Forensic Science International: Digital Investigation 44 (2023) 301486

Contents lists available at ScienceDirect

I
Investigati,0'1

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

A framework for live host-based Bitcoin wallet forensics and triage 0)

Check for
updates

Arran Holmes, William]. Buchanan”

Blockpass ID Lab, Edinburgh Napier University, Edinburgh, UK

ARTICLE INFO ABSTRACT

Article history:

Received 30 March 2022
Received in revised form

7 November 2022

Accepted 29 November 2022
Available online xxx

Organised crime and cybercriminals use Bitcoin, a popular cryptocurrency, to launder money and move it
across borders with impunity. The UK and other countries have legislation to recover the proceeds of
crime from criminals. Recent UK case law has recognised cryptocurrency assets as property that can be
seized and realised under the Proceeds of Crime Act (POCA). To seize a cryptocurrency asset generally
requires access to the private key. Anecdotal evidence suggests that if cryptocurrency is not seized
quickly after enforcement action has taken place, it will be transferred to other wallets making it difficult
to seize at a future time. We investigate how Bitcoin could be seized from an Electrum or Ledger

Iéiirlgizrcclljsr.rency hardware wallet, during a law enforcement search, using live forensic techniques and a dictionary attack.
Bitcoin We conduct a literature review examining the state-of-the-art in Bitcoin application forensics and
Wallet Bitcoin wallet attacks. Concluding, that there is a gap in research on Bitcoin wallet security and that a
Triage significant proportion of the available literature comes from a small group of academics working with
Asset recovery industry and law enforcement (Volety et al. 2019; Van Der Horst et al., 2017; Zollner et al., 2019). We then
Forensics

forensically examine the Electrum software wallet and the Ledger Nano S hardware wallet, to establish
what artefacts can be recovered to assist in the recovery of Bitcoin from the wallets. Our main contri-
bution is a proposed framework for Bitcoin forensic triage, a collection tool to recover Bitcoin artefacts
and identifiers, and two proof of concept dictionary-attack tools written in Python and OpenCL.

We then evaluate these tools to establish if an attack is practicable using a low-cost cluster of public
cloud-based Graphics Processing Unit (GPU) instances. During our investigation, we find a weakness in
Electrum's storage of encrypted private keys in RAM. We leverage this to make around 2.4 trillion
password guesses. We also demonstrate that we can conduct 16.6 billion guesses against a password
protected Ledger seed phrase.

Crown Copyright © 2022 Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction cryptocurrencies like Bitcoin are largely unregulated. This means

that criminals can avoid being identified committing money laun-

Criminals are turning to Bitcoin to launder money and move it
across borders. This is because the UK and many other countries
have strict regulations on fiat currencies. In the UK, financial in-
stitutions have to make a Suspicious Activity Report (SAR) if they
suspect criminal activity. Almost half a million SARs are submitted
every year (National Crime Agency 2021). Where a financial insti-
tution is dealing with funds that they suspect are criminal property,
they will request a Defence Against Money Laundering (DAML)
from the National Crime Agency (NCA). This notification allows UK
law enforcement to investigate the criminal property and take
enforcement action relating to the criminal property, possibly
resulting in its seizure (National Crime Agency 2019). However,

* Corresponding author.
E-mail address: w.buchanan@napier.ac.uk (WJ. Buchanan).

https://doi.org/10.1016/].fsidi.2022.301486

dering offences which include concealing, disguising, converting,
transferring or removing criminal property from England, Wales,
Scotland or Northern Ireland.

This paper aims to explore forensic opportunities that law
enforcement can leverage while executing a search warrant. The
goal is to identify the use of Bitcoin and recover the private key,
thereby gaining control of the asset for seizure under the Proceeds
of Crime Act (POCA). Its main contribution is defining a method-
ology that could be used in real-life Bitcoin investigations, and aims
to provide guidance for the costs involved.

1.1. Background

One of the key legislative tools UK law enforcement have to deal
with criminal property is the Proceeds of Crime Act, 2002) (POCA).

2666-2817/Crown Copyright © 2022 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by/4.0/
mailto:w.buchanan@napier.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301486&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301486
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.fsidi.2022.301486

A. Holmes and W,. Buchanan

This legislation gives UK law enforcement the power to seize
criminal property, which includes cryptocurrency assets. UK law
enforcement is well equipped to seize fiat currency and traditional
assets under this legislation but cryptocurrency assets can be
difficult to gain control of.

