sense of [26]. We say that (1.1) is
weakly robustly exponentially stable if there exists ¢ of the form ¢(z) = al|z||, for some a > 0
and all z € R" such that (3.2) is UGES with respect to D = D.

As is noted in [27], for general locally Lipschitz ¢, the differential equation (3.2) need not be
forward-complete, even if (1.1) is. The regularity assumed on f and ¢ in the main results of
this section in fact ensures that Tp(¢) = Tp(¢), as shall be shown in Lemma 3.6.

The following theorem is a characterisation of the exponential ISS property, and is the main
result of this section.

LA similar definition is used in [27, p. 1291] where the function ¢ is assumed only to be locally Lipschitz.



Theorem 3.4. Consider the controlled differential equation (1.1) where f satisfies (H1), (H2)
and

(H3) z+— f(2,0) is globally Lipschitz;

(H4) w— f(z,w) is globally Lipschitz, uniformly with respect to z € RY.

Define g : R™ — R™ by g(2) := f(2,0) for all z € R™. The following statements are equivalent.
(1) (1.
(2)
(3)
(4)
(5)

A sufficient condition for (H3) and (H4) is that the function f determining (1.1) is globally
Lipschitz. The converse is false, however, as even in the scalar case n = ¢ = 1 a function of the
form

is exponentially ISS.

1.1) admits an exponential ISS Lyapunov function.

1)
)
1.1) is weakly robustly exponentially stable.
1.1) has linear SIS L*-gain.

)

(
(
(
(

2.2) 1s globally exponentially stable.

FRxR—=R, f(zyw):=¢(z)w

where ¢ : R — R is bounded and differentiable, but with unbounded derivative, satisfies (H3)
and (H4) but is not globally Lipschitz.

Under the assumption that f is globally Lipschitz, it is known that GES of the uncontrolled
differential equation (1.1) is sufficient for ISS of (1.1), see [16, Lemma 4.6, p. 176]. There
the author does not explicitly conclude that the exponential ISS property holds, but it is a
consequence of their argument. The upshot is that, for “Lipschitz systems”, exponential ISS
of (1.1) is equivalent to GES of the uncontrolled differential equation (1.1) — a feature known
to be true of stable linear control systems, but not true of nonlinear control systems in general.

By way of related results, [15, Theorem 2] states that if (1.1) has linear L?-gain, meaning there
exist ay € K and ag > 0 such that for all trajectories (d,z) of (1.1), it follows that

12l z2(revr) < Qr(lz(D)]) + e2lldl Loy VE, 720,

then (1.1) is ISS. Conversely, [15, Theorem 2] also gives that if (1.1) is ISS, then there exists a
diffeomorphic change of coordinates such that the transformed version of (1.1) has linear L2-
gain. ISS is equivalent to the weak robust stability property by [26, Theorem 1], and it is this
latter property which plays a crucial role in [26] in establishing that the existence of an ISS
Lyapunov function is necessary for the ISS property. Here we see that equivalence holds for the
exponential versions of these properties.

The paper [27] contains a number of further characterisations of the ISS property, roughly in
terms of a range of stability- and attractivity-type assumptions. Theorem 3.4 shows that the
situation considered here is much simpler.

As is the case with characterisations of stability properties involving Lyapunov functions, the
main technical difficulty in establishing Theorem 3.4 is establishing the necessity of an expo-
nential ISS Lyapunov function. The “heavy lifting” in the proof given is performed by the
characterisation of global exponential stability, Theorem 2.2, and the following result which es-
sentially states that exponential ISS Lyapunov functions for (1.1) are precisely GES Lyapunov
functions for the corresponding uncontrolled differential equation. This brings us to the key



reasons we impose global Lipschitz assumptions in (H3) and (H4). The first is to invoke The-
orem 2.2 to ensure the existence of V satisfying (2.4), with linearly bounded gradient (2.5) as
well, and the second is to facilitate the proof of Lemma 3.5 below.

Lemma 3.5. Consider (1.1), assume that f satisfies (H1)—-(H4), and define g(z) := f(z,0)
for all z € R™. An exponential ISS Lyapunov function for (1.1) is a GES Lyapunov function
for (2.2). Conversely, a GES Lyapunov function for (2.2) satisfying (2.5) is an exponential 1SS
Lyapunov function for (1.1).

The remainder of this section is dedicated to proving Theorem 3.4. We shall prove a cycle of
equivalences, and record the more involved steps as preliminary lemmas. We begin with a proof
of Lemma 3.5, the essence of which is present in the proof of [16, Lemma 4.6, p. 176]. However,
in [16] the connection between the Lyapunov functions is not made explicit and it is assumed
that f is globally Lipschitz.

Proof of Lemma 3.5. The first claim is immediate by taking d = 0 in (2.4). Note that the
linearly bounded gradient condition (2.5) is not required for a GES Lyapunov function. Con-
versely, let continuously differentiable function V : R®™ — R and positive constants a1, a2, as
and as4 be such that (2.4) and (2.5) hold for g(z) := f(z,0), which is globally Lipschitz by
hypothesis (H3). In light of (2.4a) it is clear that the function V satisfies (3.1a).

