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Abstract: The impacts and benefits of thermal insulations on saving operational energy have been
widely investigated and well-documented. Recently, many studies have shifted their focus to com-
paring the environmental impacts and CO2 emission-related policies of these materials, which are
mostly the Embodied Energy (EE) and Global Warming Potential (GWP). In this paper, machine
learning techniques were used to analyse the untapped aspect of these environmental impacts.
A collection of over 120 datasets from reliable open-source databases including Okobaudat and
Ecoinvent, as well as from the scientific literature containing data from the Environmental Prod-
uct Declarations (EPD), was compiled and analysed. Comparisons of Multiple Linear Regression
(MLR), Support Vector Regression (SVR), Least Absolute Shrinkage and Selection Operator (LASSO)
regression, and Extreme Gradient Boosting (XGBoost) regression methods were completed for the
prediction task. The experimental results revealed that MLR, SVR, and LASSO methods outperformed
the XGBoost method according to both the K-Fold and Monte-Carlo cross-validation techniques.
MLR, SVR, and LASSO achieved 0.85/0.73, 0.82/0.72, and 0.85/0.71 scores according to the R2

measure for the Monte-Carlo/K-Fold cross-validations, respectively, and the XGBoost overfitted
the training set, showing it to be less reliable for this task. Overall, the results of this task will
contribute to the selection of effective yet low-energy-intensive thermal insulation, thus mitigating
environmental impacts.

Keywords: thermal insulation; embodied energy; global warming potential; machine learning
regression; environmental product declarations

1. Introduction

One of the most important and pressing needs of the future is key attention to decision-
making policies on the interplay between climate and energy. Materials produced from
where insulations are manufactured cause a significant adverse effect on the environment
due to being commonly from petrochemicals and energy-intensive phases [1]. The United
Nations Environment Programme estimated that buildings are responsible for about one-
third of the GHG emissions worldwide and consume 40% of the world’s global energy and
resources [2–4]. Mitigation attempts to reduce demand are focused on both user behaviours
and enhancing insulation properties [5–8]. Thus, insulation materials should be produced
in the most possible energy-efficient and sustainable ways. The emergence of the concept of
sustainability in the building sector gave rise to the production of insulation products made
from natural or recycled materials. Some of these insulation products are already present in
the market while others are at the early stage of production [1]. Today, low-energy buildings
and passive houses are undoubtedly the reference for many building designers and are
known for their reduced energy requirements and high envelope insulation levels [9].
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The role of thermal insulations for low-energy buildings cannot be overemphasised.
However, their well-known embodied components, i.e., the GWP, cannot be overlooked.
While new constructions are characterised by reduced operational energy consumption,
plenty of attention should be given to the embodied components such as the GWP and
Embodied Energy (EE) due to building materials and systems [1,10]. The EE impacts
are rooted in the environmental processes of exploiting raw materials and how the raw
materials are processed, manufactured, transported to a site, and constructed through-
out their whole life cycle [9]. The degree of these EE impacts has further relevance to
the performance of energy-efficient buildings [11–13]. Using the Life Cycle Assessment
(LCA) methodology, some authors showed that high-level thermal insulation in buildings
contributes significantly to the EE and GWP of the buildings [14].

Indeed, a measure of the differences in the environmental burden from EE in insula-
tion materials and their operational energy savings during their use stage is necessary for
their preferential selection. The choice for the application of building insulation materials
can be expressed as the ratio between their embodied burdens and the total amount of
impacts saved per year of the useful life of the material [9]. However, Biswas et al. [15]
demonstrated that operational savings dominate embodied burdens, especially for low-
thickness insulation materials. Whichever way, however, the evidence above shows the
adverse impacts of EE associated with thermal insulations on the environment. Regard-
less of the degree of such impacts, there is a necessity for continuous studies not only
on the operational savings but also on the degree of the embodied impacts of thermal
insulation materials.

Due to the wide availability of thermal insulation materials and their thermal prop-
erties, accurate prediction models are important in order to have a deep understanding
of their GWP. While predictive models intend to aid and accelerate the design process by
bypassing many time-consuming experiments, they are not meant to replace these experi-
mental methods. In fact, the foundation of predictive modelling is good-quality data that
come from experimental studies only [16]. Few studies have used machine learning (ML)
algorithms to predict the thermal properties (conductivity) of the most commonly used
construction materials. Sargam et al. [16] developed a supervised ML prediction model for
the thermal conductivity of concretes; Valipour and Bahramian [17] applied ML algorithms
for predicting the thermal conductivity coefficient of polymeric aerogels and compared
them with their real values for validation. However, to the best of our knowledge, no study
has demonstrated how a machine learning algorithm can be used for predicting the future
GWP in both natural and synthetic building thermal insulation materials. Therefore, the
aim of this paper is to develop a robust ML model that can predict the GWP of building
thermal insulation materials using a comparison of the different machine learning regres-
sion algorithms. In this paper, particular attention is given to relevant studies on LCA to
develop a comprehensive dataset of thermal insulation materials, most especially those
described in [9], considering their extractions from reputable databases, i.e., the EPD.

