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Abstract—One of the ultimate goals of future wireless networks is to maximize data rates to accommodate 5 

bandwidth-hungry services and applications. Thus, extracting the maximum amount of information bits for 6 

given spatial constraints when designing wireless systems will be of great importance. In this paper, we 7 

present antenna array topologies that maximize the communication channel capacity for given number of 8 

array elements while occupying minimum space. Capacity is maximized via the development of an advanced 9 

particle swarm optimization (PSO) algorithm devising optimum standardized and arbitrarily-shaped 10 

antenna array topologies. Number of array elements and occupied space are informed by novel heuristic 11 

spatial degrees of freedom (SDoF) formulations which rigorously generalize existing SDoF formulas. Our 12 

generalized SDoF formulations rely on the differential entropy of three-dimensional (3D) angle of arrival 13 

(AOA) distributions and can associate the number of array elements and occupied space for any AOA 14 

distribution. The proposed analysis departs from novel closed-form spatial correlation functions (SCFs) of 15 

arbitrarily-positioned array elements for all classes of 3D multipath propagation channels, namely, isotropic, 16 

omnidirectional, and directional. Extensive simulation runs and comparisons with existing trivial solutions 17 

verify correctness of our SDoF formulations resulting in optimum antenna array topologies with maximum 18 

capacity performance and minimum space occupancy. 19 

 20 

Index Terms—Antenna arrays, channel capacity, spatial correlation function, spatial degrees of freedom. 21 

I. INTRODUCTION 22 

Antenna arrays play a dominant role on the enhancement of achievable data rates and received 23 

signal quality in 5G and beyond 5G (B5G) wireless communication networks [1]. In multi-input, 24 

multi-output (MIMO) wireless systems, spatially separated antennas are employed at both the 25 

transmitter (Tx) and/or receiver (Rx) exploiting spatial diversity, thus improving channel 26 

capacity and ensuring data reliability [2]. Therefore, exploiting the spatial characteristics of 27 

wireless propagation channels is of paramount importance for future MIMO systems design. 28 

Deriving spatial correlation enables accurate performance analysis of MIMO wireless systems 29 

[3]. In particular, spatial correlation has significant impacts on MIMO channel capacity 30 

performance [4]. In this paper, we realize optimum antenna array topologies by maximizing the 31 

ergodic MIMO channel capacity. With the aid of analytical spatial degrees of freedom (SDoF) 32 

formulations, such antenna arrays occupy minimum space. The SDoF indicates the number of 33 
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independent spatial transmission modes incurred by the wireless propagation environment  1 

according to [5]. The signal-to-noise ratio (SNR) has to be sufficiently high in order the MIMO 2 

system and accordingly the ergodic MIMO channel capacity to be degrees of freedom (DoF) 3 

limited rather than power limited [6]. The presented findings can constitute a roadmap for future 4 

antenna array designs towards implementing 6G wireless systems with volumetric spectral 5 

efficiency [7] and adopting 3D antenna arrays in 3GPP standardization efforts [8]. In following 6 

sub-sections, we review the literature on the major technical challenges of the presented work, 7 

namely, closed-form spatial correlation functions (SCFs), antenna array optimization, and SDoF 8 

formulations. 9 

A. Spatial Correlation and Antenna Arrays 10 

The SCF depends on the antenna array geometry, antenna element spacing, and wireless 11 

propagation AOA characteristics [9]. To avoid complicated numerical integrations, deriving 12 

closed-form SCFs has attracted great interest for years [3], [9]–[14]. Uniform [9]–[12] and 13 

Gaussian [13], [14] have been among the most widely adopted AOA distributions to account for 14 

wireless propagation and scattering. In uniform distributions, closed-form SCFs were determined 15 

for uniform linear array (ULA), uniform circular array (UCA), and uniform rectangular array 16 

(URA) based on the Jacobi-Anger expansion (JAE) approximation [9]. Using the same approach, 17 

closed-form SCFs were derived in [10] applicable to arbitrarily-positioned antenna array 18 

elements, however, the results were actually demonstrated for circular arrays. As presented in 19 

[9], [10], the JAE provides a straightforward implementation in evaluating the SCF. By using an 20 

alternative approach based on the spherical harmonic expansion of plane-waves, closed-form 21 

SCFs were obtained in [11] being adaptable to standardized three-dimensional (3D) arrays, and 22 

in [12] being independent of array geometries. In Gaussian distributions, various approximation 23 

methodologies were also developed for closed-form SCF solutions [13], [14]. The JAE-based 24 

method was adopted in [13] for two-dimensional (2D) arrays, while a Gaussian closed-form 25 

(GC) approximation was considered in [14] being valid for small AOA ranges. Moreover, [14] 26 

proposed a Gauss-Hermite quadrature (GHQ)-based method approximating the SCF under 2D 27 

propagation scenarios. It was concluded in [14] that the GHQ-based approximation outperforms 28 

the JAE-based and GC approaches with lower computation and higher accuracy. 29 

Inherently, 3D arrays are more condensed compared with linear and circular ones to achieve 30 

similar performance [15]. Compared with customized 3D array topologies such as cylindrical 31 
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[3], polyhedral [11], and spherical [16], an arbitrary 3D array could potentially occupy less space 1 

by letting the elements be located randomly and not just on the surface. It is an objective of this 2 

work to invetigate such potential. Arbitrary array positioning constitutes a very challenging 3 

problem, e.g., see [17] for arbitrary ULA positioning via mechanical rotation or electronic 4 

selection and [18] for arbitrary element position in rectangular arrays. Accordingly, we derive 5 

generalized closed-form SCFs suitable for any class of 3D arrays including customized and 6 

arbitrarily-shaped. We consider 3D spherical array topologies and devise arbitrarily-shaped 3D 7 

arrays by releasing the limitation of letting the elements be located on the spherical surface. 8 

However, simulation results demonstrate that the elements of optimized arbitrarily-shaped 3D 9 

arrays tend to be located on the spherical surface. Adapting the generalized SCFs into 2D array 10 

topologies, we find that ULAs and UCAs have almost identical performance with their 11 

optimized counterparts. Such findings can be very important to guide future research towards 12 

designing uniform/symmetrized 3D arrays with identical performance with respect to their 13 

optimized arbitrarily-shaped counterparts. 14 

In this paper, 3D directional, 3D isotropic, and 3D omnidirectional propagation scenarios [19]–15 

[22] are considered for holistically analyzing both standardized and arbitrarily-shaped antenna 16 

array topologies. The directional scenarios are modeled via 3D restricted uniform and 3D 17 

Gaussian AOA distributions. A 3D restricted uniform AOA has unlimited flexibility to 18 

theoretically model any propagation scenario, as arbitrary scattering can be modeled by the 19 

summation of weighted uniformly distributed elementary solid-angle contributions [12], [19], 20 

whereas a 3D Gaussian AOA is a very classical model for directional propagation [21]. 3D 21 

omnidirectional scenarios, accounting for propagation in urban environments, include the pairs 22 

uniform-restricted uniform [19] and uniform-Gaussian [20], [22] AOA distributions on azimuth-23 

elevation planes, respectively. By leveraging the JAE-based approach, we derive a closed-form 24 

SCF for 3D restricted uniform scenarios similar to the one in [10] employing the 3D AOA model 25 

of [19]. Extending the GHQ-based method presented in [14], which applies in 2D scenarios, we 26 

derive a novel closed-form SCF for 3D directional Gaussian scenarios. A novel closed-form SCF 27 

for the 3D omnidirectional scenario with Gaussian in elevation and uniform in azimuth AOA is 28 

also derived by combining the JAE- and GHQ-based techniques. 29 

B. Antenna Array Optimization Techniques 30 

Given the space limitations, finding the optimum topologies to minimize spatial correlation 31 
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and maximize channel capacity constitute a major challenge in antenna array design. Intelligent 1 

methodologies, such as applying evolutionary metaheuristic optimization algorithms, have been 2 

validated and resulted in antenna arrays that considerably outperform conventional ones with 3 

half a wavelength spacing [23]. Previous works [10], [24]–[26] have demonstrated the 4 

effectiveness of employing optimization algorithms to realize antenna arrays with maximum 5 

channel capacity. The particle swarm optimization (PSO) [10], [25] and genetic algorithm (GA) 6 

[24] were employed producing optimized 2D arrays such as linear and circular ones. The 7 

differential evolution (DE) algorithm was adopted in [26] to optimize cubical arrays but without 8 

maximizing channel capacity. In [16], the optimal design of spherical, cubical and half-elliptic 9 

arrays were carried out by using GA. The design of optimum spherical and arbitrarily-shaped 3D 10 

arrays with maximum capacity has been insufficiently addressed in these works. None of the 11 

above-mentioned works have considered the required space occupancy of antenna arrays with 12 

given numbers of elements and in any class of propagation scenario. 13 

In this paper, we adopt the PSO algorithm to solve the previously described capacity 14 

maximization problem for the following reasons. The design of optimum antenna arrays is well 15 

known to be a highly nonlinear and nonconvex programming problem [27]. PSO can solve 16 

complex and multidimensional problems without restricting the solution domain and does not 17 

need to consider convexity. Such features make PSO a perfect candidate for nonconvex 18 

problems [28]. Besides that, compared with other evolutional optimization algorithms, PSO has 19 

fewer operators to deal with leading to the reduction of computational cost and simpler 20 

implementation [29]. The work in [30] verified that within the same computation time, PSO 21 

outperforms the DE, invasive weed optimization and GA with respect to the achieved fitness. 22 

Also in [25], the PSO outperformed the GA with respect to convergence speed and accuracy. 23 

Moreover, PSO shows flexibility in controlling the balance between local and global 24 

explorations [28] and can easily obtain a rapid convergence speed by applying a time varying 25 

inertia weight [29]. An advanced PSO algorithm namely PSO with velocity mutation (PSOvm) 26 

was introduced in [30]. The PSOvm induces the mutation on the particle’s velocity to improve 27 

the particle’s position at the first few iterations and thus further boosts the overall algorithm 28 

performance compared with the conventional PSO [30]. Therefore, the PSOvm is selected as the 29 

state-of-art PSO technique to realize antenna array topologies with maximum capacity. 30 
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C. Spatial Degrees of Freedom 1 

The minimum required space to achieve maximum capacity will be informed by the SDoF 2 

determined in all 3D propagation scenarios. Analytically derived SDoF formulations and 3 

minimum occupied space will be rigorously associated. The work in [31] associated SDoF to 4 

MIMO antennas where the channel capacity was limited by SDoF. A sufficiently high SNR is 5 

required in order the channel capacity to be DoF limited rather than power limited [6]. The 6 

works in [32], [33] estimated the DoF via the rank of the channel correlation matrix but without 7 

relating it to actual AOA distributions. A more accurate DoF estimation can be determined by 8 

evaluating the eigenvalues of spatial correlation matrices as in [34], [35], showing reduction of 9 

significant eigenvalues after a certain bound dictated by the DoF. The DoF formulations derived 10 

in [15] as the product of the AOA solid angle range, i.e., the SDoF and array aperture size, 11 

rigorously determined the maximum number of antenna elements leading to optimum capacity. 12 

Inversely, the minimum occupied space can be determined by the SDoF with given number of 13 

antenna elements. An emerging question, not addressed in [15], is how we can locate the 14 

elements in space for achieving maximum ergodic MIMO channel capacity. The PSOvm 15 

technique, as was previously justified, addresses this issue. The AOA solid angle range 16 

considered in [15] cannot incorporate the intrinsic AOA characteristics of propagation 17 

environments. Such consideration is just valid for 3D uniform AOA scenarios as will be 18 

demonstrated and verified in Sections IV and VI. 19 

In this paper, we heuristically derive the SDoF by adapting the information theory metric of 20 

differential entropy [36] into 3D AOA distributions. We show that the SDoF outcome in [15], 21 

i.e., the AOA solid angle extent is equivalent to our SDoF formulations for 3D uniform AOA 22 

distributions. In other words, assigning a uniform distribution in the designated 3D AOA range 23 

results in equal SDoF as the ones in [15]. We leverage such finding by extending it to any other 24 