To establish (3.1b), we simply estimate that

(VV(2), f(z,w)) = (VV(2), f(2,0)) + (VV(2), f(z,w) = f(2,0))
—azV(z) + [[VV ()| - [ (z,w) = f(z 0)]
—a3V(z) + asL|z||||w]] ¥V (z,w) € R" x R?, (3.3)

<
<

where we have used hypothesis (H4), namely that w — f(z,w) is globally Lipschitz, uniformly
with respect to z € R™, with L > 0 a Lipschitz constant. A routine quadratic inequality
applied to the final inequality above, combined with the lower bound in (2.4a), yields the
inequality (3.1Db). O

Lemma 3.6. Consider (3.2) and assume that f satisfies (H1)~(H4), and that ¢ is globally
Lipschitz and zero at zero. Then Tp(¢) = Tn(p).

Proof. Let Ly, Ly and L3 be Lipschitz constants for z — f(z,0), w — f(z,w) and ¢, respectively.
The claim follows from [19, Proposition 4.12] once we note that

1 (2, d(®)p(2) | < [1f (2, 0)[ + 1f (2, d(t)¢(2)) — f(2,0)[| < La[z]| + Lalld(t)o(2)]
< (L1+L2L3)||Z|| V(d,Z) € Mp xR", a.a.t>0. U

Lemma 3.7. Assume that f satisfies (H1)—(H4). If (1.1) is ezponentially 1SS, then (1.1) is
weakly robustly exponentially stable.

The proof of Lemma 3.7 uses a technical result, Lemma A.1, which is stated and proven in the
Appendix.

Proof of Lemma 3.7. Assume that (1.1) is exponentially ISS, and let L, A > 0 be such that the

exponential ISS estimate (1.2) holds. Define ¢ : R® — Ry by ¢(z) := 5|z for all z € R". We



claim that (3.2) with this choice of ¢ and D :=D is UGES. An application of Lemma 3.6 yields
that Tp(¢) = Tn(¢). Let (d,z4) € Tn(¢). By construction, we have

Hd(t)gi) H <37 ||:c¢ for almost all ¢ > 0. (3.4)
Since (d¢(z4),x4) € T, invoking (1.2) and (3.4), we estimate that
lzg(s + 1)l < Le™**[lag(r)]| + Ll dp(@)l| Lo (rr+5)
< Lol + 3ol imgrran Vo720,
from which we infer that
2]l Loe (r,00) < 2L{Jzg ()| V7 =0, (3.5)

Now fix 7 > 0 and s > 0 sufficiently large so that p := Le ™" 4+1/2 < 1. We use (1.2) and (3.4)
again to estimate that

lzo((k + 1)k + s+ 7)|| < Le ™ |ag(kk + 7 + 5)]|
1
+ §||$¢”L<>°(kn+r+s,oo) Vs=>0,VkeZy. (3.6)
Setting
<(k) = Hm¢>HL°°(kn+T,oo) VEke Z+7

and maximising both sides of (3.6) over s > 0 gives

C(k+1) < Lem™ (k) + 50(K) = pC(K) VE € Z,

where Z is the set of nonnegative integers. An application of Lemma A.1 withn=m =1,5 =
p € (0,1) and v = 0 gives \g > 0, 'y > 1 such that

lzg(t + )| < Tre*|¢(0)]| < 2LT1e Jzg(7)]| ¥t >0,

where the final inequality follows from (3.5) and the definition of (. The above estimate shows
that (3.2) is UGES with respect to D = D and ¢ of the form ¢(z) = al|z| for positive a.
Therefore, we conclude that (1.1) is weakly exponentially robustly stable. O

Lemma 3.8. Assume that f satisfies (H1)—(H4). If (1.1) admits an exponential ISS Lyapunov
function, then (1.1) has linear SIS L?-gain.

Proof. By Lemma 3.2, it follows that 7 = 7. Let (d,z) € T. The inequality (3.1b) yields that

;tV( (1)) < —azV(x(t)) + asl|d(t)||* for almost all t > 0.

Using the variation of parameters formula, and a suitably modified version of [19, Lemma 5.43],
the inequality

S+T
V((r +5)) < eV (x(r)) + ag / e+ |a(p)|2dp Vs,7 >0,



holds. Invoking the bounds in (3.1a) for V and integrating the above between s = 0to s =t > 0,
for fixed 7 > 0, we obtain

t+71 t S+T
a / o) ds < 22 a(r) | + a / 0 / ST ()P dpds.  (3.7)
T s=0 Jp=1

Routine calculations interchanging the order of integration show that

t+1
/ / ¢35+ D) d(p) |2 dp ds = / / ¢=o3(+7D)||d(p) |2 ds dp
s=0 P

S ;3||d|’L2(T7t+T) .