2. LCA of Building Thermal Insulation Materials

The Life Cycle Assessment (LCA) is a system analysis tool used for evaluating the
environmental impact of a product or a process over its entire life cycle, from raw material
acquisition to end-of-life [18,19]. It aims to comprehensively evaluate the resources used
and the potential environmental impacts of each stage in the life cycle in a way that not only
focuses on just one issue, such as climate change, but that covers a wide range of potential
impacts [20]. With regard to materials, the objective of LCA studies is often to support
decisions for more environmentally friendly materials or to identify environmentally
crucial points in the production of building materials [21]. In this section, we highlight
why these environmentally crucial points are necessary, i.e., those leading to embodied
components within the cycle stages of thermal insulation materials, cutting across inorganic,
organic renewable, organic non-renewable, and innovation technologies (Figure 1), which
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are discussed as extracted from the scientific literature. This aided in understanding the
knowledge gap and in developing the datasets for the insulation materials in this study.
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Figure 1. Thermal insulation materials under consideration in this study.

For inorganic materials, the energy-intensive melting and fiberizing process of
glass [22,23] and rock materials [22] in the production phase is the most impactful. How-
ever, Bribian et al. [24] note that binders and additives could also have a high impact. For
core organic non-renewable materials, EPS, XPS, and PUR have similar environmental
crucial points, with raw materials constituting the highest impacts [15,24,25]. About 40–50%
of the non-renewable energy required for EPS and PUR can be attributed to raw materi-
als [26], while 90% of the GWP in EPS arises from raw materials [27]. For cellulose, the raw
material played a role in the environmental impact, as cellulose insulation is typically made
from recycled paper [22,28]. The use of additives such as fire retardant and anti-fungal
agents cause the main impacts. For wood fibres, it was shown that binders and additives
contribute about 30–40% of the impacts [29]. Again, the main impacts in the production
process of wood fibres can specifically be from the wood boilers used to supply heat for
drying, contributing to about 74–98% of the impacts [30]. For cork-based insulation, [31,32]
identified the raw material as the main driver in a type of abiotic depletion potential.
Moreover, it was further shown that raw materials can also be the leading driver of the
GWP [32]. In terms of alternative renewable insulation materials, for hemp, the binders
and additives are the main environmental hotspots [33–35], and the GWP, for example,
was constituted of approximately 60% binders and additives [33–35]. Kenaf as a renewable
organic insulation material also shares a similar trend [36]. For flax-based insulation, the
binders and resin are responsible for the environmental impacts [36]. Although, in another
study, the main environmental impacts were attributed to the agricultural processes needed
to produce flax and the production of the final insulation material [37]. For sheep wool, it
was suggested that the sheep and the production of the wool are the most impactful [28].
Regarding expanded clay, the production stage and the energy consumption of firing
the kiln constitute the largest environmental impact [38]. Finally, among the advanced
materials, i.e., VIPs, the raw material production of the panels is the direct cause of the
environmental impact [39], while for aerogel, both the manufacturing phase and materials
are known as the main drivers of the impact [15,40].

Some studies have compared selected insulation materials to the aforementioned
environmental impacts. For example, Grazieschi et al. [9] carried out a comprehensive
review of the EE and carbon of building insulation materials from 156 reputable databases
such as the Environmental Product Declarations (EPD). Their comparative analyses showed
that traditional inorganic insulation materials depict competitive embodied impact (EE
and GWP) when compared to fossil fuel-derived ones and other emerging super-insulation
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materials. Asdrubali et al. [1] compared the thermal characteristics of widely available
natural/recycled building insulation materials and also used an LCA to provide evidence
regarding their environmental advantages. Biswas et al. [15] compared the GWP and EE
of polyisocyanurate foam, XPS, EPS, and aerogel with a boundary condition of the life
cycle as cradle-to-gate and a functional unit of 1m2 of insulation with a thermal resistance
of 1m2 K/W. Hill et al. [41] compared and examined more than sixty EPD on the EE
and GWP of some insulation materials (glass wool, mineral wool, expanded polystyrene,
extruded polystyrene, polyurethane, foam glass, and cellulose) using a product mass or as
a functional unit of 1 m2 of insulation with a thermal resistance of 1m2 K/W. Su et al. [42]
compared some widely used insulation materials for their life cycle performance. These
studies and others which widely cover several aspects of building thermal insulation
materials (thermal properties such as the thermal conductivity, thermal resistance, and
environmental impacts), have made the availability of data possible. Therefore, as a
complement, in this study, datasets of embodied components were compiled with the
objective of developing predictive models for predicting their GWP.