AOA distribution and we confirm correctness by demonstrating ergodic MIMO channel capacity 25 

performance compliance when the DoF in different AOA scenarios are equal. 3D Gaussian AOA 26 

distributions are selected as case studies to demonstrate performance compliance with the 3D 27 

uniform ones. However, our SDoF formulations are generic that can be readily extended to more 28 

complex wireless propagation scenarios, such as multi-clustered ones [19] modeled via multi-29 

modal restricted uniform or Gaussian distributions. Exploiting the SDoF formulation 30 

methodology described previously is sufficient to determine the minimum occupied space with 31 
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given numbers of array elements. By running the optimization algorithm, this work results in 1 

optimum antenna array topologies with maximum capacity and minimum occupied space. 2 

D. Contributions 3 

Building on our very primitive simulation results published in a conference paper [37], the 4 

main contributions of this work are summarized as follows. 1) To mitigate numerical integration 5 

complexities, novel closed-form SCFs are derived based on a generic system modeling for 6 

arbitrary positioning of antenna array elements [10], [19]. Note that SCFs are necessary for 7 

MIMO channel capacity calculations. Thus, closed-form SCFs can also mitigate the complexity 8 

of ergodic MIMO channel capacity calculations ending up with simpler, but still correct, PSOvm 9 

implementations, as long as the closed-form SCFs comply with the accurate numerical 10 

integration solutions. The JAE-based approach is leveraged to derive a closed-form SCF in 3D 11 

restricted uniform scenarios. We derive a novel closed-form SCF in 3D Gaussian scenarios 12 

extending the GHQ-based approach presented in [14]. Combining the GHQ- and JAE-based 13 

approaches, we further derive a novel closed-form SCF in 3D omnidirectional scenarios with 14 

uniform and in azimuth and Gaussian in elevation AOA. All closed-form SCFs show outstanding 15 

agreement with their respective numerically determined SCFs. 2) The SDoF subtended by the 16 

wireless propagation scenario, through its AOA characteristics, are heuristically and generically 17 

derived for any such scenario, i.e., isotropic, directional, omnidirectional. Such SDoF 18 

formulations, relying on the differential entropy of 3D AOA distributions, are validated through 19 

performance analyses of antenna array topologies with known SDoF outcomes, i.e., linear, 20 

circular, and spherical [15]. Our SDoF formulations can be applicable to any 3D AOA 21 

distribution and not just uniform ones as in [15]. 3) Optimized antenna array topologies informed 22 

by the information theory concepts of AOA differential entropy and SDoF are presented. The 23 

SDoF metric is explicitly associated to the minimum space occupied by the antenna array for 24 

achieving maximum ergodic MIMO channel capacity. The optimized linear and circular 25 

topologies show almost identical performance with the standardized uniform topologies in all 3D 26 

propagation scenarios. Thus, knowledge of SDoF is sufficient to realize customized uniform 27 

linear and circular arrays without running time and resource consuming optimizations. The 28 

optimization outcomes also demonstrate that arbitrarily-shaped 3D arrays occupy the same space 29 

as spherical ones achieving maximum ergodic MIMO channel capacity. Employing the SDoF 30 

formulations informs the realization of such 3D arrays occupying minimum space.  31 
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E. Paper Outline and Notations 1 

The rest of the paper is organized as follows. Section II presents the MIMO channel model and 2 

its ergodic channel capacity evaluation (II.A), followed by the antenna array model that can 3 

accommodate arbitrarily-positioned elements (II.B). Then, different wireless propagation AOA 4 

scenarios including 3D isotropic, 3D directional, and 3D omnidirectional ones are presented 5 

(II.C). In Section III, we derive closed-form SCFs for each scenario as classified in Section II.C. 6 

The SDoF formulas in [15] for linear, circular, and spherical arrays are reviewed in Section IV, 7 

followed by the derivations of generalized heuristic SDoF formulations applicable in any 8 

propagation scenario. Section V introduces the adopted PSOvm algorithm. In Section VI, we 9 

demonstrate the feasibility and correctness of the presented analysis and methodology, i.e., 10 

closed-form SCFs and SDoF formulations, towards devising optimum antenna array topologies 11 

via extensive simulation runs and comparisons. Finally, the paper is concluded in Section VII. 12 

Main notations used in the paper are summarized in the following. Assume a MIMO wireless 13 

channel with a transmit antenna array of 𝑁𝑡 elements and a receive array of 𝑁𝑟 elements. 𝐇 and 14 

𝐇𝜔  denote the 𝑁𝑟 × 𝑁𝑡  MIMO channel matrix of a Rayleigh fading channel and the 𝑁𝑟 × 𝑁𝑡 15 

stochastic matrix comprised of independent identically distributed (i.i.d.) complex Gaussian 16 

entries with zero mean and unit variance, respectively. 𝐑𝑟𝑥 and 𝐑𝑡𝑥 are the 𝑁𝑟 × 𝑁𝑟 and 𝑁𝑡 × 𝑁𝑡 17 

spatial correlation matrices of antenna arrays at the Rx and Tx, respectively, while 𝑅𝑠(𝑚, 𝑛) 18 

denotes the (𝑚, 𝑛) entry of 𝐑𝑟𝑥/𝐑𝑡𝑥, i.e., the spatial correlation between the m-th and n-th array 19 

elements. 𝐈𝑎  denotes an 𝑎 × 𝑎  identity matrix. 𝑃/𝜎𝑛
2  is the SNR, with 𝑃  the total transmitted 20 

power and 𝜎𝑛
2 the noise variance. We denote 𝜃 ∈ [−𝜋/2, 𝜋/2], 𝜑 ∈ [−𝜋, 𝜋] as the elevation and 21 

azimuth AOA, respectively. 𝜆 is the carrier wavelength. We denote Ω as the solid angle, |Ω| the 22 

SDoF, i.e., a metric characterizing the spatial diversity of the wireless propagation channel, and 23 

𝑋 the DoF arisen by the SDoF multiplied by the antenna aperture size [15]. 24 

II. SYSTEM MODEL 25 

A. MIMO Channel Model and Ergodic Capacity 26 

The complex signal vector received at the Rx side is given by [38] 27 

𝐲 = 𝐇𝐬 + 𝐧 (1) 

where 𝐬 denotes the transmitted signal vector, 𝐧 is the received additive white Gaussian noise 28 

vector consisting of i.i.d. entries with zero mean and unit variance. We adopt the Kronecker 29 
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model to evaluate the MIMO channel matrix incurring independent correlation analyses at the Tx 1 

and Rx antennas [39]. 𝐇 can thus be written as [39] 2 

𝐇 = (𝐑𝑟𝑥)1/2𝐇𝜔(𝐑𝑡𝑥)1/2. (2) 

Using the Kronecker model, we focus on the spatial correlation and array design at one side, i.e., 3 

the Rx side, by assuming the array elements at the Tx side to be uncorrelated, i.e., 𝐑𝑡𝑥 = 𝐈𝑁𝑡
 in 4 

(2). Such assumption enables the DoF behavior to incorporate the wireless propagation 5 

environment (through its AOA characteristics) and antenna array space in accordance with [15]. 6 

Assuming that the channel state information (CSI) is unknown to the transmitter while being 7 

fully known to the receiver, the ergodic MIMO channel capacity in bits/s/Hz is given by [40] 8 

𝐶 = 𝐸 {log2 [det (𝐈𝑁𝑟
+

𝑃

𝜎𝑛
2𝑁𝑡

𝐇𝐇𝐻)]}  (3) 

where the superscript “𝐻” denotes the complex conjugate transpose, and “det” denotes the 9 

determinant operation. We define ℋ as the set of channel realizations 𝐇, thus, the expectation in 10 

(3) operates on the instantaneous capacities evaluated in each channel realization 𝐇 ϵ ℋ. Note 11 

that, we compute the ergodic MIMO channel capacity using (3) with the aid of (2), instead of 12 

considering full CSI at the transmitter and receiver as in [15]. This is because full CSI informing 13 

power allocation for each sub-channel is more complex and hardly feasible. However, the DoF 14 

outcome of [15] can be readily characterized by adopting (3) with performance behavior 15 

indicated by 3D uniform AOA distributions as will be demonstrated in Section VI. The presented 16 

analysis can consider other MIMO channel models including the one in [41] formed by the 17 

single side (Tx and Rx) spatial correlation matrices. 18 

B. Antenna Array Element Positioning 19 

The spatial correlation is characterized by the array element position and AOA distribution. 20 

We focus on the single side spatial correlation matrix 𝐑𝑟𝑥 at the Rx by assuming that i.i.d. array 21 

elements are equipped at the Tx. Our analysis is conducted by adopting a generic array model 22 

that can accommodate any 3D AOA distribution [19] with arbitrary positioning of antenna array 23 

elements [10]. For illustration, Fig. 1 shows the AOAs (𝜃, 𝜑)  of multipath components 24 

impinging on the Rx antenna array in a 3D (𝑋′, 𝑌′, 𝑍′) coordinate system, in which, the origin is 25 

the phase reference point. Let the m-th element of an antenna array be located at (𝑥𝑚, 𝑦𝑚, 𝑧𝑚) 26 

and the corresponding position vector defined as 𝐫𝑚 = (𝑥𝑚 , 𝑦𝑚, 𝑧𝑚)𝑇. Based on Fig. 1, the wave 27 

vector is expressed by [42] 28 
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Fig. 1. Incident multipath component on two arbitrarily-located antenna array elements in 3D space. 2 

 3 

𝐤(𝜃, 𝜑) =
2𝜋

𝜆
[

cos(𝜃) cos(𝜑)

cos(𝜃) sin(𝜑)

sin(𝜃)
]. (4) 

The phase delay of a multipath component with AOAs (𝜃, 𝜑) impinging onto the m-th element, 4 

i.e., the m-th input of the steering vector, is given by [42] 5 

𝑣𝑚(𝜃, 𝜑) = exp{−𝑗[𝐫𝑚 ⋅ 𝐤(𝜃, 𝜑)]} 

                  = exp{−𝑗(2𝜋/𝜆)[𝑥𝑚 cos(𝜃) cos(𝜑) +𝑦𝑚 cos(𝜃) sin(𝜑) + 𝑧𝑚 sin(𝜃)]} (5) 

where 𝑗 = √−1, and “⋅” denotes the inner product. Since the spatial correlation between the m-th 6 

and the n-th array elements is the expectation of their phase difference (see eqs. (5), (12)) [12], 7 

the calculation incurs the position difference vector that can be evaluated by (see Fig. 1) 8 

𝐝𝑚,𝑛 = 𝐫𝑛 − 𝐫𝑚 = [

𝑥𝑛

𝑦𝑛

𝑧𝑛

] − [

𝑥𝑚

𝑦𝑚

𝑧𝑚

] = [

𝑟𝑚,𝑛 cos(𝛽𝑚,𝑛) cos(𝛼𝑚,𝑛)

𝑟𝑚,𝑛 cos(𝛽𝑚,𝑛) sin(𝛼𝑚,𝑛)

𝑟𝑚,𝑛 sin(𝛽𝑚,𝑛)

] (6) 

where 𝑟𝑚,𝑛 = √(𝑥𝑛 − 𝑥𝑚)2 + (𝑦𝑛 − 𝑦𝑚)2 + (𝑧𝑛 − 𝑧𝑚)2 , 𝛽𝑚,𝑛  denotes the angle between the 9 

𝑋′𝑌′-plane and 𝐝𝑚,𝑛 , 𝛼𝑚,𝑛 is the angle between the 𝑋′-axis and the orthogonal projection of 10 