UK law enforcement targets criminal finances using the POCA
(Proceeds of Crime Act 2002). This legislation reversed the burden
of proof, meaning convicted criminals must show that they came by
their funds legitimately or face them being confiscated. Levi (1997)
describes how the idea of "taking the profit out of crime” has
accelerated in Europe since the 1991 Council of Europe Convention
on Money-Laundering and Confiscation of the Proceeds of Crime.
By confiscating funds, you take away the incentive to commit an
acquisitive crime and so disrupt criminal activity. The Home Office
(2019) in its Asset Recovery Plan sets out its four objectives as:

@ Disrupt criminal activity and the further funding of crime;
@ Deprive people of their proceeds of crime;

@ Discredit negative role models in society, and

@ Deter people from becoming involved or continuing in crime.

Essex Police in their Proceeds of Crime Policy state "When a
person has benefited from their crime, the Force's objectives are to
secure a criminal conviction and, if possible, remove the benefit of
that crime. A confiscation order made under POCA is an effective
way of achieving this” (Essex Police 2018). Povey et al. (2004)
suggests that 70% of all crime is acquisitive, giving the most
quoted value of the proceeds of crime as 2% of UK GDPR or £18
billion. Data shows that less than 50% of the value of confiscation
orders were recovered between 2003 and 2013. The data also
shows that UK law enforcement are responsible for 39—59% of the
total confiscated funds(Chistyakova et al., 2019).

Levi (1997) points out that POCA has the potential for making
some areas of policing self-funding. Chistyakova et al. (2019) de-
scribes the Asset Recovery Incentivisation Scheme that allows UK
law enforcement to keep a percentage of the recovered funds. Most
Police forces now have a team of financial investigators dedicated
to pursuing forfeiture and confiscation orders, and many UK forces
have set up proactive money laundering teams. Kent Police state
that the role of their proactive money laundering team is to
“investigate organised crime groups and persons involved in
money laundering and cash smuggling activities across Kent,
including those operating across Kent's borders and further afield”
(Kent Police n.d.).

A recent decision in AA v Persons Unknown & Ors [2019] EWHC
3665 (Comm) (13 December 2019) ruled that Bitcoin and other
cryptocurrencies are property. Therefore, cryptocurrencies can be
seized to prevent dissipation under section 47 of the Proceeds of
Crime Act (POCA) 2002 (Home Office 2018). However, anecdotal
evidence suggests that unless cryptocurrency assets are quickly
seized, they are lost. This makes identifying the possession of
cryptocurrency assets and finding the corresponding private key
during the initial enforcement action, essential to the successful
seizure of those assets.

1.2. Policing, crime and cryptocurrencies

The advent of The Onion Router (TOR) and Bitcoin gave rise to
illegal dark web marketplaces, like AlphaBay, Silk Road and Dream
Market (Weber and Kruisbergen 2019). These marketplaces catered
for the sale of illegal goods and services, with payment being made
in Bitcoin. Around the same time, ransomware started to evolve.
While some forms of cyber extortion existed before Bitcoin, there
were significant risks associated with obtaining payment and
realising it through money laundering schemes. In 2008 the

Forensic Science International: Digital Investigation 44 (2023) 301486

introduction of Bitcoin changed that.

From 2013 to the current time, almost all ransomware uses
Bitcoin as the payment method (Richardson and North 2017;
Hampton and Baig 2015). Hampton and Baig (2015) stated, "while
some research states that ransomware may be easily defeated, but
if history is a teacher, ransomware should not be dismissed as a
passing fad”. This statement has proven only too true. Richardson
and North (2017) state that criminals have found that $10,000 is
the optimal ransom, low enough that businesses will pay it and too
small to attract the attention of law enforcement, whereas the FBI
predicted that ransomware would become a billion-dollar business
by 2016. The FBI had it right, given today's highly targeted ran-
somware attacks where demands are millions of dollars worth of
Bitcoin. Colonial Pipeline has just paid around $4.4 million in Bit-
coin for decryption keys (Gabbatt 2021).

However, ransomware and illegal marketplaces are not the only
criminal enterprises to take advantage of Bitcoin. Bitcoin has
become a popular asset for all forms of organised crime, including
money laundering, extortion, child exploitation, drug trafficking,
people trafficking and funding terrorism (Tziakouris 2018). Its
popularity comes from the lack of money laundering regulations
and controls that apply to fiat currencies and its pseudo-
anonymous design that makes identifying end-users difficult.
Foley et al. (2019) estimates that one-quarter of Bitcoin users and
half of all Bitcoin transactions are involved in illegal activity.