3. Machine Learning Regression Methods

Machine learning regression techniques perform predictive analysis on continuous
data to estimate the best description of the association between the independent (pre-
dictors) and dependent (outcome) variables, i.e., the independent variables predict the
dependent variables. In this paper, four machine learning-based regression models were
chosen, namely Multiple Linear Regression (MLR), Support Vector Regression (SVR), Least
Absolute Shrinkage and Selection Operator (LASSO) Regression, and Extreme Gradient
Boosting Regression (XGBOOST). According to the literature [43–46], these models outper-
form other regression models especially when there is only a small set of data available. In
the following sections, these models are described in more detail.

3.1. Multiple Linear Regression

Unlike linear regression which models an outcome variable based on one predictor,
MLR attempts to model the relationship between two or more independent variables and a
dependent variable by mapping a linear equation into the observed data [47]. MLR models
can be described using Equation (1), in which k predictors are noted as xi1, xi2, . . . xik, Y is
the target variable, and α0, α1, . . . αk are regression coefficients:

Y = α0 + α1xi1 + α2xi2 + . . . + αkxik (1)

The model determines coefficients by minimising the sum of the square of residuals
for n samples of data, where every sample has k predictors and a projected target variable
yi, which is described in Equation (2) in which ei is the residual error [47]:

n

∑
i=1

e2
i = ∑n

i

(
yi − α0 −

k

∑
j=1

αjxij

)2

(2)

3.2. SVR Algorithm

SVR uses the same principles as the Support Vector Machine (SVM) to address prob-
lems in regression analysis. The basic idea behind SVR is to find the best separation line
between two classes, which is known as a hyperplane. This hyperplane is mapped between
two boundary lines (led by the support vectors) to form a penalty zone around the majority
of the data by minimizing the prediction error (Figure 2). This zone allows a certain limit
where errors outside the acceptance zone are penalized depending on their distance from
the boundaries. The governing equation of the SVR algorithm is shown in the following
equations [44]:

min
1
2

wTw + C

[
vε+

1
2

n

∑
i=1

(ξi + ξ∗i )

]
(3)
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Subject to :


yi − wTΦ(xi)− b ≤ ε + ξi

wTΦ(xi) + b− yi− ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0;= 1, . . . . . . , n; ε ≥ 0

(4)

where ‘C’ is the regularisation term, ‘w’ is the vector of parameters associated with the
support vectors, ‘b’ is a constant, and ‘ξ’ the slack variable of errors out of ‘ε’ precision,
which is optimized by the parameter ‘v’. The ‘i’ index labels the n cases. The term ‘φ(xi)’
represents the input transformation data using a kernel K(xi,xj) at feature space, from which
(Xi, Xj) = φ(xi).φ(xj) [44].
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3.3. LASSO Regression Algorithm

LASSO regression works based on both feature selection and regularization techniques
to escalate the prediction accuracy and interpretability of the regression model by elimi-
nating irrelevant variables. In this method, regularization is applied to shrink some of the
coefficients of the regression toward zero by forcing the residual sum of squares subject to
the sum of the absolute value of the coefficients being less than a constant value t. During
the feature selection process, the variables with non-zero coefficients (the most relevant
ones) after the shrinkage process are considered as part of the model [45]. The regression
model minimizes the following equation:

argminβ

∣∣∣∣∣
∣∣∣∣∣y− p

∑
j=1

xjβ j

∣∣∣∣∣
∣∣∣∣∣
2

+ t
p

∑
j=1

∣∣β j
∣∣ (5)

where
p
∑

j=1

∣∣β j
∣∣ is the L1 regularization penalty on the coefficient βj [45] and t ≥ 0 is a tuning

parameter which controls the amount of shrinkage applied to the estimates. A t equal to
zero results in keeping all of the variables.

3.4. XGBoost Regression Algorithm

XGBoost was first proposed in 2014 and has been continuously improved by other
researchers [48,49]. This model is a learning framework based on Boosting Tress models.
Each tree is formed by learning from the error of the previous trees in an attempt to improve
its performance. The improvement occurs using an initial forming of the loss function
of the earlier tree, which is defined as the deviation of the actual and predicted value,
(Equations (6) and (7)). In the next step, it minimises the loss function using an estimation
of the negative gradient as shown in Equation (8). The second is fitted to the negative
gradient and predicted values, obtained from the first tree, and is updated with the addition
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of the predicted results obtained from the second tree [48]. This sequential process continues
until the algorithm reaches a pre-defined number of trees [49] as follows:

L = (y, F(x)) =
(y− F(x))2

2
(6)

J =
n

∑
i=1

L(yi, F(xi)) (7)

yi − F(xi) = −
∂J

∂F(xi)
(8)

where y is the true value of the target variable, F(x) is the projected value of the target
variable, and n is the number of samples in Equations (6)–(8).