The conjunction of (3.7) and (3.8) gives that

||x||%2(7',t+7') < anlz(7)]* + a2||d||%2(7,t+7') Vit,T>0,
where a; := as/(ara3) and ag := ay/(a1az). We conclude that (1.1) has linear SIS L?-gain. [J
Proof of Theorem 3.4. Recall the statements of the result:

(1) (1.1

(2)

(1.1) is exponentially ISS.
(1.1)

(3) (1.1) is weakly robustly exponentially stable.
(1.1)
(2.2)

1.1) admits an exponential ISS Lyapunov function.

1.1) has linear SIS L?-gain.

(4)
(5)

2.2) is globally exponentially stable.

The proof is a conjunction of the earlier lemmas and the following steps.
STEP 1. That statement (3) is sufficient for statement (5) follows immediately by taking d = 0
n (3.2).

STEP 2. If statement (5) holds, then an application of Theorem 2.2 is sufficient for the existence
of a GES Lyapunov function for (2.2) which satisfies (2.4). Invoking Lemma 3.5 now yields an
exponential ISS Lyapunov function for (1.1), that is, statement (2) holds.

STEP 3. That statement (4) is sufficient for statement (5) again follows by taking d = 0, only
now invoking statement (3) of Theorem 2.2 with p = 2.

Summarising the above lemmas and steps, we have proven the first cycle:

(2) Lemma 3.2 (1) Lemma 3.7 (3) STEP 1 (5) STEP 2 (2) ‘
We have also proven
(2) Lemma 3.8 (4) and (4) STEP 3 (5) :

which completes the proof. O



We comment that there is a characterisation of the UGES property for (1.1) which parallels
Theorem 2.2 and is essentially an exponential version of the main result of [18], and also has
some overlap with [21, Theorem 2]. The UGES characterisation may be used instead of Theo-
rem 2.2 to prove Theorem 3.4. This approach is reminiscent of that taken in the early literature
(notably [26]) on characterisations of the ISS property. In particular, to exploit a characterisa-
tion of UGES as the basis for the construction of an exponential ISS Lyapunov function, the
weak robust exponential stability property in statement (3) of Theorem 3.4 plays a key role.

We conclude this section with a characterisation of the so-called local exponential ISS property.
Recall that the (uncontrolled) differential equation (2.2) is called locally exponentially stable if
there exist positive constants d, k, r such that

{zeT :|lz0)l<s} T,

and every trajectory z of (2.2) with ||z(0)|| < ¢ satisfies (2.3).

The natural generalisation of local exponential stability, and associated Lyapunov functions, to
the setting of controlled differential equations is formulated below. For 6 > 0, we let B(d) C R”
denote the open ball of radius § centred at zero.

Definition 3.9. (1) The zero trajectory (0,0) of (1.1) (or just (1.1)) is said to be locally
exponentially input-to-state stable if there exist positive constants §, L, A such that

{da)eT : |z +ldl= <6} ST,

and every trajectory (d,x) of (1.1) with ||z(0)|| + ||d||L~ < J satisfies (1.2).

(2) Given § > 0, a continuously differentiable function V' : B(d) — R is called a local expo-
nential ISS Lyapunov function (for (1.1)) if there exist constants a; > 0, ¢ € {1,2,3,4} such
that the inequalities in (3.1) hold for all z € R™ and w € RY such that ||z|| + [Jw| < . o

Our main result on the local exponential ISS property is Proposition 3.11 below, and is a local
analogue of Theorem 3.4. Indeed, when the right-hand side of (1.1) is continuously differen-
tiable on a neighbourhood of zero, then the local exponential ISS property is equivalent to
the existence of a local exponential ISS Lyapunov function and, moreover, to local exponential
stability of the corresponding uncontrolled differential equation. In other words, the known
equivalence from [27, Lemma 1.1] of local ISS and asymptotic stability of the zero trajectory of
the corresponding uncontrolled differential equation is also true in the exponential setting. Our
approach follows that of the section so far, only leveraging the characterisation [2, Theorem 1]
of local exponential stability, rather than invoking Theorem 2.2.

The following lemma is a local version of Lemma 3.2 and is routine to prove.

Lemma 3.10. Assume that f satisfies (H1) and (H2). If (1.1) admits a local exponential 1SS
Lyapunov function, then (1.1) is locally exponentially ISS.

Proposition 3.11. Consider the controlled differential equation (1.1) and assume that f sat-
isfies (H1), (H2) and

(H5) f is continuously differentiable on a neighbourhood of zero.
Define g : R — R™ by g(2) := f(2,0) for all z € R™. The following statements are equivalent.
(1) (1.1) is locally exponentially ISS.

(2) (1.1) admits a local exponential ISS Lyapunov function.

10



(3) (2.2) is locally exponentially stable.