𝐝𝑚,𝑛 on the 𝑋′𝑌′-plane. 11 

C. Wireless Propagation Scenarios 12 

We classify wireless propagation scenarios into three categories, namely, 3D isotropic, 3D 13 

directional and 3D omnidirectional scenarios. Such classification accommodates any potential 14 

propagation scenario and modeling takes place through their specific AOA characteristics. In this 15 

paper, we will consider uniform and Gaussian AOA distributions as sufficient models for each 16 

propagation scenario, also due to their wide adoption in the published literature [9], [19]–[21]. In 17 
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accordance with eq. (2) above, such scenarios account for diffuse (rich) multipath scattering. 1 

• 3D Directional Scenarios 2 

In 3D directional propagation scenarios, we consider both restricted uniform and Gaussian 3 

distributions for the azimuth and elevation AOAs. Restricted uniform AOAs can heuristically 4 

model directional propagation and can be easily generalized to multi-clustered propagation [19]. 5 

Gaussian AOAs constitute a widely adopted and realistic modeling approach for directional 6 

propagation scenarios due to the concentricity of the Gaussian distribution [21]. 7 

Considering that the elevation and azimuth AOAs are independent to each other, the joint 8 

AOA distribution 𝑃(𝜃, 𝜑) can be written as 𝑃(𝜃, 𝜑) = 𝑃(𝜃)𝑃(𝜑), where 𝑃(𝜃) and 𝑃(𝜑) are the 9 

marginal distributions for the elevation and azimuth AOAs, respectively [19]. Hence, the joint 10 

AOA distribution for 3D restricted uniform scenarios is expressed as [11] 11 

𝑃𝑢(𝜃, 𝜑) = 𝑃𝑢(𝜃)𝑃𝑢(𝜑) = 1/(4𝛥𝜑 cos 𝜃0 sin ∆𝜃) (7) 

where 𝜃 ∈ [𝜃0 − 𝛥𝜃, 𝜃0 + 𝛥𝜃] ⊆ [−𝜋/2, 𝜋/2] , 𝜑 ∈ [𝜑0 − 𝛥𝜑, 𝜑0 + 𝛥𝜑] ⊆ [−𝜋, 𝜋] , 𝑃𝑢(𝜃) =12 

1/(2 cos 𝜃0 sin ∆𝜃) and 𝑃𝑢(𝜑) = 1/(2𝛥𝜑) are the marginal uniform distributions for elevation 13 

and azimuth AOAs, 𝜃0  and 𝜑0  denote the mean elevation and azimuth AOAs, 𝛥𝜃  and 𝛥𝜑 14 

determine the range of scattering sectors in elevation and azimuth, respectively. Note that by 15 

definition ∫ 𝑃𝑢(𝜃) cos 𝜃
𝜃

𝑑𝜃 = 1, ∫ 𝑃𝑢(𝜑)
𝜑

𝑑𝜑 = 1. 16 

The joint AOA distribution for 3D Gaussian scenarios, with 𝜃 ∈ [−𝜋/2, 𝜋/2] , 𝜑 ∈17 

[−𝜋/2 + 𝜑0, 𝜋/2 + 𝜑0], can be expressed as [21] 18 

𝑃𝐺𝑎𝑢(𝜃, 𝜑) = 𝑃𝐺𝑎𝑢(𝜃)𝑃𝐺𝑎𝑢(𝜑) =
𝐴1

√2𝜋𝜎𝜃

exp [−
(𝜃 − 𝜃0)2

2𝜎𝜃
2

]
𝐴2

√2𝜋𝜎𝜑

exp [−
(𝜑 − 𝜑0)2

2𝜎𝜑
2

] (8) 

where 𝑃𝐺𝑎𝑢(𝜃), 𝑃𝐺𝑎𝑢(𝜑) are the marginal Gaussian distributions for the elevation and azimuth 19 

AOAs, respectively, and 𝜎𝜃, 𝜎𝜑 are parameters related to the variance of each AOA distribution. 20 

In (8), 𝐴1 and 𝐴2 are normalization factors [22] such that by definition ∫ 𝑃𝐺𝑎𝑢(𝜃) cos 𝜃
𝜃

𝑑𝜃 = 1, 21 

∫ 𝑃𝐺𝑎𝑢(𝜑)
𝜑

𝑑𝜑 = 1. 22 

• 3D Isotropic Scenario 23 

As an ideal case, the 3D isotropic scattering scenario can be modeled by the 3D restricted 24 

uniform scenario. The joint distribution for the 3D isotropic scenario arises from (7) by defining 25 

𝛥𝜃 = 𝜋/2, 𝛥𝜑 = 𝜋, 𝜃0 = 0, having 26 

𝑃𝑢(𝜃, 𝜑) = 1/(4𝜋). (9) 
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• 3D Omnidirectional Scenarios 1 

In omnidirectional propagation scenarios, multipath power is uniformly distributed on the 2 

azimuth plane and directionally on elevation [20], [22]. It naturally lies between the directional 3 

and isotropic scenarios, completing wireless propagation classification. The azimuth AOA 4 

distribution is the uniform one, i.e., 𝑃𝑢(𝜑) = 1/(2𝜋). We consider two cases for the elevation 5 

AOA in this paper, i.e., a restricted uniform and a Gaussian elevation AOA.  6 

The joint distribution for the scenario with restricted uniform elevation ΑΟΑ will be derived 7 

from (7) by defining  𝛥𝜑 = 𝜋 as 8 

𝑃𝑜𝑚𝑛𝑖_1(𝜃, 𝜑) =
1

4𝜋 cos 𝜃0 sin ∆𝜃
. (10) 

The joint distribution for the omnidirectional scenario with Gaussian elevation AOA can be 9 

derived from (8) by considering a uniform azimuth AOA i.e., 𝑃𝑢(𝜑) = 1/(2𝜋), as follows [20] 10 

𝑃𝑜𝑚𝑛𝑖_2(𝜃, 𝜑) = 𝑃𝐺𝑎𝑢(𝜃)𝑃𝑢(𝜑) =
𝐴1

2𝜋√2𝜋𝜎𝜃

exp [−
(𝜃 − 𝜃0)2

2𝜎𝜃
2

]. (11) 

III. DERIVATIONS OF CLOSED-FORM SPATIAL CORRELATION FUNCTIONS 11 

The spatial correlation between the m-th and the n-th array elements is given by [9] 12 

𝑅𝑠(𝑚, 𝑛) = 𝐸{𝑣𝑚(𝜃, 𝜑)𝑣𝑛(𝜃, 𝜑)∗} = ∫ ∫ 𝑣𝑚(𝜃, 𝜑)
𝜑𝜃

𝑣𝑛(𝜃, 𝜑)∗𝑃(𝜃, 𝜑) cos(𝜃) 𝑑𝜑𝑑𝜃 (12) 

where (. )∗  denotes the conjugate transpose with 𝑃(𝜃, 𝜑)  being the joint AOA distribution 13 

defined previously. To avoid the complicated numerical integrations in (12), we will use the 14 

JAE- and GHQ-based approximations to derive closed-form SCFs for antenna array topologies 15 

in 3D restricted uniform, Gaussian, and omnidirectional scenarios. The validity of the closed-16 

form SCFs will be demonstrated in Section VI. 17 

A. SCF for 3D Restricted Uniform Scenarios 18 

For antenna arrays in 3D restricted uniform scenarios, we use (7) for 𝑃(𝜃, 𝜑) in eq. (12). A 19 

JAE-based approximation [10] is applied in this paper to derive the closed-form SCF (see 20 

Appendix A). Based on our system model as in Fig. 1, the closed-form SCF for arbitrary 21 

numbers and positions of array elements in 3D restricted uniform scenarios is expressed as 22 

𝑅𝑠(𝑚, 𝑛) ≈
[0.5𝑓0(Θ0) + 𝑓0(Θ1) + ⋯ + 𝑓0(Θ𝑄−1) + 0.5𝑓0(Θ𝑄)]

𝑄 cos(𝜃0) sin𝑐(𝛥𝜃)
+  

2

𝑄 cos(𝜃0) sin𝑐(𝛥𝜃)
× 

∑{𝑗𝑔 cos[𝑔(𝜑0 − 𝛼𝑚,𝑛)] sin𝑐(𝑔𝛥𝜑)

𝐺

𝑔=1

[0.5𝑓𝑔(Θ0) + 𝑓𝑔(Θ1) + ⋯ + 𝑓𝑔(Θ𝑄−1) + 0.5𝑓𝑔(Θ𝑄)]} 
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 (13) 

where 𝑓0(Θ) and 𝑓𝑔(Θ) are defined in Appendix A, Θ𝑄 denotes the Q-th partition of the interval 1 

[𝜃0 − 𝛥𝜃, 𝜃0 + 𝛥𝜃] based on the Trapezoidal rule, 𝐺 is the summation term of the JAE. 2 

For antenna arrays in the 3D isotropic scenario, i.e., 𝑃𝑢(𝜃, 𝜑) = 1/(4𝜋), the SCF can be 3 

analytically determined as [12] 4 

𝑅𝑠(𝑚, 𝑛) = sin𝑐(2π𝑟𝑚,𝑛/𝜆). (14) 

B. SCF for 3D Gaussian Scenarios 5 

For antenna arrays in 3D Gaussian scenarios, we use (8) for 𝑃(𝜃, 𝜑) in eq. (12) and apply a 6 

GHQ-based approximation approach to compute the double integrals of (12). The formula of 7 

GHQ rule can be found in [43] and expressed as 8 

∫ 𝑒−𝑥2
𝑓(𝑥)𝑑𝑥 = ∑ 𝜔𝑏𝑓(𝑥𝑏)

𝐵

𝑏=1

∞

−∞

 (15) 

where 𝑥𝑏 , 𝑏 = 1,2, … , 𝐵 , are the zeros of the B-th order Hermite polynomial 𝐻𝐵(𝑥) . The 9 

associated weight 𝜔𝑏 is given by [43] 10 

𝜔𝑏 =
2𝐵−1𝐵! √𝜋

𝐵2[𝐻𝐵−1(𝑥𝑏)]2
. (16) 

Employing the GHQ-based approximation approach as in [14], a novel closed-form SCF for 11 

arbitrary numbers and positions of antenna array elements in 3D Gaussian scenarios is derived in 12 

Appendix B as follows 13 

𝑅𝑠(𝑚, 𝑛) ≈
𝐴

𝜋
∑ {𝜔𝑞 exp [𝑗

2𝜋

𝜆
𝑟𝑚,𝑛 sin(√2𝜎𝜃𝑥𝑞 + 𝜃0) sin(𝛽𝑚,𝑛)] cos(√2𝜎𝜃𝑥𝑞 + 𝜃0)

𝑀

𝑞=1

× 

∑ (𝜔𝑝 exp [𝑗
2𝜋

𝜆
𝑟𝑚,𝑛 cos(𝛽𝑚,𝑛) cos(√2𝜎𝜃𝑥𝑞 + 𝜃0) cos(𝛼𝑚,𝑛 − √2𝜎𝜑𝑥𝑝 − 𝜑0)])}

𝑁

𝑝=1

 (17) 

where 𝐴 = 𝐴1 × 𝐴2, 𝑀 and 𝑁 are the summation terms of Hermite polynomials. The abscissas 14 

𝑥𝑝, 𝑝 = 1,2, … , 𝑁, are the zeros of the N-th order Hermite polynomial, and 𝑥𝑞, 𝑞 = 1,2, … , 𝑀, 15 

are the zeros of the M-th order Hermite polynomial, respectively.  16 

Considering 𝑃𝐺𝑎𝑢(𝜃) = 𝛿(𝜃) in (8) [20], and substituting 𝛽𝑚,𝑛 = 0 and √2𝜎𝜃𝑥𝑞 + 𝜃0 = 0 into 17 

(17) yields the SCF for 2D arrays in 2D Gaussian scenarios as was derived in [14, eq. (15)]. 18 