1.3. Introduction to bitcoin

Bitcoin is the first of a growing number of cryptocurrencies in
circulation and is still the most popular. Bitcoin allows peer-to-peer
exchange of coin without a central financial institution. Bitcoin has
value because people are willing to trade it for currency, goods and
services. Bitcoin was introduced in a paper in 2008 by its creator,
who goes by the pseudonym, Satoshi Nakamoto. It is based on
cryptographically signed transactions stored on a distributed led-
ger, operated by a peer to peer network, using a proof-of-work
scheme to avoid double-spend (Nakamoto 2008).

So if Alice wants to send a Bitcoin to Bob, first Bob must send his
invoice address (based on Bob's public key) to Alice. Alice adds
Bob's invoice address and the Bitcoin to transfer, to a transaction
message, which Alice signs with her private key. Alice then trans-
mits the transaction message onto the Bitcoin network. The Bitcoin
miners gather transactions into blocks including Alice's, verify the
transaction signatures and then compete with each other to pro-
duce a valid block using the proof-of-work algorithm. When a valid
block is discovered it is appended to the Blockchain and the
transactions are confirmed. Bob now has Alice's Bitcoin. The proof
of work algorithm is designed to keep the miners finding a valid
block approximately every 10 min.

1.4. Paper overview

Section Il contains a literature review in the following areas: the
underlying technology of Bitcoin wallets and address, the state-of-
the-art in Bitcoin forensics, Policing and cryptocurrency assets and
the Proceeds of Crime Act. These four research strands inform the
design of a framework for Bitcoin triage which is discussed in
Section III. The triage process is designed to be performed by law
enforcement, during the lawful search of a property. This will be
augmented with the guidance and best practices from the College
of Policing (CoP) for digital evidence. In sections IV and V, the paper
examines the practicality of recovering private-keys, through
forensic methods or password attacks. As well as establish how any
recovered private keys can be validated and then used to assist with
the seizure of cryptocurrency assets.

A. Holmes and W,. Buchanan
2. Literature review

The literature review focuses on four main areas: live and offline
digital forensics; how Bitcoin works; Bitcoin forensics; and wallet
recovery. The research on offline and online digital forensics and
Bitcoin will assist with the design of a framework for live Bitcoin
forensics. To recover Bitcoin we have to understand how the keys
are created and how they relate to addresses and transactions. The
literature review will then explore the state-of-the-art in Bitcoin
application forensics and wallet recovery. This will be restricted to
Bitcoin forensics on a Windows host computer, and will not include
forensic work focused on the Blockchain as this will not assist in
recovering private keys. In looking at wallet recovery, it will
examine popular attack methodologies and attack optimisations.

2.1. Live and offline digital forensics

Jafari and Satti (2015) examine a number of digital forensic
models and find most models have the same four common pro-
cesses. These are also the same general processes identified by NIST
(Kent et al., 2006).

@ Collection - Identifying and preserving information of
interest.

@ Examination - Processing of collected data to assess the in-
formation of particular interest.

@ Analysis - Derivation of useful information that addresses the
questions in issue.

@ Reporting - Reporting the results of the analysis.

Traditional offline digital forensics involves examining a seized
computer in a lab environment. The computer hard disk or solid-
state disk is removed and forensically imaged. The image is then
examined using forensic tools to recover information that may
assist the investigation (Rafique and Khan 2013). There are several
advantages and disadvantages to this approach. The main advan-
tage is that this is a tried and tested forensic method which pre-
vents changes to the data under examination. This means that the
process is highly repeatable. Although garbage collection and wear
levelling technologies in Solid State Drives (SSD) cause repeatably
issues (Bell and Boddington 2010). The most significant disadvan-
tages are that encryption can prevent data recovery and any volatile
data; for example, the content of Random Access Memory (RAM) is
lost. The RAM may have contained encryption keys, evidence of
file-less malware, passwords or evidence of the offence under
investigation.