4. Methodology
4.1. Data Collection

About 120 datasets of thermal insulation materials involving material density (ρ),
thermal conductivity (λ), EE, and GWP were collected. The data were collected from past
scientific literature reviews which only considered the Environmental Product Declaration
(EPD) and other reputable databases such as the Okobaudat and Ecoinvent databases. Data
with functional units of 1 m2 with a resistance = 1 m2 K/W were adopted for consistency
in datasets. It was necessary to classify the dataset to the features (independent variables)
and the target (dependent variable). Hill et al. [41] found a high correlation between
EE and GWP, likewise, Grazieschi et al. [9] presented regression charts that showed a
good relationship between thermal conductivity and density—the two constituents of the
functional unit—and GWP. In this study, the ρ, λ, and EE of the materials were, therefore,
used as the features and the GWP was used as the target. As already mentioned, since this
study was not on the comparison of the environmental impact of the thermal insulation
materials, but on models to predict the future environmental impact of these materials,
all data on the thermal insulation materials were included. These materials range from
inorganic, organic non-renewable, and organic renewable (Table 1).

Table 1. Dataset of the thermal Insulation materials.

S/N Insulation Density
(kg/m3)

Thermal Conductivity
(W/mk)

Embodied
Energy (MJ/kg)

GWP
(KgC02eq/kg) Ref.

1 EPS foam slab 30 0.038 105.49 7.34 [24]
2 Rockwool 60 0.040 26.39 1.51 [24]

3 Polyurethane
foam 30 0.032 103.78 6.79 [24]

4 Cork slab 150 0.049 51.52 0.81 [24]
5 Cellulose fibre 50 0.040 10.49 1.83 [24]
6 Wood wool1 180 0.070 20.27 0.12 [24]
7 Stone wool1 45 0.330 63.00 3.62 [9,50]
8 Stone wool2 70 0.330 64.00 5.85 [9,42]
9 Stone wool3 35 0.400 53.09 2.77 [9,51]
10 Glass wool1 12 0.310 37.00 1.62 [9,50]
11 Glass wool2 27 0.450 90.00 8.63 [9,42]
12 Glass wool3 20 0.450 134.17 7.70 [9,51]
13 Fibre Glass 64 0.450 28.00 1.35 [9,52]
14 XPS1 34 0.031 144.00 5.52 [9,50]
15 XPS2 38 0.036 75.00 5.45 [9,42]
16 XPS3 35 0.032 127.31 13.22 [9,51]
17 XPS4 36 0.033 100.97 6.11 [9,15]
18 XPS5 36 0.035 98.11 5.21 [9,38]
19 Polyisocyanurate1 35 0.040 147.00 10.4 [9,50]
20 Polyisocyanurate2 32 0.022 81 5.83 [9,42]
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Table 1. Cont.

S/N Insulation Density
(kg/m3)

Thermal Conductivity
(W/mk)

Embodied
Energy (MJ/kg)

GWP
(KgC02eq/kg) Ref.