Proof of Proposition 3.11. An application of Lemma 3.10 yields that statement (2) is sufficient
for statement (1) which, in turn, is sufficient for statement (3) by simply taking d = 0. Now
assume that statement (3) holds. Hypothesis (H5) ensures that the assumptions of [2, Theorem
1] are satisfied, and an application of this result guarantees the existence of § > 0, continuously
differentiable function V' : B(d) — R and positive constants a;, i € {1,2, 3,4}, such that (2.4)
holds for all z € R with ||z|| < .

Invoking hypothesis (H1), there exists a positive constant Ls such that

wp 1w — 1.0

< Lgs.
Izl lwll <5 [|w]]
w#0

In light of the above bound, the estimates (3.3) remain valid with L replaced by Ls and now
for all (z,w) € R™ x R? with ||z]| + ||w| < . Consequently, we conclude that V is a local
exponential ISS Lyapunov function for (1.1). ]

4 Small-gain conditions for exponential ISS of feedback systems

Here we consider the output feedback connection of two nonlinear systems of controlled and
observed differential equations of the form

= f(z,u,d), (4.1a)
y = h(x,u,d), (4.1b)

where, as usual, x is the state variable, u is a feedback variable, d is an external input, and y is
the measured output. These are assumed to take values in R, R™, R? and RP, respectively. For
typographical reasons, we write column vectors inline as pairs — (x1, x2) and so on. We extend
the hypotheses (H1) and (H2) from Section 2 to f in (4.1a) so that, in particular, f(0,0,0) = 0.
We shall assume that h satisfies

(F1) h is locally Lipschitz with h(0,0,0) = 0.

For (u,d) € LS (Ry,R™ x RY), we define pre-trajectories of (4.1a) as in Section 1 with d
replaced by (u,d), and denote the set of maximally-defined pre-trajectories by 7. Further,
for 0 < 0 < o0, we call (u,d,z,y) where y : [0,0) — RP, a pre-trajectory of (4.1) defined
on [0,0) if (u,d, ) is a pre-trajectory of (4.1a) on [0,0) and (4.1b) holds. We denote the set of
maximally-defined pre-trajectories of (4.1) by O. Pre-trajectories of (4.1a) and (4.1) which are
defined on [0, 00) are called trajectories, the sets of which are denoted by 7 and O, respectively.

Observe that O = O whenever T = T.

The key stability concepts in the current section are presented in the following definition.

Definition 4.1. (1) The zero trajectory of (4.1) (or just (4.1)) is called exponentially input-
to-output stable (I0S) if O = O and there exist positive constants K, M, N such that every
trajectory (u,d,z,y) € O satisfies

ly(t + 73w, d)| < Ke? " la(r)[| + Mllull oo r iy + Nl oo (rpsry  VE,7 20, (4.2)

We call the constant M in (4.2) the input-output gain.
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(2) We say that the zero trajectory of (4.1) (or just (4.1)) has linear state/input-to-output
(SIO) L?-gain if O = O and there exist positive constants a, 3,7y such that every trajec-
tory (u,d,z,y) € O satisfies

1Yl 2r4r) < alle(D)l + BllullLo(rprry + Al 2(rp4m) VET 20, (4.3)

We call the constant 3 in (4.3) the L2-input-output gain. If y = x, then (4.1a) is said to have
linear SIS L?-gain. o

Consider now two systems of the form (4.1)

1 = fi(x1,u1,dy), Cb2=f2($27U27d2)7} (4.4)

y1 = hi(x1,u1,d1), y2 = ha(x2,u2,d2),

where the state-, input-, external input- and output-spaces have dimensions n;, m;, ¢; and p;,
respectively, for i € {1,2}. Assuming that m; = py and mg = pi, the standard feedback
connection

uy =y and us =1y, (4.5)

in (4.4) leads to the feedback control system

(11'61) _ (f1($1,y2,d1)) (y1> _ <h1(x1,y2,d1)> (4.6)
o fo(zo,y1,d2) ) \y2 ha(z2,y1,d2)) ‘
We refer to the individual versions of (4.1) in (4.6) as subsystems.

Given (di,d2) € LS (Ry,R? x R%), if there exist 0 < o < oo, locally absolutely continuous
functions x; : [0,0) — R™, and locally essentially bounded functions y; : [0,0) — RP: for i €
{1,2}, such that (4.6) holds almost everywhere on [0,0), then we call (di,ds, x1,22,y1,y2) a
pre-trajectory of (4.6) on [0,0). The set of all maximally-defined pre-trajectories is denoted
by F. As usual, a pre-trajectory of (4.6) defined on [0,00) is called a trajectory of (4.6), the
set of which is denoted F. Given a (pre-)trajectory of (4.6), it is clear that (d;, ys—i, x;,y;) is a

(pre-)trajectory of (4.1) for i € {1,2}.
The feedback connection (4.6) is called well-posed if, for all (di,d2) € LS (R4, R x R%)

loc
and all (z},73) € R™ x R™, there exist unique maximally-defined pre-trajectories of (4.6)
with 2;(0) = x} for i € {1,2}. Some additional assumptions are required to ensure well-
posedness, and we comment that exhaustively detailing sufficient conditions for this property
is not the primary focus here. A bespoke approach will usually be required in specific contexts.