Live forensics is the process of collecting data from a running
computer and involves interacting with the ’live’ system to run
forensic recovery tools or use tools built into the Operating System
(0S) to recover information, often called living off the land. This
approach will alter the data on the computer to some extent, which
is the biggest disadvantage. Carrier (2006) also points out the risk
that any tools built into the operating system could have been
altered to provide unreliable results. Another issue is repeatability.
Forensic tasks like RAM capture are unrepeatable by their very
nature (Case and Richard, 2017). Non-repeatability makes it diffi-
cult to validate that the method being used is performing as ex-
pected. It also prevents a 3rd party forensic expert from fully
validating the results(Zhang et al., 2015). Zhang et al. (2015)
describe the difficulties of assessing how forensically sound their
GPU memory recovery technique is. However, live forensics is
becoming critical due to the default use of encryption and the
growing use of cloud services.

Live forensics is often quicker to perform as it targets very
specific artefacts rather than imaging the entire disk. A digital

Forensic Science International: Digital Investigation 44 (2023) 301486

forensic practitioner who examines a live device needs to be
acutely aware of the consequence of every action taken on the
device under examination and weigh up the advantages over the
possible loss or contamination of the evidence. Due to the com-
plexities of modern operating systems, this is not an easy task. With
lots of applications turning to cloud solutions, live forensics be-
comes far more important, as cloud data may not reside on the
device being examined. In the UK, legislation under section 20 of
the Police And Criminal Evidence Act 1984 (PACE) can be used to
capture cloud-based data during the execution of a search warrant
or other statutory search power, where the data is accessible from
the premises.

All digital forensic work conducted by UK law enforcement must
follow the ACPO four principles of digital evidence (Williams 2012).
Principle One states that no action taken by law enforcement
should change data that is subsequently relied upon in court.
Principle Two allows accessing live data where it is necessary, but
the operator must understand the relevance and impact of their
actions. Principle Three requires a complete audit trail of any op-
erations conducted. Principle Four makes the person in charge of
the investigation responsible for compliance with the principles.

Therefore, any forensic model or tool for use by UK law
enforcement must be designed with these principles in mind. How
does this affect live forensics techniques? We have already identi-
fied that anything done live on a device will alter data. The answer
is it depends on the circumstance. Kent Police developed the
mnemonic JAPAN to help officers with making decisions in
compliance with the Human Rights Act. JAPAN stands for Justified,
Authorised, Proportionate, Auditable and Necessary (Akhgar and
Wells 2018). This can be applied to the question of performing
live forensics. Live forensic methods should only be used where
these questions can be answered positively concerning the aim of
the investigation. If not, an offline forensic approach should be used
instead. We define two general scenarios where the JAPAN test
would likely be met during the execution of a warrant.

@® Where the data would otherwise be lost to law enforcement.
For example, where encryption is in use, or cloud storage.
® Where the information is required for a pressing operational
need. For example, where information is required urgently to
protect life, prevent serious harm, or to prevent the loss of

evidence in a serious crime.

We argue that the live forensic examination of devices to assist
the seizure of cryptocurrency assets would meet the JAPAN test for
the following reasons. It would be justified as it fulfils the aim of
reducing crime by taking the profit out of crime under POCA. It
would be necessary because if the cryptocurrency asset is not
seized as soon as practicable, there is a significant risk that it will be
lost. It would be authorised under section 47 of POCA 2002. Pro-
portionality would be based on the offence under investigation,
this is likely to be proportionate for any serious crime. It would be
auditable as the recovery would follow ACPO Principle three.

2.2. Bitcoin

2.2.1. Hardware wallets

Hardware wallets are considered one of the more secure ways to
store cryptocurrency private keys, since the private keys never
leave the custom hardware. The popular Ledger hardware wallet is
shown in Fig. 1. Hardware wallets almost universally use a PIN to
secure the device, some have now started to offer biometric
authentication. There has been some research on side-channel at-
tacks against hardware wallet PINS (San Pedro et al., 2019). How-
ever, these rely on device-specific vulnerabilities which are quickly

A. Holmes and WJ. Buchanan

patched once disclosed. They also require special equipment, so
they are unlikely to be practicable for a triage process.

However, these hardware wallets still need software running on a
computer to allow transaction signing. This is part of the design, the
separation of the cryptographic keys from the rest of the system.
Thomas et al. (2020) use memory forensic techniques to extract ar-
tefacts from the windows Ledger client using their FORESHADOW
volatility module. They found that while the Ledger client applica-
tion was running, several extended public keys were identifiable.
However, 6 min after the application is terminated all traces had
been overwritten. Thomas et al. (2020) also found that extended
public keys could be recovered from the Trezor application.