21 Polyisocyanurate3 33 0.022 99.63 6.51 [9,51]
22 Polyisocyanurate4 33 0.022 63.61 2.63 [9,15]
23 Polyisocyanurate5 33 0.022 58.97 3.33 [9,38]
24 EPS1 15 0.031 147.00 4.52 [9,50]
25 EPS2 15 0.031 85.00 6.25 [9,42]
26 EPS3 15 0.031 127.31 5.05 [9,51]
27 EPS4 15 0.031 100.87 4.18 [9,15]
28 EPS5 15 0.031 74.31 3.25 [9,38]
29 Aerogel 150 0.015 372.00 18.70 [9]
30 Vermiculite 172 0.062 148.98 10.45 [9]
31 Cork 80 0.040 4.00 0.19 [9,52]
32 Flax 40 0.042 39.50 1.70 [9,52]
33 Woodwool2 60 0.038 20.00 0.98 [9,52]
34 Mineral wool 30 0.035 82.00 4.40 [52,53]
35 Rockwool 37 0.037 16.80 1.05 [36,52]
36 Paper wool 40 0.038 20.20 0.63 [53,54]
37 VIPs 180 0.020 1016 42.00 [9,53]
38 Sheep wool1 30 0.033 23.20 0.82 [9,55]
39 Sheep wool2 30 0.033 14.70 0.05 [9,56]
40 Sheep wool3 30 0.033 13.42 0.99 [9,57]
41 Straw bale 100 0.067 0.240 0.06 [9,58]
42 Perlite 166 0.055 9.350 0.493 [9,56]
43 Kenaf 40 0.038 59.37 3.170 [36]
44 Rec. PET 30 0.035 83.72 1.783 [59,60]
45 Rec. Tex. & paper 433 0.034 267.70 14.68 [61]
46 Expanded clay 245 0.095 100.00 4.43 [9]
47 Hemp 38 0.038 130.00 −0.35 [9]
48 Cotton 30 0.039 48.00 −1.20 [9,36]
49 Textile fibre 20 0.044 15.00 1.10 [9,62]
50 Glass foam 100 0.036 153.00 9.41 [9,63]
51 Min. wood fibres 420 0.100 460.00 3.53 [9]
52 UFFI1 10 0.036 75.375 3.776 [64]
53 UFFI2 10 0.036 72.535 2.882 [65,66]
54 Glasswool4 64 0.0425 318.8 16.0 [9,41]
55 Glasswool5 64 0.0395 403.9 20.3 [9,41]
56 Glasswool6 64 0.035 552.4 27.8 [9,41]
57 Glasswool7 64 0.033 658.3 33.1 [9,41]
58 Glasswool8 64 0.044 254.8 12.2 [9,41]
59 Glasswool9 64 0.037 29.8 1.5 [9,41]
60 Glasswool10 64 0.032 707.4 30.2 [9,41]
61 Glasswool11 64 0.035 438.0 19.0 [9,41]
62 Glasswool12 64 0.04 253.7 11.4 [9,41]
63 Glasswool13 64 0.035 521.5 28.5 [9,41]
64 Glasswool14 64 0.0365 30.1 1.8 [9,41]
65 Mineralwool2 30 0.35 474.1 15.7 [9,41]
66 Mineralwool3 30 0.03676 49.0 1.2 [9,41]
67 Mineralwool4 30 0.035 81.5 4.4 [9,41]
68 Mineralwool5 30 0.039 668.7 53.7 [9,41]
69 Mineralwool6 30 0.04 1746.0 95.8 [9,41]
70 Mineralwool7 30 0.035 937.8 76.7 [9,41]
71 Mineralwool8 30 0.0375 26.4 1.6 [9,41]
72 Mineralwool9 30 0.037 13.5 1.3 [9,41]
73 Mineralwool10 30 0.04 609.7 34.4 [9,41]
74 Mineralwool11 30 0.04 1213.0 82.6 [9,41]
75 Mineralwool12 30 0.04 1941.4 141.0 [9,41]
76 Mineralwool13 30 0.037 20.8 1.5 [9,41]
77 Mineralwool14 30 0.036 465.5 25.4 [9,41]
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Table 1. Cont.

S/N Insulation Density
(kg/m3)

Thermal Conductivity
(W/mk)

Embodied
Energy (MJ/kg)

GWP
(KgC02eq/kg) Ref.

78 Mineralwool15 30 0.0335 762.6 42.6 [9,41]
79 Mineralwool16 30 0.0335 758.4 41.4 [9,41]
80 Mineralwool17 30 0.04 465.5 25.4 [9,41]
81 Mineralwool18 15 0.04 578.9 28.8 [9,41]
82 EPS6 15 0.035 1329.6 46.34 [9,41]
83 EPS7 15 0.034 33.5 2.0 [9,41]
84 EPS8 15 0.035 1329.6 46.3 [9,41]
85 EPS9 15 0.035 1327.9 46.3 [9,41]
86 EPS10 15 0.036 26.0 2.3 [9,41]
87 EPS11 15 0.031 30.0 2.0 [9,41]
88 EPS12 15 0.035 2291.9 79.0 [9,41]
89 EPS13 15 0.035 1383.8 48.0 [9,41]
90 EPS14 24 0.035 1847.5 62.0 [9,41]
91 XPS6 24 0.031 151.1 10.2 [9,41]
92 XPS7 24 0.035 158.6 9.4 [9,41]
93 XPS8 24 0.035 161.2 9.5 [9,41]
94 XPS9 35 0.035 159.4 9.4 [9,41]
95 PUR1 31.5 0.023 241.4 15.0 [9,41]
96 PUR2 31.5 0.023 216.6 12.9 [9,41]
97 PUR3 31.5 0.026 209.4 13.1 [9,41]
98 PUR4 31.5 0.023 202.6 12.0 [9,41]
99 PUR5 31.5 0.026 204.9 12.9 [9,41]
100 PUR6 31.5 0.026 267.4 16.6 [9,41]
101 PUR7 31.5 0.026 401.2 24.9 [9,41]
102 PUR8 31.5 0.023 512.2 37.5 [9,41]
103 PUR9 - 0.023 173.5 12.2 [9,41]
104 PFFoam1 - 0.021 173.7 9.9 [9,41]
105 PFFoam2 100 0.021 178.9 10.2 [9,41]
106 Foamglass1 100 0.103 937.0 19.2 [9,41]
107 Foamglass2 100 0.082 738.9 15.2 [9,41]
108 Foamglass3 100 - 7.0 0.2 [9,41]
109 Foamglass4 30 0.041 28.8 1.3 [9,41]
110 Cellulose1 30 0.039 89.7 3.7 [9,41]
111 Cellulose2 80 0.039 100.0 2.8 [9,41]
112 Cellulose3 80 - 9768.0 1189.0 [9,41]
113 Cellulose4 80 0.039 5.3 0.2 [9,41]
114 Cellulose5 80 - 2.1 0.1 [9,41]
115 Cellulose6 80 - 6148.0 295.0 [9,41]
116 Cellulose7 80 0.049 8263.5 214.1 [9,41]
117 Cellulose8 80 0.040 4006.9 102.6 [9,41]
118 Cellulose9 80 0.042 4037.2 100.6 [9,41]
119 Cellulose10 80 0.050 7589.4 182.5 [9,41]
120 Cellulose11 80 0.038 2560.0 59.9 [9,41]
121 Cellulose12 80 0.047 4337.0 105.4 [9,41]
122 Cellulose13 80 0.044 4936.2 82.1 [9,41]