Presently, the following well-posedness result is taken from [13, Example 1.5.1, p.44].

Lemma 4.2. Given the feedback system (4.6), assume that both subsystems satisfy (H1), (H2)
and (F1). If the hypothesis

(F2) forall z1, z9, w1, we € R™ xR™ xR1 xR there exist unique solutions v; = g;(21, z2, w1, ws),
to the pair of algebraic equations vi = hy(z1,v2,w1) and vy = ha(z2,v1,ws), and the func-
tions g; are locally Lipschitz;

holds, then the feedback system (4.6) is well-posed.

A special case wherein hypothesis (F2) is satisfied is when either h; or hy is independent of
their second variable. If h; does not depend on wuj, then the equations in (F2) are solved
by g1 = hl(zl,wl) and g2 = hg(ZQ,hl(Zl,wl),wg).
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Proof of Lemma 4.2. The hypotheses imposed, including that g; are locally Lipschitz from (F2),
ensure that the system of controlled nonlinear differential equations

(9’61) _ <f1(361792(9017$27dl?d2)vd1)) , (4.7)

o fo(x2, g1(21, 2, d1, d2), d2)
has locally Lipschitz right-hand side. Therefore, given (dy,ds) € LS (R4, R xR%) and (2}, 23) €

loc
R™ x R™ let ((dy,ds2), (z1,22)) denote the unique, maximally-defined pre-trajectory of (4.7)
satisfying x;(0) = ) for i € {1,2}, the existence of which follows from arguments standard
in ODE theory. Suppose that the pre-trajectory is defined on [0,0). For i € {1,2}, de-

fine y; : [0,0) — RPi by

yi(t) := gi(z1(t), x2(t), d1(t),d2(t)) for almost all ¢t € [0,0).
In light of the algebraic condition in (F2), it is clear that (di,ds,z1,22,y1,%2) is a unique,
maximally-defined pre-trajectory of (4.6), establishing well-posedness. O
The following theorem is the main result of this section.

Theorem 4.3. Consider the feedback connection (4.6). Assume that both subsystems sat-
isfy (H1), (H2), and (F1), and are exponentially 1SS and exponentially I0S with input-output
gains M; for i € {1,2}. Assume further that (F2) holds. If MMy < 1, then F = F and
the feedback connection is exponentially I0S (exponentially ISS) from external input (di,ds) to
output (y1,y2) (to state (x1,x2).)

Note that exponential ISS of the subsystems (4.1a) means that, for i € {1,2}, the forward-
complete property 7; = 7; holds and that there exist positive constants L;, \; such that every
trajectory (u;, d;, z;) € T; satisfies

i+ 7, A < L (e M as(r) |+ (st Az (reen) YET 20, (48)

Similarly, exponential IOS of the subsystems (4.1) means that, for i € {1,2}, O; = O; and there
exist positive constants K;, M;, N; such that every trajectory (u;, d;, zi,y;) € O; satisfies

lyi(t + 75 w3, di)|| < Kie " ai(7) || + Milluill oo (rp47) + Nilldill oo (rary Y57 200 (4.9)
Proof of Theorem 4.5. Let L;, K;, M;, N;,~;, \i > 0 be as in the estimates (4.8) and (4.9) for
subsystem i € {1,2}. Fix x > 0 sufficiently large so that p(S) < 1, where

0 M, Kie M- 0

M, 0 0 Kae 712k
S = 0 L, L 0 , (4.10)
Ly 0 0 Loe—A2F

which is evidently possible by continuity, as the spectral radius of the above matrix in the limit
as k — oo is equal to VM1 My € (0,1).

Assume first that d; and dy are essentially bounded. Let (di,da,x1,22,y1,y2) € F denote a
trajectory of (4.6). (We shall show that F = F later.) We use (4.5) as a definition of u;
and, for notational convenience, we write y;(t) = y;(t;7:(0), us, d;) and v;(7) := ||dil| Loo (r,00)
for i € {1,2} and 7 > 0. We set

(11 _ (T [y
T = <x2> , Y= <x2> and d:= <d2> .
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We first derive an L estimate for y. Maximising (4.9) over t € [0,T] for T' > 0 yields
19ill oo (rrsery < Killi ()| + Milluill oo (rrqory + Nivi(7) V7 >0, (4.11)
Inserting the estimate (4.11) for ||y2||pec(r,00) into that for ||y e (r00) gives

1l oo (rrrry < Knllzn (1) || 4+ My (Ka|z2(7) || + Mallyil poo (rr11) + Nava(7))
+N1U1(7‘) VT Z 0,

and so, as M1 Ms < 1, we have

1
HylHLOO(T,T-‘rT) < m(Kl|’$l(7)H + MK ||z2(7)]|

+N1’U1(T)+M1N2U2(7‘)> VTZO.