One thing that is common for all hardware wallets is they force
the user to record the recovery seed words, before making the user
reenter them. For law enforcement, finding a hardware wallet
should encourage a more detailed search for the recovery seed
words. Anecdotally, recovery seeds are often found in the empty
hardware wallet box or written in notebooks.

2.2.2. Software wallets

There are a large number of Software wallets for Windows,
MacOS, Android and iOS. This paper will concentrate on wallet
software for Windows. The popular Electrum wallet is shown in
Fig. 2. Software wallets come in two categories: full clients which
download and store the entire Blockchain; and light-weight clients
that leverage an online API to function (Van Der Horst et al., 2017).
Most applications fall into the latter category as it is undesirable to
have to download and store the entire Blockchain which is
currently about 370 Gigabytes and increasing all the time
(blockchain.com, 2021). One of the most popular Windows soft-
ware wallet applications is Electrum a light-weight client (Van Der
Horst et al., 2017; Zollner et al., 2019). Unlike a hardware wallet, to
be able to sign transactions, the software wallet must at some point
load the wallets private keys in RAM. These private keys must be
stored or the user would have to enter them every time they
wished to conduct a transaction. Typically, they are encrypted with
a user-supplied password and stored on disk. Both of these design
constraints provide possible attack vectors.

2.2.3. Hosted wallets
Coinbase is one of the larger cryptocurrency exchanges; they
offer the option of hosted wallets. A hosted wallet is where the

Ledger Nano S

!

Forensic Science International: Digital Investigation 44 (2023) 301486

provider holds the private keys. This is similar to a bank, and has
the advantage of you not being solely responsible for your keys,
which if you lose, you are unlikely to ever regain access to the
cryptocurrency in the wallet. The downside of hosted wallets is the
3rd party controls your keys, so you have to trust that they will do
so securely. For law enforcement, this means that it is likely that
Coinbase can freeze assets with the appropriate legal process.
Coinbase's FAQ states "In extremely rare circumstances, and only
where required by law, Coinbase may block or freeze customer
funds on our platform. We will take this action only when we are
required to comply with an order from a court or other authority
that has jurisdiction over Coinbase, which compels us to restrict
access to funds.” (Coinbase n.d.).

2.2.4. Blockchain API

A Blockchain Application Programming Interface (API) is a
mechanism developers can use to query the Blockchain from their
applications, without having to download the entire Blockchain or
developing their own API There are a large number of commercial
Blockchain API's which have free and paid for services (Parlika and
Pratama 2021). For example, using a Blockchain API you can
retrieve the current balance of a Bitcoin address and all transactions
associated with it.

2.2.5. Key generation

Bitcoin uses Elliptic Curve cryptography with the SECP256K1
curve. The parameters for this curve are documented in Certicom
Research's SEC 2: Recommended Elliptic Curve Domain Parameters
(Brown 2010). Bitcoin uses 256-bit private keys, which need to be
uniformly random in the range 1 to n-1, where n is the curve order
defined by the SECP256K1 parameters. Public keys are then
generated from the private key using Elliptic Curve Digital Signa-
ture Algorithm (ECDSA). Private keys are often stored in Wallet
Import Format (WIF). Public keys are often stored in a Base58Check
encoded form. Public keys can be uncompressed or compressed
using the Standards for Efficient Cryptography (SEC) format. Key
pair generation where Q is the public key, d is the private key, n is
the curve order and G the base point, can be expressed as: Select
d g[1, n—1], Compute Q = dG, Return (Q, d) (Courtois et al., 2016).
Python code to generate a key pair is shown in Fig. 3.

Private keys are stored in WIF which contains a header indi-
cating if the key is for the mainnet (0x80) or testnet (Oxef). Then

Fig. 1. Ledger nano S hardware wallet.