C. SCF for 3D Omnidirectional Scenarios 19 

For antenna arrays in 3D omnidirectional scenarios with restricted uniform elevation AOA, we 20 
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use (10) for 𝑃(𝜃, 𝜑) in eq. (12). The SCF in (13) still holds by defining 𝛥𝜑 = 𝜋. For antenna 1 

arrays in the omnidirectional scenario with Gaussian elevation AOA, we use (11) for 𝑃(𝜃, 𝜑) in 2 

eq. (12). Combining the JAE and GHQ approaches, the closed-form SCF in this scenario is 3 

derived in Appendix C as follows 4 

𝑅𝑠(𝑚, 𝑛) ≈
𝐴1

√𝜋
 ∑ {𝜔𝑞 exp [𝑗

2𝜋

𝜆
𝑟𝑚,𝑛 sin(√2𝜎𝜃𝑥𝑞 + 𝜃0) sin(𝛽𝑚,𝑛)] cos(√2𝜎𝜃𝑥𝑞 + 𝜃0)

𝑀

𝑞=1

 

×  𝐽0(𝑗2𝜋𝑟𝑚,𝑛 cos(√2𝜎𝜃𝑥𝑞 + 𝜃0) cos(𝛽𝑚,𝑛) /𝜆)}. (18) 

IV. SPATIAL DEGREES OF FREEDOM ANALYSIS 5 

The DoF being the product of the AOA solid angle extent, i.e, the SDoF and array aperture 6 

size determine the maximum number of antenna elements to be employed at a single side, i.e., 7 

the Rx, for optimum channel capacity [15]. Inversely, with given numbers of antenna elements, 8 

knowledge of SDoF is sufficient to determine the minimum occupied space for antenna arrays 9 

and this will be demonstrated in Section VI. The SDoF outcome in [15] is actually valid for 10 

uniform AOA distributions, i.e., when assigning a uniform AOA distribution in the designated 11 

AOA range. We will generalize such SDoF outcome by extending it to any AOA distribution. 12 

Correctness will be confirmed in Section VI by demonstrating performance compliance of 13 

different AOA scenarios with equal DoF. 14 

A. SDoF Formulas [15]  15 

For a linear array with 2𝐿 (in 𝜆) length placed along the 𝑍′-axis and centered at the origin, the 16 

DoF can be evaluated by 17 

𝑋 = 2𝐿|Ω𝜃|+1 (19) 

where |Ω𝜃| denotes the range of cos 𝜃 and can be expressed as 18 

|Ω𝜃| = ∫ cos 𝜃 𝑑𝜃
𝜃0+𝛥𝜃

𝜃0−𝛥𝜃

= 2 cos 𝜃0 sin ∆𝜃. (20) 

For a circular array located on the 𝑋′𝑌′-plane and centered at the origin with radius 𝑅 (in 𝜆), the 19 

DoF can be expressed as 20 

𝑋 = 2𝑅|Φ|  (21) 

in which |Φ| is the range of 𝜑 and expressed as 21 

|Φ| = ∫ 𝑑𝜑
𝜑0+𝛥𝜑

𝜑0−𝛥𝜑

= 2𝛥𝜑. (22) 

Compared with linear and circular arrays, spherical arrays capture all SDoF of the 3D spatial 22 
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propagation channel and thus provide higher capacity. For a spherical array centered at the origin 1 

with radius 𝑅 (in 𝜆), the DoF is 2 

𝑋 = 𝜋𝑅2|Ω|  (23) 

where |Ω| is the range of Ω denoting the SDoF. An alternative interpretation of |Ω| is that it 3 

denotes the DoF captured by a spherical array of unit aperture 𝜋𝑅2, i.e., the SDoF are the DoF 4 

per unit array aperture. Thus, if we know |Ω| as the spatial resolution of the propagation channel 5 

and we wish to use 𝑋 antenna elements, we can alternatively calculate the required radius 𝑅 of 6 

the spherical array to accommodate these 𝑋 elements for optimum channel capacity. Therefore, 7 

for spherical arrays, the SDoF when Ω occupies a single scattering sector will be the product of 8 

(20) and (22) as 9 

|Ω| = |Ω𝜃||Φ| = ∫ ∫ cos 𝜃
𝜑𝜃

𝑑𝜑𝑑𝜃 = 4∆𝜑 cos 𝜃0 sin ∆𝜃. (24) 

B. Generalized SDoF Formulas 10 

We heuristically derive generalized SDoF formulas applicable to any AOA distribution, 11 

without just considering the range of Ω as in [15]. This is done with the aid of the differential 12 

entropy and the validity of our heuristic formulations will be demonstrated in Section VI. The 13 

proposed formulation can be adaptable to any wireless propagation scenario characterized by its 14 

AOA distribution. 15 

In information theory, the differential entropy 𝐻(𝑌) of a continuous random variable 𝑌 shows 16 

the uncertainty of the variable, i.e., the amount of information contained in the variable, and is 17 

defined as [36] 18 

𝐻(𝑌) = − ∫𝑃(𝑦) log2 𝑃(𝑦)𝑑𝑦
𝑆

 (25) 

where 𝑃(𝑦) is the distribution of 𝑌, 𝑆 is the support set of the random variable Y and the volume 19 

of 𝑆 is expressed as 2𝐻(𝑌). In fact, 2𝐻(𝑌) characterizes the independent dimensions, i.e., the DoF, 20 

subtended by the random variable 𝑌 with distribution 𝑃(𝑦). We apply this concept to find the 21 

SDoF subtended by the AOA distribution in the 3D space. Considering the AOA distribution 22 

𝑃(Ω) with respect to the solid angle Ω, we can define the differential entropy of the AOA 23 

distribution similarly to (25) as 𝐻(Ω) = − ∫ 𝑃(Ω) log2 𝑃(Ω)𝑑Ω
Ω

. Based on the theorem of the 24 

change of variable [44, Appendix B], under the mapping Ω → 𝜃, 𝜑 , with 𝑃(Ω)𝑑Ω =25 

cos 𝜃 𝑃(𝜃, 𝜑)𝑑𝜑𝑑𝜃, the differential entropy of the joint AOA distribution can be expressed as 26 
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𝐻(𝜃, 𝜑) = − ∫ ∫ cos 𝜃 𝑃(𝜃, 𝜑) log2 𝑃(𝜃, 𝜑)
𝜑𝜃

𝑑𝜑𝑑𝜃. (26) 

We can thus heuristically determine the SDoF as |Ω| = 2𝐻(𝜃,𝜑) for any AOA distribution. 1 

For the restricted uniform AOA, the SDoF for spherical arrays are derived in Appendix D as 2 

|Ω| = 2𝐻𝑢(𝜃,𝜑) = 4∆𝜑 cos 𝜃0 sin ∆𝜃 (27) 

which coincides with (24). Thus, just considering the AOA range as in [15] is equivalent to 3 

assigning a restricted uniform distribution within that AOA range. If the propagation channel 4 

contains more than one scattering region, i.e., multi-clustered wireless propagation (see [19]), 5 

then |Ω| will arise by summing contributions similar to (27) for each scattering region. The 6 

SDoF for linear and circular arrays are given by (see Appendix D) 7 

|Ω𝜃| = 2𝐻𝑢(𝜃) = 2 cos 𝜃0 sin ∆𝜃 (28) 

|Φ| = 2𝐻𝑢(𝜑) = 2∆𝜑 (29) 

respectively. (28) and (29) are identical to (20) and (22), respectively. From (27), the SDoF for 8 

the 3D isotropic propagation scenario, i.e., 𝜃0 = 0 , 𝛥𝜃 = 𝜋/2 , 𝛥𝜑 = 𝜋 , becomes |Ω| = 4𝜋 , 9 

equal to the full range of solid angle in the 3D space.  10 

Using (26) in 3D Gaussian scenarios, the SDoF for spherical arrays can be heuristically 11 

determined as (see Appendix D) 12 

|Ω|𝐺𝑎𝑢 = 2𝐻𝐺𝑎𝑢(𝜃,𝜑) =
2𝜋𝜎𝜃𝜎𝜑

𝐴1𝐴2
exp {

𝜎𝜑
2𝑉𝐺𝑎𝑢(𝜃) + 𝜎𝜃

2𝑉𝐺𝑎𝑢(𝜑)

2𝜎𝜃
2𝜎𝜑

2
} (30) 

where 𝑉𝐺𝑎𝑢(𝜃) and 𝑉𝐺𝑎𝑢(𝜑) are the variances of 𝜃 and 𝜑, respectively, defined as 13 

𝑉𝐺𝑎𝑢(𝜃) = ∫(𝜃 − 𝜃0)2𝑃𝐺𝑎𝑢(𝜃) cos 𝜃
𝜃

𝑑𝜃 (31) 

𝑉𝐺𝑎𝑢(𝜑) = ∫ (𝜑 − 𝜑0)2𝑃𝐺𝑎𝑢(𝜑)
𝜑

𝑑𝜑. (32) 

The SDoF for linear and circular arrays in Gaussian scenarios are given by  14 

|Ω𝜃|𝐺𝑎𝑢 = 2𝐻𝐺𝑎𝑢(𝜃) =
√2𝜋𝜎𝜃

𝐴1
exp [

𝑉𝐺𝑎𝑢(𝜃)

2𝜎𝜃
2

] (33) 

|Φ|𝐺𝑎𝑢 = 2𝐻𝐺𝑎𝑢(𝜑) =
√2𝜋𝜎𝜑

𝐴2
exp [

𝑉𝐺𝑎𝑢(𝜑)

2𝜎𝜑
2

] (34) 

respectively (see Appendix D). Such results are brand-new, extending [15], and the whole 15 

analysis can be applied to any AOA distribution. Validity will be demonstrated in Section VI.  16 

In 3D omnidirectional scenarios for the cases of uniform and Gaussian elevation AOA, the 17 

SDoF for spherical arrays can be heuristically determined as 18 
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|Ω|𝑜𝑚𝑛𝑖_1 = |Ω𝜃||Φ| = 4𝜋 cos 𝜃0 sin ∆𝜃 (35) 

|Ω|𝑜𝑚𝑛𝑖_2 = |Ω𝜃|𝐺𝑎𝑢|Φ| =
2𝜋√2𝜋𝜎𝜃

𝐴1
exp [

𝑉𝐺𝑎𝑢(𝜃)

2𝜎𝜃
2

] (36) 

respectively, where we used (28), (33), and |Φ| = 2𝜋 , as the azimuth AOA is uniformly 1 

distributed in [−𝜋, 𝜋]. 2 

V. PSOVM ALGORITHM IMPLEMENTATION 3 

A. PSOvm Fundamentals 4 

We present the implementation of PSOvm in finding optimum antenna array topologies with 5 

maximum MIMO capacities. Basic theory of PSO has been comprehensively presented in [45]. 6 

The descriptive terms of PSO can be found in [45, Table I], and the updates of velocity 𝑣𝑖 , 7 

position 𝑥𝑖 for the i-th (𝑖 = 1,2, … , 𝑛) particle at each moment 𝑡 (𝑡 = 0,1,2, … , 𝑇) are given by 8 

𝑣𝑖(𝑡 + 1) = 𝑘{𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑝𝑖(𝑡) − 𝑥𝑖(𝑡)]+𝑐2𝑟2[𝑔(𝑡) − 𝑥𝑖(𝑡)]} (37) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (38) 

where 𝑘 is the constriction factor, 𝑝𝑖(𝑡) and 𝑔(𝑡) are the personal best (pbest) and the global 9 

best (gbest) position found by the i-th particle and the swarm at moment 𝑡, respectively. 𝑐1 and 10 

𝑐2 are acceleration coefficients, 𝑟1 and 𝑟2 are random numbers in (0,1), respectively. To keep 11 

particles not being affected by pulling of pbest and gbest results, the inertial weight 𝜔 ∼ (0,1) is 12 

linearly decreased from 𝑐𝑠𝑡𝑎𝑟𝑡 = 0.9 to 𝑐𝑒𝑛𝑑 = 0.4 as [45] 13 

𝜔 = 𝑐𝑠𝑡𝑎𝑟𝑡 − [
𝑐𝑠𝑡𝑎𝑟𝑡 − 𝑐𝑒𝑛𝑑

𝑇
] × 𝑡. (39) 