Interchanging the roles of i = 1 and i = 2, we obtain the corresponding estimate for ||ya|| oo (7 ~4-7)-
Letting T — oo, we conclude that there exist K3, M3 > 0 such that

1Yl oo (r00) < Kllz(T)]| + Nalld]| Lo (r.0) V7 2 0. (4.12)
The exponential ISS property (4.1a) gives
HxiHLOO(T,oo) < LZ(sz(T)H + H(y3*i’di)HL°°(7—,oo)) V7>0. (413)
Combining (4.12) and (4.13), we see that there exist positive constants K4, Ny such that
max { |2/ L (r,00), 1Yl oo (r,00) b < Kallz(m)l| + Nalldl| poe (r,00) ¥ 7 > 0. (4.14)
Now fix 7 > 0. For k € Z4, we use (4.9) to estimate that

Hyl((k + 1)/1 +7+ 8) H < Kie_’ym ‘xl (kH + 7+ 8) H + MiHy3—iHLOO(kH-i-s-i-T,(k—i-l)n-i-s—i-T)
+ Nijvi(1) Vs>0, Vie{l,2},

and so, maximising both sides over s > 0 gives,

pi(k +1) < Kie7""qi(k) + Mipz—i(k) + Nivi(r) Vk € Zy, Vie{1,2}, (4.15)
where

P8 = [l sy 810 00 = [0l my VR E T € 12)
The exponential ISS estimates (1.2) give that, for all ¢ € {1,2}, all k € Z; and all s > 0

las((k+ L+ 7 + ) < Li(e ™ stk + 7 + )+ -l o (o (ot ) + 05() -
Maximising over s > 0 gives
qi(k 4+ 1) < Lie % q;(k) + Lips_i(k) + Livi(t) Vke€Zy, i€ {1,2}. (4.16)

Writing the combination of (4.15) and (4.16) in linear system form yields, for all k € Z,

P1 (k‘ + 1) 0 M Kiemk 0 pl(ki) N 0

pQ(k + 1) < My 0 0 Koe 72k pg(k) n 0 Ny <’U1(T)>
ak+1) | =1 0 Ly Lie N 0 q1 (k) Ly 0 | \w(n))"
QQ(k + 1) Lo 0 0 LQ@i/\Q,{ QQ(k) 0 Lo
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Setting

p1 Ny O
P1 0 NQ Ul(T))
= d = ,
p q1 an v L1 0 ('UQ(T)
q2 0 Lo

the above inequalities read
pk+1) < Spk)+v VkeZi,

where S is as in (4.10). Since p(S) < 1, an application of Lemma A.1 yields the existence
of I'y, 0 > 0 such that

Jitt + ), it + 0l < Ta (e Ip()) + Jlol}) VE>0,Vie (1,2}  (417)
In light of (4.14), the definitions of p and v, and (4.17), we conclude that

HJ:(t-f—T)H,

y(t+ 0| S T( Yz (D)) + ldlzw o) VE20, (4.18)

for some constant I'. By causality, it is clear that the term ||| zoc (7,o0) in (4.18) may be replaced
by [|d|| oo (r,t4+)- Finally, in light of the proof of Lemma 4.2, to show that F = F it suffices to
show that, given a pre-trajectory of (4.7) with state component z : [0,0) — R™ x R"2, then x
is bounded on [0,0). This follows from the arguments at the start of the present proof, up
to (4.13), with 7 = 0 and T' = 0. This completes the proof. O

We reiterate that assumption (F2) has been imposed to ensure well-posedness of the feedback
system (4.6) (and, in conjunction with the other hypotheses of Theorem 4.3, to guarantee the
forward-complete property F = F). Theorem 4.3 remains true if hypothesis (F2) is replaced
by another hypothesis which ensures well-posedness and F = F. We further comment that the
above proof as given extends to the case that f; and h; are explicitly time-varying.

The following corollary of Theorem 4.3 states that the cascade connection of two exponentially
IOS/ISS systems is exponentially IOS/ISS. The cascade connection is depicted in Figure 4.1
below and comprises two systems of the form (4.1) with the single additional equality us = y;.

dy \_) d2 \_)
21 = fi(x1,u1,d1) 2 = fo(x2,uz,d2) Y2

uy Y1 = u2 —
——— y1 = ha(z1,u1,d1) S Y2 = ha(z2,u2,dz)

Figure 4.1: Cascade connection

Corollary 4.4. Consider the cascade connection of two systems of the form (4.1) via ua = yi.
Assume that both subsystems satisfy (H1), (H2) and (F1). If both subsystems are exponentially
I0S and exponentially 1SS, then the cascade connection is exponentially I0S (exponentially ISS)
from external input (u1,dy,ds) to output (y1,y2) (to state (x1,x2).)