4.2. Data Processing

Before building the ML models, it was necessary to perform data cleaning and pro-
cessing. Python 3 (ipykernel) and Scikit-learn library were used for the data processing and
implementation of the ML methods. For the data processing, correlation feature selection
was performed (Figure 3) to identify more relevant features to predict the target outcome.
Figure 3 shows a heat map chart for the correlation of the features, with DE as the density,
TC as the thermal conductivity, EE as the embodied energy, and GW as the GWP. In Figure 3,
each square shows a correlation within the range of −1 to +1. The closer to −1 or +1 a box
appears, and the darker, the more correlation it has with an adjacent feature. Each box
has a perfect correlation to itself (the diagonal yellow boxes show that they have a perfect
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correlation to themselves). It can be clearly seen that EE shows the strongest correlation
to GW, followed by TC, and DE shows a weak correlation. To confirm this, a quick test
was run, and it was observed that DE led to poor outcomes across all the models. This is
partly due to its weak correlation with GW. It was necessary to complete a second quick
test after the DE was excluded from the dataset, at which time, reasonable outcomes from
the algorithms were found. Therefore, in this study, the DE was excluded and only the TC
and EE were considered as the independent variables and GW as the target.
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In compliance with standard machine learning processes, the dataset was split into
training and testing sets. The training data were used for the training of the models
and the testing data were unseen by the model during the training time. Except for the
MLR with uncomplicated parameter settings, hyper-parameter tuning was completed
for the SVR, LASSO, and XGBoost. After hyper-parameter tuning of the SVR, the linear
kernel outperformed the Radial Basis Function kernel (RBF) and the Polynomial Kernel
for prediction after an initial check on this particular dataset. Likewise, hyper-parameter
tuning was conducted for the LASSO regression and the ‘L’1 values were tuned, which
are the regularisation factors for an optimum hyper-parameter. The XGBoost was set to
perform the automatic in-built hyper-parameter tuning as well.

4.3. Evaluation of the Algorithms

Several metrics are used for the evaluation of machine learning algorithms. From
the Scikit-learn library in Python, common metrics which provide quick comparison of
models were imported including the Coefficient of Determination (R2), Root Mean Squared
Error (RMSE), and Mean Absolute Error (MAE) [49,67]. The R2 (Equation (9)) was used to
compare the proportion of the variances in the sample variables and the predicted variables
of the ML models to determine their performances. The RMSE (Equation (10)) was used
to check and compare the concentration and spread of data around the regression line
for each of the models, and the MAE (Equation (11)) was used for comparing the average
model-performance error. MAE is claimed to be a better metric for the basis of comparison
than the RMSE [68].

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (9)
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RMSE =

√
1
n

n

∑
i
(yi − ŷi)

2 (10)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (11)

In Equations (9)–(11), y is the observation value; y is the mean of observation values;
ŷ is the predicted value; and i is the ith observation.

4.4. Cross-Validation

In order to prevent the models from over-fitting, cross-validations were conducted to
validate the estimated evaluation metrics. In this study, we only pay particular attention
to R2 values in the cross-validation procedures. In compliance with standard machine
learning procedures, as mentioned earlier, we had initially performed a validation process
known as the ‘Holdout’ validation, where the data were split into training data (80%)
and testing/validation data (20%). Although, this process may not be robust enough as
some of the training data get leaked into the testing data as a result of passing just one
iteration; hence, a possibility of model over-fitting may occur. Therefore, two more robust
cross-validations were performed including the K-Fold and Monte-Carlo (Shuffle split)
cross-validation techniques. The K-Fold cross-validation works using a technique where
the whole dataset can be initially split into K parts of equal sizes, and each split is known
as a fold, and K can be any integer. K-1 folds are used for training the model. The models
were set for 10 iterations where every fold was used for validation and the others were
left out for training (K-1) until the technique exhausted all the iterations and each fold was
used once (Figure 4). The Monte-Carlo cross-validation is an extension of the traditional
Holdout validation, where the data are split into the conventional training and testing sets.
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Figure 4. K-Fold Cross-Validation.