4

A. Holmes and WJ. Buchanan

Forensic Science International: Digital Investigation 44 (2023) 301486

History # Send Receive M Addresses Channels

Type Address Label
receiving bclqv7wymgqr2qré4czhdyl15caykrsgzitmdsh2zné
receiving bclqus74agOw6sptISwx4w25s TrdyywegkThinedpdr
receiving bclgrt4u3enjay6qqdaOk4ad4pewqvers2wrIx3gen
receiving bcla 422

Balance &

pPeee
cooo

receiving bclakej41tfwchjassjhhcmhsfacaves3252uzn7xe

receiving belqtn7mySwpkshmppas6upudqekandvoserbytcal P Walét Information 7 X
receiving belazwds3grognkeexigdgoprax2znf2syroz2sir | L T
receiving bclanztns cgs 3frsd8as7enh86dweswsps821wForo : i
receiving bcla88sndsteOnpz9talu3vm00guvas9x7q6x2ste Wallet type: standard
receiving bc1q7s056twgs4h58ay63748275tmwqSr3yk6ex9dz Script type: p2wpkh
receiving bclgxvthjnye7caOrtusmvxattjz2c9a3s0gf2sov7 Seed available: False
receiving bcla79tz0np6hfxtadqur
receiving bcl 83 dsaspmrs9ifxq Keystore type: bip32
receiving bclawsmwxnf8gp]fp2wrIyaxsuqqzmy7cwh80549zu Lightning: Not enabled e
receiving b jdngs93elhaacfet: 4pr
receiving bcla7yazasd712sdfvsztesdattuhdstzinoreske | Master Public Key
receiving bclasyasuazjuzhufjsrs1168mqlubpp265ksosrsr 2Zpub6rdRer57RLITUSXFCGYTC1NMLBB7Udsx20qL9dXbiMG585: T6gGzLckpt JAXhcQD2exFyDiliyX1Am4el4wMZmNmZ
receiving bclasamxpcbdgdssilylaiyesawar7nf cezfat2ph 25H6
receiving bcla8d2hkkf2ubngdt7sus9y00zpadzoen3csphndd .
receiving bclay4nznows er46cxfraéns0q9viqox2kqauvsasn G %
change bclqmf965ghmzv677 cOwdwgser85kpr07x6q9dIror Derivation path: m/84/0'/0"
change bclqdvy6fkgueatywSaseye22vscsquwee7964hssh
change bclq30h2cp757pyw2tu0c6f665q687jzmezx69y2f2
change bclaajwa22nettss3uqdscdungdnisdxcgvdvwfkxa
change bclahf2dwznjscswok1te6caq30u63rt64p]Tphtp2 o |
change bclaf6t12zyvikukefkzx96160p1p42z1akdysmuz o o
change bclayka6fwjzpefn3na3lypagh34f3tqs3foatirh2 0 0
change bclqtOms13ha0nsTgev7t9cteadgwemagz2wanicsd o o
change bel 341t04edpa7a3npakvra2732sf o o
change bclancazilgglwfvegyylzufrv3p2ysarsuseksita 0 0
Balance: 0. mBTC XO

Fig. 2. Electrum software wallet.

comes the 32-bit private key, optionally followed by a byte con-
taining '0x01’ if the corresponding public key is compressed. It is all
then Base58Check encoded. The Base58Check checksum is gener-
ated by taking the first four bytes of the result of SHA256 hashing
the data twice.

Public keys can be compressed using y-coordinate point
compression. An elliptic curve public key is an x, y coordinate on the
elliptic curve. A public key is compressed by removing the y-coor-
dinate and pre-pending a positive (0x02) or negative (0x03) indi-
cator. From this, the y coordinate can be recovered later as the
equation for the curve is known. This almost halves the size of the
public key. Public keys are then Base58Check encoded.

2.2.6. Invoice addresses

There are currently three types of invoice addresses in use on
the Bitcoin network. Pay to Public-key Hash (P2PKH) which begin
with the number one. Pay to script hash (P2SH) which begin with a
three are often used for multisig addresses. Finally, native Segwit
addresses (Bech32) the newest address type which addresses start
with 'bc1’ for the main net and 'tc1’ for the testnet.

P2PKH addresses are calculated from the public key by hashing
it with SHA256 and then RIPEMD-160, the result is then prepended
with 0x00 for mainnet and Ox6f for testnet. Again the result is
Base58Check encoded. A Python example is shown in Fig. 4.