Proof. We shall apply Theorem 4.3 by writing the cascade connection as a feedback connection.
For which purpose, define dy = (di,u1) and introduce the “phantom” input variable @; by
setting 3 B B

Ji(w1, 0y, dy) i= fi(wr,dy).
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The feedback connection given by the equations us = y; and 41 = yo leads to a feedback system
of the form (4.6) with fi, u; and d; replaced by f1, @ and dy, respectively. Observe that the
corresponding input-output gain M; in the first subsystem is equal to zero. Hence, the small-
gain condition MlMQ = 0 < 1 is satisfied. Moreover, h; = hq(z1, ch) is independent of #; and,
therefore, hypothesis (F2) is satisfied. An application of Theorem 4.3 completes the proof. [

Our next result provides a small-gain condition under which the feedback connection (4.6)
inherits the linear SIO/SIS L2-gain property from its subsystems.

Proposition 4.5. Consider the feedback connection (4.6). Assume that both subsystems sat-
isfy (H1), (H2), and (F1), and that both subsystems have linear SIS and SIO L?-gains, with L?-
input-output gains B; fori € {1,2}. Assume further that (F2) holds and that F = F. If B182 <
1, then the feedback system (4.6) has linear SIS and SIO L?-gains.

If f; satisfies hypotheses (H3) and (H4) for ¢ € {1,2}, then, by Theorem 3.4, the subsystems
having linear SIS L?-gains is equivalent to exponential ISS of the subsystems. Additionally,
if the functions g; in hypothesis (F2) satisfy (H3) and (H4), then, again by Theorem 3.4, the
feedback system (4.6) having linear SIS L2-gain is equivalent to the feedback system (4.6) being
exponentially ISS.

The proof of Proposition 4.5 is elementary, and so only an outline is provided. Note that the
subsystems (4.1a) having linear SIO L2-gains means that O; = O; and there exist positive
constants K;, M;, N; such that every trajectory (u;, d;, x;,y;) € O; satisfies

yill L2z pary < Qillzi(DI + Billwill p2(re47) + villdill 2(r 04y V72> 0. (4.19)

The feedback connection considered means that the term [|y;||z2(r4-) appears on both sides
of (4.19), and the small gain assumption (15 < 1 readily affords by routine algebraic manipu-
lation the desired upper bound for ||y;||z2(r,¢4r)-

Theorem 4.3 is inspired by [11, Theorem 2.1] which, broadly, provides a small-gain condition
under which the output-feedback connection of two I0S systems is I0S. A key ingredient in
the proof of that result is [11, Lemma A.1]. Interestingly, this result cannot be strengthened in
general to produce an exponentially decaying estimate, as the next result shows. Therefore, it
seems that Theorem 4.3 cannot be established as a special case of [11, Theorem 2.1].

Lemma 4.6. For all positive constants K,~v,s >0 and L,u € (0,1), the continuous, nonnega-
tive function z : Ry — Ry given by

Ps
= — >
z(t) it0° Vt>0,

for sufficiently small P > 0 and o € N such that p® < L satisfies
2(t) < Ke s + L|z||pooqutyy Yt=0,

but does not decay exponentially ast — oo.

The proof of Lemma 4.6 is clear, and so we do not include it.

16



5 An example

As an example, we consider the application of Theorem 3.4 and Proposition 4.5 to a Lur’e
system — namely a nonlinear control system of the form

& = Az + BY(Cx + Dev) + Bev, (5.1)

where (A, B, C, Be, Do) € R?X% x R 5 RPX™ x R7X4 5 RPX4. The function ¢ : R? — R™ is
assumed to be locally Lipschitz, and v € LS (R4, R?) is an external input. For simplicity we
assume that A is Hurwitz (meaning all eigenvalues have negative real parts), and let G(s) :=

C(sI — A)7'B, so that G is the transfer function associated with the linear control system
described by A, B and C.

To fit (5.1) into the framework of Section 4, we view (5.1) as the feedback connection (4.6)
where

fl(xbul, dl) = ASL‘l + Buy + Bedl, hl(xl,ul,vl) = C.Tl , (52)
fg(.’L‘Q,UQ, dg) =0, hg(xg,UQ, dg) = ’l/J(UQ + Dedg) , (53)

with  := x; and d; = dy = v. The state space associated with the second subsystem in (5.3)
is the 0-dimensional trivial space {0}. Thus, fo maps {0} x R? x R? — 0. In particular, the
associated state variable is (always) equal to zero. Since the first subsystem (5.2) is linear, the
variation of parameters formula gives that

yi(s +7) = Cexy (1) + /T+S CeAlr+s=0) (Bui () + Bev(8))d8 Vs, 7> 0, (5.4)
T
and routine estimates of the above now give
11l 2(rpr) < arllzi(D) + Gl gellurll 2y + 1l Bedill2(rprry VE,720,  (5.5)
for some constants ay,v; > 0. Assuming that there exists G2 > 0 such that
W)l < Ballzll VzeR?, (5.6)
we evidently have that

lyellL2(rier) < BalluzllLo(riqry + B2l Ded2llL2(riqry VE, 72> 0.