However, the recent study [30] proposed a PSOvm technique that outperforms the classic PSO as 14 

it helps to improve the particles’ positions at the first few iterations for a better fitness, and thus 15 

improves the overall algorithm performance. Its velocity update can be developed from (37) as 16 

𝑣𝑖(𝑡 + 1) = 𝑘{𝐹𝑙𝑣𝑖(𝑡) + 𝑐1𝑟1[𝑝𝑖(𝑡) − 𝑥𝑖(𝑡) + 𝑐2𝑟2[𝑔(𝑡) − 𝑥𝑖(𝑡)]} (40) 

where 𝐹𝑙 is the mutation factor given by [30] 17 

𝐹𝑙 = (0.1𝑙 + 0.6)(2𝑟 − 1), 𝑙 = 1, … ,6 (41) 

where 𝑟 is a random number in (0,1). We will use (40) and (41) in the beginning to update the 18 

velocity for six times, for the purpose of acceptable convergence speed as was verified in [30]. 19 

The remaining velocity updates will carry on with (37). The position updates will follow (38) for 20 

the whole searching. Before starting the optimization, we define the searching space as 21 

√𝑥𝑚𝑜
2 + 𝑦𝑚𝑜

2 + 𝑧𝑚𝑜
2 ≤ 𝐷𝑚𝑎𝑥 (42) 
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START

Initialize PSO parameters

Evaluate fitness for each particle

If fitness(x) > fitness(gbest)
gbest = x

Yes

Time limit reached

END

Yes

Initialize swarm with random 

positions (x) and velocities (v) 

If fitness(x) > fitness(pbest)
pbest = x

t     

Update x and 

v (with mutation)

t = t + 1

No

t = t + 1

Evaluate fitness for each particle

Update x and 

v (without mutation)

If fitness(x) > fitness(gbest)
gbest = x

If fitness(x) > fitness(pbest)
pbest = x

Get current gbest solution

No

 1 
Fig. 2. PSOvm algorithm flowchart. 2 

 3 

where 𝐷𝑚𝑎𝑥 denotes the radius of a spherical searching space centered at the origin, (𝑥𝑚𝑜 , 𝑦𝑚𝑜 ,4 

𝑧𝑚𝑜) is the obtained optimum position of the m-th antenna array element. Based on the PSOvm 5 

flowchart as plotted in Fig. 2, the maximization of ergodic MIMO channel capacity (fitness) in 6 

(3) by finding optimum positions of antenna array elements in a constrained space is summarized 7 

step-by-step in the following sub-section. 8 

B. Optimization Process 9 

1) Initialization of Particles and Swarms: We set the particle number to 𝑛 = 20 as the study in 10 

[46] demonstrated that 20 particles are effective enough for most engineering problems, and 11 

the time limit to 𝑇 = 500 being large enough for a reasonable computation time [10]. The 12 

work in [47] found that 𝑣𝑚𝑎𝑥 is best set to 10%-20% of the width of searching space, we thus 13 

select the median one as 𝑣𝑚𝑎𝑥 = 0.15𝐷𝑚𝑎𝑥 . We select the standard choice 𝑘 = 0.73 as was 14 

suggested in [45], and the optimal choices 𝑐1 = 2.8, 𝑐2 = 1.3 as were validated in [46]. 15 

2) Initialization of Algorithm: We randomly locate the initial pbest position 𝑝𝑖(1) of the 𝑖-th 16 

particle and the initial gbest position 𝑔(1) of the swarm in the searching space, 𝑖 = 1,2, … ,20, 17 

such that none of the particles know where the gbest position is located yet. The initial 18 

velocity 𝑣𝑖(1), 𝑖 = 1,2, … ,20 is random in both its direction and magnitude. Both the initial 19 

pbest fitness 𝐶𝑝𝑏𝑒𝑠𝑡(𝑖) for the i-th particle and the initial gbest fitness 𝐶𝑔𝑏𝑒𝑠𝑡 for the swarm 20 

are set to zero to realize the correct capacity in the following searching process. 21 
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3) Fitness Evaluation: At each moment 𝑡  (𝑡 = 0,1,2, … ,500 ), each particle randomly flies 1 

through the searching space and computes the fitness at their positions x𝑖(𝑡), 𝑖 = 1,2, … ,20. 2 

Comparing the obtained fitness 𝐶 with the pbest fitness 𝐶𝑝𝑏𝑒𝑠𝑡(𝑖), if 𝐶 > 𝐶𝑝𝑏𝑒𝑠𝑡(𝑖), replace 3 

𝐶𝑝𝑏𝑒𝑠𝑡(𝑖) with the current 𝐶 and 𝑝𝑖(𝑡) with the current position 𝑥𝑖(𝑡). Similarly, comparing 𝐶 4 

with the gbest fitness 𝐶𝑔𝑏𝑒𝑠𝑡, set 𝐶𝑔𝑏𝑒𝑠𝑡 to 𝐶 and 𝑔(𝑡) to 𝑥𝑖(𝑡) if 𝐶 > 𝐶𝑔𝑏𝑒𝑠𝑡. 5 

4) Update the mutated velocity 𝑣𝑖 with (40), (41) and the position 𝑥𝑖 with (38) for each particle. 6 

Any of the particles flying beyond the searching space will be hauled back to the boundary 7 

when the condition in (42) is applied.  8 

5) Set 𝑡 = 𝑡 + 1, and repeat the process in 3) and 4) if 𝑡 ≤ 6. Otherwise, move to the next step. 9 

6) Update the velocity 𝑣𝑖 with (37) and the position 𝑥𝑖 with (38) for each particle. The condition 10 

in (42) is still applied.  11 

7) Set 𝑡 = 𝑡 + 1, repeat the process in 3) and carry on the position and velocity updating with 6) 12 

if 𝑡 ≤ 500. Otherwise, terminate the optimization process. 13 

VI. SIMULATIONS AND RESULTS 14 

In this section, we demonstrate and verify the validity of our methodology in realizing 15 

optimum antenna array topologies with maximum capacity performance occupying minimum 16 

space. Simulations and results for the wireless propagation scenarios discussed in Section II-C 17 

are comprehensively presented. Empowered by the existence of analytical SDoF formulas in 18 

Section IV, we focus on linear, circular, and spherical array topologies. 19 

Based on the wireless propagation scenarios discussed in Section II-C, the AOA parameters 20 

for each of the scenarios are defined and listed in Table I. For the 3D restricted uniform scenario 21 

(see (7)), we assume 𝜃0 = 𝜑0 = 0, 𝛥𝜃 = 𝛥𝜑 = 𝜋/6. The variances for the uniform elevation 22 

and azimuth AOAs, 𝑉𝑢(𝜃) and 𝑉𝑢(𝜑), respectively, are determined as 23 

𝑉𝑢(𝜃) = ∫ (𝜃 − 𝜃0)2𝑃𝑢(𝜃) cos 𝜃 𝑑𝜃
𝜃0+𝛥𝜃

𝜃0−𝛥𝜃

= ∆𝜃2 +
2∆𝜃 cos ∆𝜃

sin ∆𝜃
− 2 (43) 

𝑉𝑢(𝜑) = ∫ (𝜑 − 𝜑0)2𝑃𝑢(𝜑)𝑑𝜑
𝜑0+𝛥𝜑

𝜑0−𝛥𝜑

=
∆𝜑2

3
 (44) 

where, (43) arises by using the definition for 𝑃𝑢(𝜃) (see below eq. (7)) and after some algebraic 24 

manipulations with the aid of [48, eqs. 2633-5, 6]. By using the definition for 𝑃𝑢(𝜑) (see below 25 

eq. (7)) and after some elementary algebraic manipulations, (44) arises. For 3D isotropic 26 

scenarios, we just assign 𝜃0 = 𝜑0 = 0, 𝛥𝜃 = 𝜋/2, 𝛥𝜑 = 𝜋 (see (9)). 27 
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TABLE I 1 

AOA PARAMETERS IN EACH PROPAGATION SCENARIO 2 

3D Propagation Scenario Elevation AOA Azimuth AOA 

Isotropic 
𝜃~𝑈[−𝜋/2, 𝜋/2] 
𝜃0 = 0, 𝛥𝜃 = 𝜋/2 

𝜑~𝑈[−𝜋, 𝜋] 
𝜑0 = 0, 𝛥𝜑 = 𝜋 

Restricted uniform 
𝜃~𝑈[−𝜋/6, 𝜋/6], 
𝜃0 = 0, 𝛥𝜃 = 𝜋/6 

𝜑~𝑈[−𝜋/6, 𝜋/6] 
𝜑0 = 0, 𝛥𝜑 = 𝜋/6 

Gaussian (variance) 
𝜃 ∈ 𝑁(𝜃0, 𝜎𝜃

2) 

𝜃0 = 0, 𝜎𝜃 = 0.3123 

𝜑 ∈ 𝑁(𝜑0, 𝜎𝜑
2) 

𝜑0 = 0, 𝜎𝜑 = 0.3023 

Gaussian (entropy) 
𝜃 ∈ 𝑁(𝜃0, 𝜎𝜃

2) 

𝜃0 = 0, 𝜎𝜃 = 0.2588 

𝜑 ∈ 𝑁(𝜑0, 𝜎𝜑
2) 

𝜑0 = 0, 𝜎𝜑 = 0.2533 

Omnidirectional 𝑃𝑜𝑚𝑛𝑖_1(𝜃, 𝜑) 
𝜃~𝑈[−𝜋/6, 𝜋/6]   
𝜃0 = 0, 𝛥𝜃 = 𝜋/6 

𝜑~𝑈[−𝜋, 𝜋] 
𝜑0 = 0, 𝛥𝜑 = 𝜋 

Omnidirectional 𝑃𝑜𝑚𝑛𝑖_2(𝜃, 𝜑) 
𝜃 ∈ 𝑁(𝜃0, 𝜎𝜃

2) 

𝜃0 = 0, 𝜎𝜃 = 0.3123 

𝜑~𝑈[−𝜋, 𝜋] 
𝜑0 = 0, 𝛥𝜑 = 𝜋 

 3 

TABLE II 4 

PSOVM PERFORMANCE FOR 2 × 2 MIMO CAPACITY MAXIMIZATION IN EACH PROPAGATION SCENARIO 5 

3D Propagation 

Scenario 

Convergence 

at Iteration 

Time consumption 

for each iteration 

(closed-form SCFs) 

(in s)  

Time consumption 

for each iteration 

(numerical SCFs) 

(in s)  

Maximized 

Capacity 

(in bit/s/Hz) 

Optimum 

Spacing 

(in 𝜆) 

Isotropic 9 6.9 137.5 5.5380 0.4952 

Restricted uniform 12 8.0 150.1 5.5380 1.9549 

Gaussian (variance) 7 5.7 3485.0 5.5380 1.8772 

Gaussian (entropy) 7 6.6 5772.7 5.5380 1.7813 

Omnidirectional 1  3 4.5 201.8 5.5380 0.4964 

Omnidirectional 2  10 6.6 483.1 5.5380 0.4889 

For a 2 × 2 MIMO channel, the theoretical maximum ergodic capacity is 5.5380 bits/s/Hz.  6 

 7 

TABLE III 8 

PHYSICAL SPACE CONSTRAINTS OF STANDARDIZED ARRAY TOPOLOGIES IN EACH PROPAGATION SCENARIO 9 

3D Propagation Scenario Spatial DoF 
Linear Array: 

2𝐿|Ω𝜃|+1=10 

Circular Array: 

2R|Φ|=10 

Spherical Array: 