In this study, the data were split into 80% training and 20% testing sets. Again, the
models were set for 10 iterations, and the technique automatically performed random
shuffling across the iterations (Figure 5). In addition to that, the models were fitted to the
training data in each of the iterations, and the accuracy of the fitted models was calculated
using the testing data. The mean value of all the test scores (R2 scores) was finally recorded
to determine the performance of each model.
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5. Results and Discussion

This section presents the various results of the prediction outcomes of the GWP, the
evaluation metrics, and prediction errors, and also the cross-validations. First of all, the
observed and predicted results of the GWP of the models were compared with respect to
the Holdout validation of the test samples. It can be observed that the observations and the
predicted curves in all the models have similar trends. For this validation test, the MLR
and LASSO regressions showed R2 scores of 0.83, while the SVR presented an R2 of 0.82,
and the XGBoost showed an R2 of 0.91, as seen in Figure 6a–d. Generally, all the models
performed well for the dataset in this initial R2 evaluation.
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Moreover, considering the plots showing the testing data of the GWP on the y-axes
and their place values (the randomised 20% of the whole dataset) on the x-axes, it can be
observed that values 10–15, 17, 22, and 24 on the x-axes were approximately predicted
better than the other values. These values coincide with the values of the GWP on the
y-axes and are thus: PUR4, PUR3, PUR2, Polyurathane foam, XPS6, Cellulose7, PFFoam2,
XPS5 and Cellulose8, respectively. A demonstration of these correlations can be clearly
seen in Table 2. This means that for these models to perform optimally in the regressions,
they needed more training using data similar to the randomised testing data, which gave
better regressions.

Table 2. Randomised Testing Data for the Holdout Validation.

Insulations Testing Data Place Values GWP (KgC02eq/kg)

PUR1 1 15.0
Glasswool5 2 20.3
Glasswool10 3 30.2
Cellulose11 4 59.9
Mineralwool12 5 141.0
Hemp 6 −0.35
Flax 7 1.7
Mineralwool18 8 28.8
Textile fibre 9 1.1
PUR4 10 12.0
PUR3 11 13.1
PUR2 12 12.9
Polyurethane foam 13 6.79
XPS6 14 10.2
Cellulose7 15 214.1
Glasswool7 16 33.1
PFFoam2 17 10.2
PUR8 18 37.5
Mineralwool5 19 53.7
Glasswool13 20 28.5
Mineralwool16 21 41.4
XPS5 22 5.21
EPS7/EPS11 23 2.0
Cellulose8 24 102.6

5.1. Prediction Errors

After the initial evaluations of the regression models, tests were conducted to show
the extent of the variances and biases between the actual GWP (y) and the predicted GWP
(ŷ) of the dataset used in all of the models (Figure 7a–d). It can be observed that there is
a trade-off between the biases and the variances in the MLR, LASSO, and SVR models
compared to the XGBoost model, which has high variance and means that the XGBoost
model is prone to overfitting. The MLR, LASSO, and SVR models have similar trends in
their errors. After removing the few outliers from the first three models that explained the
high values of the MAE (Table 2), there was more confidence in how the three models fit
the data points. An arbitrary line (identity) was drawn, which was set to be automatically
generated, and in comparison to the regression lines (best fit), one can visually observe
where the models produced larger errors in the prediction process.
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5.2. Residuals of Training and Testing Sets

The concentration and distribution of the residuals were checked along the regression
lines for the training and testing datasets, and it can be observed that a large portion of the
residuals was randomly distributed around the zero axis, confirming the homoscedasticity
of the models, i.e., similar variances in the training and testing datasets (Figure 8a–c).
However, even with the homoscedastic nature, higher values of RMSE were found (Table 2).
This was likely due to some possible outliers having huge margins away from the regression
lines in the dataset, i.e., with larger errors. It was further confirmed that the RMSE and
MAE were highly vulnerable to these outliers after a quick test was conducted by screening
out some observations considered to be outliers as far as possible. After this quick test,
the RMSE significantly reduced from >20 to <2.2, and the MAE significantly reduced from
about >6.7 to <1.7 for the testing/validation set. Although, it was impossible to identify
all the outliers due to the nature of the dataset. Generally, the MLR, SVR, and LASSO
regression models predict optimally, i.e., neither overfitting nor underfitting. Evidence of
this was the slight difference in R2 scores, which were unaffected by the outliers, between
the training and testing sets. Conversely, at this point in this Section, it is essential to
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re-emphasise that the XGBoost model obviously overfitted the dataset in the training stage
(Figure 8d). Evidence of this was the high variances (R2 score of 1.0) and complete non-
errors in the training stage, with corresponding large errors in the testing/validation stage
(high values of RMSE and MAE), as shown in Table 3.
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Table 3. Evaluation Metric Scores of the Models.