Therefore, in light of (5.5) and (5.6), whenever the small-gain condition 52|/G||ge~ < 1 holds,
it follows from Proposition 4.5 that the Lur’e system (5.1) has linear SIS/SIO L2-gain. If v is
additionally globally Lipschitz (with arbitrary Lipschitz constant), then Theorem 3.4 guarantees
that the Lur’e system (5.1) is exponentially ISS from external signal v to state .

Furthermore, defining G : Ry — RPX™ by G(t) := Ce B and G, : Ry — RPXT by G(t) :=
Ce’'B,, it follows that (5.4) with 7 = 0 may be expressed as

y1(s) = Ce®21(0) + (G *u1)(s) + (Ge xv)(s) Vs>0,

where * denotes convolution. (For simplicity we take 7 = 0, the general case is treated by a
usual shift argument.) Taking norms in the above and invoking Holder’s inequality gives that

I () < Kre a1 (0)]] + Gl ey (Tl e o, + Wlle ) ¥ =0,
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for some positive scalars K and 7;. If the small-gain condition ||G|[ 11k, )82 < 1is satisfied, then
we conclude from Theorem 4.3 that the Lur’e system (5.1) is exponentially ISS from external
signal v to state z, without requiring that v is globally Lipschitz. Note that G = £(G) — the
Laplace transform of G, and since ||G|| g < [|G|[1(Rr,), this latter small-gain condition is more
conservative than f2||Gllg~ < 1. However, the equality |G|z~ = [|G| 1R, is possible, for
example, in the so-called single-input single-output (m = p = 1) setting where A is Metzler
(that is, all off-diagonal entries of A are nonnegative) and £B and +C' are componentwise
nonnegative vectors. Indeed, in this case we have that

|G(0)| < |Gz~ = sup
s€Cy

/R Gt dt] < |Gl sy = [GO0)]. (5.7)
+

(see [9, Example 3.7] for other classes of Lur’e system where the above equality holds.)

As an illustrative example, consider the state equations for a steam boiler model described in [7,
Example 3|. The model is of the form (5.1) with

2 0 0 0 1 0\ ©
1 -1 0 0 0 1

A=001f s o |- BEg] e=—00n],] (5.8)
0 0 04 —04 0 1

and does not contain the external signal v. The focus of [7, Example 3] is on asymptotic
stability of the Lur’e system (5.1) with the linear data as in (5.8). The nonlinear term
in (5.1) is assumed in [7] to be continuously differentiable, satisfy (0) = 0,

z

0<

1, 2#0 and —10<¢/(2) <10 V2z € [-100,100]. (5.9)

Since A is Metzler and evidently Hurwitz, and B, —C are componentwise nonnegative, we have
from (5.7) that
1Gll L2k, ) = 1G> = |G(0)] = 0.5167.

Therefore, the above analysis shows that, for any Be and D, and any locally Lipschitz ¢ which
satisfies
¥(2)

— P2 < —
z

with £y < 1.9355 = 1/|G(0)], the resulting Lur’e system is exponentially ISS. Although the
condition (5.10) on ¢ is global, and so not directly comparable with (5.9), it is significantly
weaker than the global version of (5.9) and does not require that 1 is continuously differentiable.

< By, VzeR\{0}, (5.10)
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A Appendix

We state and prove a technical lemma used in the paper. In words, the following lemma extracts
a continuous-time exponential ISS estimate from a discrete-time one.
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Lemma A.1. Fixn,m € N, 7 >0 and let kK > 0 be given. Given bounded functions z; : Ry —
R™ fori € {1,2,...,m}, define p: Z; — R} by

pi(k) == |lzill Lo (hngro0) VEEZy, Vie{1,2,...,m}.
If there exist a nonnegative matriz S € R™*™ with p(S) < 1 and v € R such that
pk+1) < Spk)+v VkeZi,

(componentwise inequality), then there exist T',6 > 0 such that
Jeitt + ) < T (e p(O)]l + o]} Ve >0, Vie {12, m}.

Proof. An induction argument gives that p satisfies the inequality

k—1
p(k) < S*p(0) + (Y-8 )v VheZy.
j=0

Therefore, as p(S) < 1, there exist v € (0,1) and I'g > 1 such that
Ip(k)|| < To(+*|Ip(0)]| + lvll) Yk € Z .

Then, choosing § > 0 and I' > I'g such that

0 < @(kln(b +1n(FFO)> VkeZy,

it follows that
I'\O,Yk < Fe—@(k-‘rl)fi < I\e—e(k1€+s) Vse [0’ IQ) )

For all t > 0, we have t = kk + s for some k € Z and s € [0, k), and so

zi(t + )l = l|z: (ks + 7+ 5)|| < pilk) < To(¥*[[p(0)] + [v]]) < T (e~ *=)[p(0)]| + [|v]|)
=T (e "pO)] +lv]l) Vie{1,2,...,m},

as required. ]
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