𝜋𝑅2|Ω|=10 

Isotropic 

|Ω𝜃|=2 

|Φ|=2𝜋 

|Ω| = 4𝜋 

L = 2.2500 𝜆 R = 0.7958 𝜆 R = 0.5033 𝜆 

Restricted uniform 

|Ω𝜃|=1 

|Φ|=1.0472 

|Ω| = 1.0472 

L = 4.5000 𝜆 R = 4.7746 𝜆 R = 1.7435 𝜆 

Gaussian (variance) 

|Ω𝜃|𝐺𝑎𝑢=1.1707 

|Φ|𝐺𝑎𝑢=1.2493 

|Ω|𝐺𝑎𝑢=1.4626 

L = 3.8439 𝜆 R = 4.0022 𝜆 R = 1.4752 𝜆 

Gaussian (entropy) 

|Ω𝜃|𝐺𝑎𝑢=1 

|Φ|𝐺𝑎𝑢=1.0472 

|Ω|𝐺𝑎𝑢=1.0472 

L = 4.5000 𝜆 R = 4.7746 𝜆 R = 1.7435 𝜆 

Omnidirectional (𝑃𝑜𝑚𝑛𝑖_1(𝜃, 𝜑)) 

|Ω𝜃|=1 

|Φ|=2𝜋 

|Ω|𝑜𝑚𝑛𝑖_1 = 2𝜋 

  R = 0.7118 𝜆 

Omnidirectional (𝑃𝑜𝑚𝑛𝑖_2(𝜃, 𝜑)) 

|Ω𝜃|𝐺𝑎𝑢=1.1707 

|Φ|=2𝜋 

|Ω|𝑜𝑚𝑛𝑖_2 = 7.3557 

  R = 0.6578 𝜆 

2𝐿 denotes the length of linear arrays, 𝑅 is the radius of circular and spherical arrays. 10 

 11 

For fair comparison between 3D restricted uniform and 3D Gaussian scenarios, we assume 12 

𝜃0 = 𝜑0 = 0, and 𝜎𝜃, 𝜎𝜑 to be defined via two different ways, i.e., equating the variances or the 13 

entropies of both distributions. First, we can consider the Gaussian variances of (31) and (32) 14 
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being equal to the uniform variances of (43) and (44), respectively. Then, we use (8) to solve 1 

both equations numerically resulting in 𝜎𝜃 = 0.3123, 𝜎𝜑 = 0.3023. Besides that, we can define 2 

𝜎𝜃 and 𝜎𝜑 by equating the Gaussian entropies of (33) and (34) to the uniform entropies of (28) 3 

and (29), respectively. Then, we use (8), (31) and (32) to solve both equations numerically 4 

resulting in 𝜎𝜃 = 0.2588, 𝜎𝜑 = 0.2533. The notes of ‘variance’ and ‘entropy’ in figures and 5 

tables refer to the 3D Gaussian scenarios by determining 𝜎𝜃, 𝜎𝜑 via these two different ways. 6 

For the 3D omnidirectional scenario 𝑃𝑜𝑚𝑛𝑖_1(𝜃, 𝜑) with restricted uniform elevation AOA (see 7 

(10)), the angular parameters are defined as 𝜃0 = 𝜑0 = 0 , 𝛥𝜃 = 𝜋/6 , 𝛥𝜑 = 𝜋 . For the 3D 8 

omnidirectional scenario 𝑃𝑜𝑚𝑛𝑖_2(𝜃, 𝜑) with Gaussian elevation AOA (see (11)), the angular 9 

parameters are defined as 𝜃0 = 𝜑0 = 0, 𝜎𝜃 = 0.3123, 𝛥𝜑 = 𝜋. 10 

We calculate the ergodic capacity by averaging over 3,000 realizations of MIMO channels. All 11 

distances/lengths are normalized by 𝜆 . We set the SNR 𝑃/𝜎𝑛
2 = 10 dB  as in [15], being 12 

sufficiently high in order the ergodic MIMO channel capacity to be DoF limited rather than 13 

power limited [6]. As was verified in [14], JAE and GHQ have similar approximation 14 

performance when 𝐺 = 20 (see (13)), 𝑀 = 𝑁 = 10 (see (17)), respectively. However, to achieve 15 

an approximation accuracy up to six decimal places when comparing the closed-form SCF with 16 

its respective numerical computation, we select 𝐺 = 50 in (13) for the JAE in all scenarios. For 17 

GHQ, we increase the terms of 𝑀 , 𝑁  in (17), (18) from 20 (for 2 × 2  MIMO) to 140 (for 18 

35 × 35 MIMO) for a similar approximation performance compared with the JAE. The number 19 

of the Trapezoidal subintervals in (13) is set to 𝑄 = 1000. In this paper, we only consider the 20 

correlation at the Rx side in MIMO systems (𝑁𝑟 = 𝑁𝑡) applying the Kronecker model, i.e., the 21 

Tx antennas are assumed to be separated sufficiently apart such that 𝐑𝑡𝑥 = 𝐈𝑁𝑡
. However, the 22 

adopted methodology can be readily extended to account for correlation at both sides leveraging 23 

the uncoupled correlation formulation of the MIMO Kronecker model. The theoretical i.i.d. 24 

capacity is obtained by assuming 𝐑𝑡𝑥 = 𝐈𝑁𝑡
, 𝐑𝑟𝑥 = 𝐈𝑁𝑟

 and using (2), (3). 25 

A. Validation of the Closed-Form SCFs of (13), (17), (18) 26 

To verify the derived closed-form SCFs for each of the scenarios, comparisons with the 27 

numerical and theoretical SCFs in a 2 × 2 MIMO channel will be considered first. As the spatial 28 

correlation depends on the distance between two antenna elements (see (12)), considering a 29 

2 × 2 case is sufficient for the verification of the closed-form solutions [9]. We assume that two 30 
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Rx antennas are located at P1 (−𝐷/4, −𝐷/4, √2𝐷/4) and P2 (𝐷/4, 𝐷/4, −√2𝐷/4), the spacing 1 

between them can thus be quantified by 𝐷. We use (13) to compute the spatial correlations for 2 

the 3D isotropic, restricted uniform, and omnidirectional scenario with restricted uniform 3 

elevation AOA, (17) for the two 3D Gaussian scenarios (variance and entropy), and (18) for the 4 

3D omnidirectional scenario with Gaussian elevation AOA. The numerical SCFs calculated by 5 

the integrations of (12) for each of the scenarios and the analytical SCF of (14) for the 3D 6 

isotropic scenario will be included for comparisons. Fig. 3 depicts the absolute SCFs between 7 

elements (1,2) against the spacing 𝐷 for the various 3D scenarios and the closed-form SCFs 8 

show excellent agreements with the numerical SCFs. Besides that, the closed-form SCF of (13) 9 

is identical to the analytical formula of (14) for the 3D isotropic scenario. Fig. 3 also shows that 10 

the SCFs of the two 3D omnidirectional scenarios lie between the 3D isotropic and 3D 11 

directional scenarios being very close to the 3D isotropic one. The results validate the 3D closed-12 

form SCFs of (13), (17), and (18) derived in Section III adopting the JAE- and GHQ-based 13 

approximation techniques. 14 

We also verify the PSOvm algorithm presented in Section V by comparing the achieved 15 

ergodic channel capacity with the theoretical maximum of the i.i.d. case in a 2 × 2  MIMO 16 

channel. Table II shows that in all AOA scenarios, the PSOvm finds the maximum ergodic 17 

MIMO channel capacity being equal to the theoretical maximum, assigning optimum Rx element 18 

spacing and consuming only a few iterations. Such optimum spacing leading to maximum 19 

ergodic MIMO channel capacity complies with the SCF behaviors depicted in Fig. 3, i.e., the 20 

optimum spacing derived in Table II complies with the spacing around the first zero of the 21 

respective SCF in Fig. 3. Such outcomes verify the adopted PSOvm technique and demonstrate 22 

its efficiency in solving the ergodic MIMO channel capacity maximization problem. Note that 23 

the number of iterations required for convergence shows some variations in different AOA 24 

scenarios. This can be attributed to the random initial positions of particles finding the best 25 

solution near to where they were initially located. Another reason can be the different 26 

computational complexity of the closed-form SCF in each scenario. In all AOA scenarios of 27 

Table II, the iteration time consumption with numerical SCF evaluation is considerably larger 28 

than the respective with closed-form SCF. Such observation further justifies the necessity of 29 

deriving closed-form SCFs. Once the closed-form SCFs and PSOvm are verified, we can 30 

proceed in verifying the SDoF formulations presented in Section IV. 31 
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 1 
Fig. 3. SCF between two receive antennas in each propagation scenario. 2 

 3 

 4 
(a) 5 

 6 
(b) 7 

 8 
(c) 9 

Fig. 4. Capacity versus number of array elements in each propagation scenario (with X = 10). 10 
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 1 
Fig. 5. Capacity versus number of array elements in each propagation scenario (with X = 15). 2 

 3 

 4 
Fig. 6. Eigenvalues of the 50 × 50 𝐑𝑟𝑥 in each propagation scenario. 5 

 6 

 7 
Fig. 7. Optimized spherical array topology in the 3D Gaussian (variance) scenario. 8 

 9 

 10 
Fig. 8. Optimized arbitrarily-shaped array topology in the 3D Gaussian (variance) scenario. 11 
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TABLE IV 1 

MAXIMUM CAPACITIES IN EACH PROPAGATION SCENARIO 2 

Array Geometry 3D Propagation Scenario Max Capacity (bits/s/Hz) 

Linear array Isotropic 27.0349 

Restricted uniform 27.0160 

Gaussian (variance) 26.5174 

Circular array Isotropic 26.9439 

Restricted uniform 27.0003 

Gaussian (variance) 26.7187 

Spherical array Isotropic 26.5577 

Restricted uniform 26.9598 

Gaussian (variance) 26.6820 

Omnidirectional with 𝑃𝑜𝑚𝑛𝑖_1(𝜃, 𝜑) 26.6958 

Omnidirectional with 𝑃𝑜𝑚𝑛𝑖_2(𝜃, 𝜑) 26.5707 

Arbitrarily-shaped 3D array Isotropic 26.6615 

Restricted uniform 27.0035 

Gaussian (variance) 26.6233 

Omnidirectional with 𝑃𝑜𝑚𝑛𝑖_1(𝜃, 𝜑) 26.7212 

Omnidirectional with 𝑃𝑜𝑚𝑛𝑖_2(𝜃, 𝜑) 26.5412 

For a 10 × 10 MIMO channel, the theoretical i.i.d. capacity is 27.0478 bits/s/Hz. 3 

 4 

B. Verification of the SDoF Formulations 5 

To verify the SDoF formulations presented in Section IV, we will derive capacity performance 6 

with respect to the number of antenna array elements for linear, circular, and spherical 7 

topologies. Starting with the 3D restricted uniform scenario, we assume that the maximum 8 

antenna numbers in (19), (21) and (23) for linear, circular and spherical arrays are 𝑋 = 10. Using 9 

(28), (29) and (27) for the 3D restricted uniform scenario into the corresponding (19), (21) and 10 

(23), the physical dimensions of linear, circular, and spherical arrays are obtained and listed in 11 

Table III. Allowing the PSO particles to search on the array boundaries only and running the 12 

algorithm, the maximized capacities along with the increasing numbers of array elements are 13 

plotted in Fig. 4. Fig. 4 shows that in the 3D restricted uniform scenario, when we have 𝑋 = 10 14 

elements in all array topologies, the ergodic MIMO channel capacity follows the i.i.d case and 15 

starts deviating after that value. Similar observations are reported for the 3D omnidirectional and 16 

isotropic scenarios. Such results, holding for 3D uniform AOA scenarios, interpret the DoF 17 

outcomes derived in [15]. 18 

Next, we consider 3D Gaussian scenarios to demonstrate the correctness of our heuristic SDoF 19 

formulations. We use the SDoF of (33), (34) and (30) for the 3D Gaussian scenarios into the 20 

respective (19), (21) and (23). The physical dimensions of linear, circular, and spherical arrays 21 

can be found in Table III. The maximized capacities versus antenna numbers are plotted in 22 