Metrics MLR SVR LASSO XGBOOST

R2
0.86 0.83 0.86 1.00
0.83 0.82 0.83 0.91

Train set
Test set RMSE

11.22 12.12 11.31 0.00
20.44 20.93 20.54 15.06

MAE
6.69 6.16 6.68 0.01

10.75 12.20 10.56 7.64

5.3. K-Fold and Monte-Carlo Cross-Validations

It was necessary to run final validations (the cross-validations) on the whole dataset
in addition to the Holdout validation as earlier mentioned in order to reliably ensure that
the models were not overfitted on both the training and testing datasets. Figure 9a–d shows
the comparison of the K-fold and Monte-Carlo cross-validations across all the models. It
can be seen that there is a similar match in the performance of the Monte-Carlo mean
R2 scores of the MLR (0.85), SVR (0.82), and LASSO (0.85) in comparison to the Hold-
out validation. Although, the K-Fold cross-validations show slight differences in the
models compared to the Monte-Carlo and the Holdout (MLR = 0.73, SVR = 0.71, and
LASSO = 0.72) results. Based on the R2 scores from the cross-validations, it can be con-
cluded that the three models performed well. On the other hand, it can be seen that the
XGBoost model depicts an opposite trend, where the Monte-Carlo cross-validation shows
an R2 mean score of 0.69 and the K-Fold cross-validation shows a score of 0.86. This means
that there is a discrepancy in the cross-validations and the Holdout validation for the
XGBoost model.
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In addition, Table 4 shows the in-depth analysis of the R2 scores of the cross-validations,
and one can observe that in each of the 10 folds, the Monte-Carlo values are higher than
the K-Fold values for all the models, except for the XGBoost model. This is interesting to
note because the Monte-Carlo cross-validation is more desirable over most cross-validation
techniques, owing to its capacity to evaluate different models according to their predictive
capability using many different combinations of validation datasets [69]. This is an advan-
tage in this task as it lends credence to the overall performance of the models’ reliability
when the Monte-Carlo scores are found to be higher.

Table 4. Generated 10 folds validation values for K-Fold and Monte-Carlo in Python.

Models R2 Scores

MLR

K-Fold
0.53463136, 0.95586595, 0.4815178, 0.5576389, 0.7872245,

0.64872736, 0.96775078, 0.85180267, 0.78641759, 0.68811461
Monte-Carlo

0.81117444, 0.84924004, 0.95764438, 0.66015406, 0.78274875,
0.92822053, 0.71882231, 0.97685173, 0.89295711, 0.93901005

SVR

K-Fold
0.48734585, 0.93125042, 0.46685477, 0.5923367, 0.75049093,
0.60751874, 0.91412253, 0.85066154, 0.78367544, 0.7246273

Monte-Carlo
0.80502996, 0.81745197, 0.92541027, 0.65821522, 0.81205356,
0.73761791, 0.69151795, 0.9399861, 0.89805164, 0.95013416

LASSO

K-Fold
0.53224332, 0.95444857, 0.48598915, 0.56007886, 0.7832618,
0.64958839, 0.96626447, 0.85139013, 0.76666582, 0.63332968

Monte-Carlo
0.80966647, 0.84666507, 0.95558787, 0.658763, 0.78283893,

0.92704338, 0.71542824, 0.97566539, 0.89436693, 0.94277419

XGBoost

K-Fold
0.7543402, 0.95840054, 0.73656183, 0.92822975, 0.95850548,
0.94758277, 0.85313272, 0.94945763, 0.68740307, 0.94040784

Monte-Carlo
0.88943108, 0.91617215, 0.70638463, 0.87221572, 0.89104877,
0.56351587, 0.81172492, 0.52429175, 0.27620335, 0.40165315
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6. Conclusions

In this study, in an attempt to contribute to mitigating the current global energy crisis,
machine learning regression models were developed to predict the GWP of insulation ma-
terials. This will provide the basic guidelines for manufacturers and energy policymakers,
thus allowing them to understand the potential environmental impacts of future insulation
materials that could be supplied to the market. Below are the key findings of this paper:

i. The GWP of thermal insulation materials is hugely dependent on the EE, and it can
vary widely for different types of insulation. This, in turn, causes variations in the
nature of the dataset. Large datasets that compensate for all these variations will
surely allow regression models to generalise properly while reducing some possible
prediction errors, such as in the RMSE and the MAE, caused by outliers that have
large margins with respect to a regression line.

ii. In terms of the size of datasets used in this study, we found that MLR, SVR, and
LASSO regression methods provide satisfactory prediction capabilities for unseen
datasets. However, there is less confidence in the XGBoost regression method due
to the overfitting of the training data.

iii. It would be more encouraging to gather large data of this kind for better accuracy
in future studies. This will be possible when more manufacturers provide access to
environmentally related information on thermal insulation materials.
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