Fig. 4. Again, packing more than 𝑋 = 10 elements cannot achieve the i.i.d. capacity as shown in 23 

Fig. 4. It thus validates our heuristic SDoF formulations can be applied in any wireless 24 

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2022.3231732

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



propagation scenario, i.e., 3D Gaussian in this paper, having performance compliance with the 1 

(validated from [15]) 3D uniform ones. Additionally, Fig. 4 shows that the capacity 2 

performances of the Gaussian (variance) and Gaussian (entropy) cases are identical to each 3 

other, which confirms both methods in defining the Gaussian AOA parameters. Table III also 4 

demonstrates that antenna arrays occupy less space in the 3D Gaussian (variance) scenario 5 

compared with the 3D Gaussian (entropy) for achieving the same capacity performance. We will 6 

consider the 3D Gaussian (variance) scenario for the remainder of the paper. 7 

In 3D omnidirectional scenarios, we will just consider 3D antenna array topologies, as capacity 8 

performance of linear and circular ones depends exclusively on the elevation and azimuth AOA 9 

distributions, respectively. But such analysis has been already conducted previously in the 10 

various directional and isotropic scenarios. Using (35) and (36) into (23), we derive the radius R 11 

of the spherical array topology space for each omnidirectional scenario (see Table III). The 12 

capacity behavior for both 3D omnidirectional scenarios in Fig. 4(c) demonstrates that 𝑋 = 10 is 13 

the maximum number of elements to achieve the i.i.d. capacity. 14 

In all propagation scenarios, we have also included the capacities for ULAs and UCAs in 15 

Figs. 4(a) and 4(b), respectively. Capacity performance of such standardized topologies is almost 16 

identical to the optimized ones in all scenarios. It is thus revealed that good antenna array design 17 

is possible by just knowing the SDoF, without running time and resource consuming 18 

optimizations. Results in Fig. 4 and Table III show that for linear increase in the ergodic MIMO 19 

channel capacity, the element number is indeed 10 in each array topology and all wireless 20 

propagation scenarios. Further insight into the results of Fig. 3 and Table III reveals the (rational) 21 

behavior that in similar scenarios classified either as 3D uniform or 3D Gaussian, the greater the 22 

SDoF, the lower the SCFs are. More specifically, the 3D isotropic, omnidirectional-1, and 23 

restricted uniform AOA scenarios are classified in descending order in terms of SDoF, but in 24 

ascending order in terms of SCFs. Same applies for the 3D Gaussian (variance) and Gaussian 25 

(entropy) scenarios. In the 3D restricted uniform and 3D Gaussian (entropy) scenarios, their 26 

SCFs are not the same, although their SDoF are equal. This can be attributed to the chosen 27 

orientation of the two elements used to compute the SCFs shown in Fig. 3. In the following, we 28 

will focus on optimizing spherical arrays as they cannot demonstrate a sole uniform topology. 29 

Furthermore, the ergodic MIMO channel capacity for 𝑋 = 15 is presented in Fig. 5. Again, 30 

Fig. 5 demonstrates that for linear increase in the ergodic MIMO channel capacity the element 31 
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number is 15 in spherical array topologies and all wireless propagation scenarios. Similar 1 

observations are reported in linear and circular cases. Note that, the required minimum spaces for 2 

𝑋 = 15 are different from the ones for 𝑋 = 10 and can be determined by the SDoF in a similar 3 

way as was done in the 𝑋 = 10 case. With such limitation of 𝑋 = 15, we also evaluate the 4 

eigenvalues of 𝐑𝑟𝑥  considering a 50 × 50  spatial correlation matrix for different wireless 5 

propagation scenarios as depicted in Fig. 6. Fig. 6 reveals a similar eigenvalue behavior trend in 6 

all 3D AOA scenarios, with eigenvalues tending to zero after the value of 𝑋 = 15 . As the 7 

eigenvalue behavior of the spatial correlation matrix constitutes another interpretation of the DoF 8 

according to [34], [35], such result further verifies our SDoF formulations. Apart from 9 

confirming the proposed SDoF formulations, such results can constitute a pathway for antenna 10 

array design given the propagation channel characteristics. More specifically, the critical factor 11 

for devising antenna arrays occupying minimum space is the AOA entropy and not the AOA 12 

distribution itself. Furthermore, should we just know the descriptive statistics (i.e., mean and 13 

variance) of the AOA distribution from a given wireless propagation channel measurement 14 

campaign, we can safely assume these are achieved by a 3D restricted uniform scenario and 15 

design the array topology accordingly. This is because the 3D restricted uniform scenario 16 

requires more antenna array space, hence, analysis will cover the 3D Gaussian scenario too. 17 

C. Design of Optimized Antenna Array Topologies 18 

We further devise optimized antenna array topologies achieving maximum capacity and 19 

occupying minimum space for a given number of array elements and AOA distribution using the 20 

PSOvm algorithm. We focus on spherical arrays, as linear and circular topologies can be 21 

optimum too should we know the subtended SDoF and occupied space, see Figs. 4, 5. We 22 

consider a 10 × 10 MIMO system, i.e., having equal to 𝑋 = 10 elements at both the transmitter 23 

and receiver sides. The array space limits for all propagation scenarios are seen in Table III. We 24 

let the PSO particles search on the space boundaries of spherical arrays and running the PSOvm 25 

algorithm we find the element positions for spherical array topologies in each propagation 26 

scenario. As an example, in Fig. 7, we demonstrate such optimum topology for the 3D Gaussian 27 

(variance) scenario. The achieved maximum capacities in each propagation scenario are listed in 28 

Table IV. We observe that the achieved capacities of all spherical array topologies are almost 29 

equal to the theoretical maximum one. Similar observations are reported in Table IV when 30 

applying the optimization algorithm to linear and circular array topologies. Using the array 31 
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density metric as the number or array elements per unit area, i.e., 𝐷𝐴 = 𝑁𝐴/𝑆 [16], with 𝑁𝐴 = 10 1 

elements and S the occupied area, we obtain 𝐷𝐴 = 0.37 elements/𝜆2, 𝐷𝐴 = 0.20 elements/𝜆2 for 2 

the spherical (Fig. 7) and circular (see Table III) arrays, respectively. Thus, in the 3D Gaussian 3 

(variance) scenario, the spherical array of Fig. 7 is more space efficient than the circular one by 4 

85%, i.e., it has 85% more elements in the same area. 5 

In an attempt to further minimize the occupied space of antenna arrays, we release the 6 

limitation of letting the particles to search on the boundaries only. We run the algorithm by 7 

arbitrarily positioning the array elements. Thus, we let the particles search inside the spherical 8 

space considering the same limits as in previous spherical topologies (see Table III). In all 9 

propagation scenarios, most array elements tend to stay on the boundary of the spherical 10 

topology and such antenna arrays approach the maximum theoretical capacity (see Table IV). 11 

This seems a natural selection in order the array elements to occupy positions in space achieving 12 

such inter-element distancing that minimizes the spatial correlation between them and eventually 13 

maximizes the ergodic MIMO channel capacity. It thus validates that the space constraint 14 

determined by our SDoF formulation is the minimum occupied space. In other words, the 15 

particles of the algorithm can be directly set to search on the array boundary instead of searching 16 

inside the whole space. As an example, we demonstrate the optimum topology in Fig. 8 for the 17 

3D Gaussian (variance) scenario. In both Figs. 7, 8, the optimum array topologies are non-18 

uniform as a result of directional AOA distributions. 19 

VII. CONCLUSION 20 

We generalized the SDoF formulations for linear, circular, and spherical arrays in all classes of 21 

propagation scenarios, namely, isotropic, directional, and omnidirectional, by using the 22 

differential entropy of 3D AOA distributions. Such SDoF formulations can be used to either 23 

determine the maximum number of array elements for a given spatial constraint (as in [15]), or 24 

limit the array space to allocate a certain amount of elements ensuring optimum ergodic MIMO 25 

channel capacity performance. An advanced PSOvm algorithm was employed to maximize 26 

capacity incorporating novel closed-form SCFs. Such SCFs rely on a generic system model 27 

applicable to any antenna array topology including arbitrarily-shaped topologies. The proposed 28 

SDoF informed the design of optimized antenna array topologies achieving maximum capacity 29 

while occupying minimum space. The presented SDoF formulations can be readily extended to 30 

any AOA distribution, including distributions for more complex multi-clustered propagation. 31 
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Extension to wireless environments incorporating diffuse (rich) scattering and specular 1 

components would require a different mathematical treatise as the AOA distribution would 2 

comprise of a mixture of continuous and discrete functions. The presented sequential approach, 3 

i.e., closed-form SCF derivation, SDoF formulation, and ergodic MIMO channel capacity 4 

maximization, can constitute a roadmap for future antenna array designs towards implementing 5 

6G wireless systems with volumetric spectral efficiency [7] and adopting 3D antenna arrays in 6 

3GPP standardization efforts [8]. It can further inspire information theorists attempting to 7 

associate their work with wireless propagation [5]. 8 

APPENDIX A - PROOF OF (13) 9 

SCF for Arrays in 3D Restricted Uniform Scenarios 10 

Substituting (5) into (12), using (6) and (7), letting �̃� = 𝜑 − 𝛼𝑚,𝑛, the SCF of (12) can be 11 

written after some algebraic manipulations as 12 

𝑅𝑠(𝑚, 𝑛) =
1

4𝛥𝜑 cos 𝜃0 sin ∆𝜃
∫ exp {𝑗

2𝜋

𝜆
𝑟𝑚,𝑛 sin(𝜃) sin(𝛽𝑚,𝑛)} cos(𝜃) 𝑑𝜃

𝜃0+𝛥𝜃

𝜃0−𝛥𝜃

 

× ∫ exp {𝑗
2𝜋

𝜆
𝑟𝑚,𝑛 cos(𝜃) cos(𝛽𝑚,𝑛) cos(�̃�)} 𝑑�̃�

𝜑0+𝛥𝜑−𝛼𝑚,𝑛

𝜑0−𝛥𝜑−𝛼𝑚,𝑛

. (45) 

Following the Jacobi-Anger expansion rule [43], we have 13 

𝑒𝑗𝑧 cos(𝑋) = 𝐽0(𝑧) + 2 ∑ 𝑗𝑔𝐽𝑔(𝑧) cos(𝑔𝑋)

∞

𝑔=1

. (46) 

Using (46) for the second integration of (45), we have after some manipulations 14 

     ∫ exp {𝑗
2𝜋

𝜆
𝑟𝑚,𝑛 cos(𝜃) cos(𝛽𝑚,𝑛) cos(�̃�)} 𝑑�̃�

𝜑0+𝛥𝜑−𝛼𝑚,𝑛

𝜑0−𝛥𝜑−𝛼𝑚,𝑛

 

= 2𝛥𝜑𝐽0(𝑗2𝜋𝑟𝑚,𝑛 cos(𝜃) cos(𝛽𝑚,𝑛) /𝜆) 

+4𝛥𝜑 ∑ {𝑗𝑔𝐽𝑔 (𝑗
2𝜋

𝜆
𝑟𝑚,𝑛 cos(𝜃) cos(𝛽𝑚,𝑛)) cos(𝑔(𝜑0 − 𝛼𝑚,𝑛)) sin𝑐(𝑔𝛥𝜑)}

∞

𝑔=1

 (47) 

in which sin𝑐(𝑔𝛥𝜑) = sin(𝑔𝛥𝜑)/(𝑔𝛥𝜑). Substituting (47) into (45) yields 15 

     𝑅𝑠(𝑚, 𝑛) 

= ∫
exp{𝑗2𝜋𝑟𝑚,𝑛 sin(𝜃) sin(𝛽𝑚,𝑛) /𝜆} cos(𝜃) 𝐽0(𝑗2𝜋𝑟𝑚,𝑛 cos(𝜃) cos(𝛽𝑚,𝑛) /𝜆)

2 cos 𝜃0 sin ∆𝜃

𝜃0+𝛥𝜃

𝜃0−𝛥𝜃

𝑑𝜃 

+ ∑ ∫
exp{𝑗2𝜋𝑟𝑚,𝑛 sin(𝜃) sin(𝛽𝑚,𝑛) /𝜆} cos(𝜃) 𝐽𝑔(𝑗2𝜋𝑟𝑚,𝑛 cos(𝜃) cos(𝛽𝑚,𝑛) /𝜆)

cos 𝜃0 sin ∆𝜃

𝜃0+𝛥𝜃

𝜃0−𝛥𝜃

∞

𝑔=1
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× 𝑗𝑔 cos(𝑔(𝜑0 − 𝛼𝑚,𝑛)) sin𝑐(𝑔𝛥𝜑) 𝑑𝜃. (48) 

The trapezoidal rule [10] provides 1 

∫ 𝑓(𝑍)𝑑𝑍
𝑏

𝑎

≈
𝑏 − 𝑎

𝑄
× [0.5𝑓(𝑍0) + 𝑓(𝑍1) + ⋯ + 𝑓(𝑍𝑄−1) + 0.5𝑓(𝑍𝑄)] (49) 

where 𝑍𝑄 denotes the Q-th partition of the integration interval in Trapezoidal rule. In (48), we let  2 

𝑓0(Θ) = exp[𝑗2𝜋𝑟𝑚,𝑛 sin(𝛽𝑚,𝑛) sin(Θ) /𝜆] cos(Θ) 𝐽0(2𝜋𝑟𝑚,𝑛 cos(𝛽𝑚,𝑛) cos(Θ) /𝜆) (50) 

𝑓𝑔(Θ) = exp[𝑗2𝜋𝑟𝑚,𝑛 sin(𝛽𝑚,𝑛) sin(Θ) /𝜆] cos(Θ) 𝐽𝑔(2𝜋𝑟𝑚,𝑛 cos(𝛽𝑚,𝑛) cos(Θ) /𝜆) (51) 

where 𝐽0(. ) and 𝐽𝑔(. ), 𝑔 = 1,2, … , 𝐺, are the zero-order and the 𝑔-order Bessel functions of the 3 

first kind, respectively. Substituting (49), (50) and (51) into (48), we obtain (13). 4 

APPENDIX B - PROOF OF (17) 5 

Let 𝐴 = 𝐴1 × 𝐴2. Substituting (5) into (12) and using (6), (8), after some manipulations, the 6 

SCF of (12) can be expressed as 7 

𝑅𝑠(𝑚, 𝑛) =
𝐴

2𝜋𝜎𝜃𝜎𝜑
∫ ∫ exp [− (

𝜃 − 𝜃0

√2𝜎𝜃

)

2

] exp [− (
𝜑 − 𝜑0

√2𝜎𝜑

)

2

]
𝜑𝜃

 

× exp{𝑗2𝜋𝑟𝑚,𝑛 cos(𝜃) cos(𝛽𝑚,𝑛) cos(𝛼𝑚,𝑛 − 𝜑) /𝜆} 

× exp{𝑗2𝜋𝑟𝑚,𝑛 sin(𝜃) sin(𝛽𝑚,𝑛) /𝜆} cos(𝜃) 𝑑𝜑𝑑𝜃 (52) 

where 𝜃 ∈ [−𝜋/2, 𝜋/2] , 𝜑 ∈ [−𝜋/2 + 𝜑0, 𝜋/2 + 𝜑0] . Letting 𝑥𝑞 = (𝜃 − 𝜃0)/(√2𝜎𝜃) , 𝑥𝑝 =8 

(𝜑 − 𝜑0)/(√2𝜎𝜑) , we have 𝜃 = √2𝜎𝜃𝑥𝑞 + 𝜃0 , 𝜑 = √2𝜎𝜑𝑥𝑝 + 𝜑0 , and after some 9 

manipulations, the SCF in (52) can be approximated as [14], [49] 10 

𝑅𝑠(𝑚, 𝑛) ≈
𝐴

𝜋
∫ 𝑒−𝑥𝑞

2
exp {𝑗

2𝜋

𝜆
𝑟𝑚,𝑛 sin(√2𝜎𝜃𝑥𝑞 + 𝜃0) sin(𝛽𝑚,𝑛)}

𝑥𝑞

cos(√2𝜎𝜃𝑥𝑞 + 𝜃0) 

× ∫ 𝑒−𝑥𝑝
2

exp {𝑗
2𝜋

𝜆
𝑟𝑚,𝑛 cos(√2𝜎𝜃𝑥𝑞 + 𝜃0) cos(𝛽𝑚,𝑛) cos(𝛼𝑚,𝑛 − √2𝜎𝜑𝑥𝑝 − 𝜑0)}

𝑥𝑝

𝑑𝑥𝑝𝑑𝑥𝑞 . 

 (53) 

Using (15) in (53) yields (17). 11 

APPENDIX C - PROOF OF (18) 12 

Substituting (5) into (12), and using (6), (11), (47) with 𝜑0 = 0, 𝛥𝜑 = 𝜋, the SCF of (12) can 13 

be expressed after some manipulations as 14 

𝑅𝑠(𝑚, 𝑛) =
𝐴1

2𝜋√2𝜋𝜎𝜃

∫ exp {𝑗
2𝜋

𝜆
𝑟𝑚,𝑛 sin(𝜃) sin(𝛽𝑚,𝑛)}

𝜃

exp [−
(𝜃 − 𝜃0)2

2𝜎𝜃
2

] cos(𝜃) 

× 2𝜋𝐽0(𝑗2𝜋𝑟𝑚,𝑛 cos(𝜃) cos(𝛽𝑚,𝑛) /𝜆)𝑑𝜃. (54) 
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By letting 𝜃 = √2𝜎𝜃𝑥𝑞 + 𝜃0, (54) can be approximated as [14], [49] 1 

𝑅𝑠(𝑚, 𝑛) ≈
𝐴1

√𝜋
 ∫ 𝑒−𝑥𝑞

2

𝑥𝑞

exp {𝑗
2𝜋

𝜆
𝑟𝑚,𝑛 sin(√2𝜎𝜃𝑥𝑞 + 𝜃0) sin(𝛽𝑚,𝑛)} cos(√2𝜎𝜃𝑥𝑞 + 𝜃0) 

×  𝐽0(𝑗2𝜋𝑟𝑚,𝑛 cos(√2𝜎𝜃𝑥𝑞 + 𝜃0) cos(𝛽𝑚,𝑛) /𝜆)𝑑𝑥𝑞 . (55) 

Using (15) in (55) yields (18). 2 

APPENDIX D - PROOF OF (27), (28), (29) AND (30), (33), (34) 3 

SDoF for 3D Restricted Uniform Scenarios 4 

Substituting (7) into (26), we obtain after some manipulations 5 

𝐻𝑢(𝜃, 𝜑) = log2(4𝛥𝜑 cos 𝜃0 sin ∆𝜃). (56) 

Substituting (56) into 2𝐻𝑢(𝜃,𝜑) results in (27).  6 

After some manipulations, (27) can be written as follows 7 

𝐻𝑢(𝜃, 𝜑) = 𝐻𝑢(𝜃) + 𝐻𝑢(𝜑) (57) 

where 𝐻𝑢(𝜃) and  𝐻𝑢(𝜑) are defined as 8 

𝐻𝑢(𝜃) = − ∫cos 𝜃 𝑃𝑢(𝜃)
𝜃

log2 𝑃𝑢(𝜃) 𝑑𝜃, (58) 

𝐻𝑢(𝜑) = − ∫ 𝑃𝑢(𝜑) log2 𝑃𝑢(𝜑)
𝜑

𝑑𝜑. (59) 

Using 𝑃𝑢(𝜃) and 𝑃𝑢(𝜑) (see below (7)) in (58) and (59), respectively, we have  9 

𝐻𝑢(𝜃) = log2(2 cos 𝜃0 sin ∆𝜃), (60) 

𝐻𝑢(𝜑) = log2(2𝛥𝜑). (61) 

Substituting (60), (61) into 2𝐻𝑢(𝜃), 2𝐻𝑢(𝜑), respectively, we obtain (28), (29). 10 

SDoF for 3D Gaussian Scenarios 11 

Substituting (8) into (26), we obtain after some manipulations  12 

𝐻𝐺𝑎𝑢(𝜃, 𝜑) = log2 (
√2𝜋𝜎𝜃

𝐴1
) ∫cos 𝜃 𝑃𝐺𝑎𝑢(𝜃)

𝜃

𝑑𝜃 ∫ 𝑃𝐺𝑎𝑢(𝜑)
𝜑

𝑑𝜑 

+
log2 e

2𝜎𝜃
2

∫cos 𝜃 𝑃𝐺𝑎𝑢(𝜃)(𝜃 − 𝜃0)2

𝜃

𝑑𝜃 ∫ 𝑃𝐺𝑎𝑢(𝜑)
𝜑

𝑑𝜑 

+ log2 (
√2𝜋𝜎𝜑

𝐴2
) ∫cos 𝜃 𝑃𝐺𝑎𝑢(𝜃)

𝜃

𝑑𝜃 ∫ 𝑃𝐺𝑎𝑢(𝜑)
𝜑

𝑑𝜑 

+
log2 e

2𝜎𝜑
2

∫cos 𝜃 𝑃𝐺𝑎𝑢(𝜃)
𝜃

𝑑𝜃 ∫ 𝑃𝐺𝑎𝑢(𝜑)(𝜑 − 𝜑0)2

𝜑

𝑑𝜑. (62) 

Using ∫ 𝑃𝐺𝑎𝑢(𝜑)
𝜑

𝑑𝜑 = 1 , ∫ cos 𝜃 𝑃𝐺𝑎𝑢(𝜃)
𝜃

𝑑𝜃 = 1  and substituting (31), (32) into (62), we 13 
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obtain after some manipulations 1 

𝐻𝐺𝑎𝑢(𝜃, 𝜑)  = log2

2𝜋𝜎𝜃𝜎𝜑

𝐴1𝐴2
+ log2 exp [

𝜎𝜑
2𝑉𝐺𝑎𝑢(𝜃) + 𝜎𝜃

2𝑉𝐺𝑎𝑢(𝜑)

2𝜎𝜃
2𝜎𝜑

2
]. (63) 

Substituting (63) into 2𝐻𝐺𝑎𝑢(𝜃,𝜑) results in (30). 2 

After some manipulations, (26) can be written as follows 3 

𝐻𝐺𝑎𝑢(𝜃, 𝜑) = 𝐻𝐺𝑎𝑢(𝜃) + 𝐻𝐺𝑎𝑢(𝜑) (64) 

where 𝐻𝐺𝑎𝑢(𝜃) and 𝐻𝐺𝑎𝑢(𝜑) can be defined as 4 

𝐻𝐺𝑎𝑢(𝜃) = − ∫cos 𝜃 𝑃𝐺𝑎𝑢(𝜃)
𝜃

log2 𝑃𝐺𝑎𝑢(𝜃) 𝑑𝜃, (65) 

𝐻𝐺𝑎𝑢(𝜑) = − ∫ 𝑃𝐺𝑎𝑢(𝜑) log2 𝑃𝐺𝑎𝑢(𝜑)
𝜑

𝑑𝜑. (66) 

After some manipulations, (65) and (66) can be written as follows 5 

𝐻𝐺𝑎𝑢(𝜃) = log2 {
√2𝜋𝜎𝜃

𝐴1
exp [

𝑉𝐺𝑎𝑢(𝜃)

2𝜎𝜃
2

]}, (67) 

𝐻𝐺𝑎𝑢(𝜑) = log2 {
√2𝜋𝜎𝜑

𝐴2
exp [

𝑉𝐺𝑎𝑢(𝜑)

2𝜎𝜑
2

]}. (68) 

Substituting (67), (68) into 2𝐻𝐺𝑎𝑢(𝜃), 2𝐻𝐺𝑎𝑢(𝜑), respectively, we obtain (33), (34).  6 
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