2.2.7. BIP32 deterministic wallets
Bitcoin Improvement Proposal (BIP) 32 describes a scheme for
deterministic wallets. A deterministic wallet is one where a

import secrets
import ecdsa
def generateKeyPair():
rnd = secrets.randbits(256)
privKey = rnd % ecdsa.SECP256k1.order-1
privKey = privKey.to_bytes(32,'big")
pubKey = ecdsa.SigningKey.from_string(
privKey, curve=ecdsa.SECP256k1).verifying_key
pubKey = pubKey.to_string()
return([pubKey, privKeyl)

Fig. 3. A python example of bitcoin key generation.

hierarchical set of Bitcoin addresses and keys can be generated
from a single high entropy random 128-bit to 512-bit master seed
(Wuille 2012). From this master seed, you generate a private root
key m as follows HMAC-SHA512(key = "Bitcoin seed”,
data = masterSeed). The private root key is then used to generate a
tree of private child keys using the CKDpub function described in
BIP32 (Wuille 2012). Fig. 5 shows the structure of a BIP32 deter-
ministic wallet.

2.2.8. BIP39 recovery seeds

The BIP39 sets out a method of using a mnemonic code to record
a master seed for generating deterministic keys. The motivation
was to find a human-compatible way to record a computer-
generated random seed. The mnemonic sentence is made up of a
carefully chosen dictionary of 2048 words. The words are chosen to
avoid similar words and can be uniquely identified by the first four
characters (Palatinus et al., 2013). To generate a mnemonic code,
first ENT a high entropy random number is generated. ENT can be
128,160, 192, 224 or 256-bits long. The number of checksum bits is
calculated with | = len(ENT)/32. A checksum cs is generated using
the first [bits of a SHA256 hash of ENT. This gives a seed value of
ENT+cs. The number of mnemonic words that will be generated can
be calculated by (len(ENT) + 1)/11. The seed value is split up into 11-
bit values. Each 11-bit value specifies an index into the dictionary.
So for a 128-bit seed, the total size of the seed will be (128 + 4)/
11 = 12 mnemonic words. There are different dictionaries for
different languages. ENT is not used as the seed for generating keys.
An optional password can be added to the end of the mnemonic
words, if no password is selected, an empty string is used. The
master seed is generated from the seed words and a salt which is
the word "mnemonic” concatenated with the password. These are
used with a PBKDF2 function with 2048 rounds and HMAC-SHA512
as the pseudo-random function. The result is a 512-bit (64 byte)
key. From this 512-bit key, the extended private (xprv) key is

address = b"\x00" + ripemd160(sha256(pubKey))
checksum = sha256(sha256(address))[:4]
encodedAddress = base58(address + checksum)

Fig. 4. A python example of bitcoin address generation.

A. Holmes and WJ. Buchanan Forensic Science International: Digital Investigation 44 (2023) 301486

BIP 32 - Hierarchical Deterministic Wallets

Master Master Wallets / Wallet Addresses
Seed Node Accounts Chains
18 24 e o (1§
External 98] -
(Kl;"'n"";‘f 0 t g) ~ —~m/f0/0/0 _ m/0/0/1 - m/0/0/k
{t :‘J m/0/0
0 o %) tg €9 ... @9
. m/ CKD(m/0, 1) mfo/L ™ ~m/0/1/0 _ m/0/1/1 - m/0/1/k
CKD{m, 0) T
Entropy R 13
128 bits CKD(m, 1) t 8 m/1/0
: ¢ ey °
HMAC-SHAS12 [T Internal 8
% - I & m/1 ckOlmL 1 mtllli -
s m CKD(m, 1) i °
.
.
CKD{mYi, 0} L&)
(¥ m/i/o
O =y |
- t8 134 28 <. (18
mfi U 7 N ~mAiA0__ miff - miiflfk
Depth =0 Depth =1 Depth = 2 Depth = 3

Child Key Derivation Function ~ CKD(x,n) = HMAC-SHA512(X chain » X puskey || N)

Fig. 5. BIP32 - hierarchical deterministic wallets (Wuille 2012).

generated in the same way as described in BIP32 (Palatinus et al.,
2013; Rusnak 2013). Python code to generate the master seed
from a BIP39 recovery seed is shown in Fig. 6.

2.3. Bitcoin forensics

There appears to be limited academic research in this area, what
research there is comes from a small group of academics in
conjunction with industry and law enforcement. There are a large
number of Bitcoin applications, especially on iOS and Android. To
date, there has been limited research on the security of these ap-
plications (Van Der Horst et al., 2017). This review will concentrate
on Bitcoin wallet applications running on the Windows platform.

Van Der Horst et al. (2017) examine the forensic artefacts
created by Bitcoin core and Electrum, two of the more popular
desktop wallet applications. They concentrate on RAM artefacts but
also point out most of the artefacts they found can also be located
on the disk. They use virtual machines, on which they install and
operate the wallet software under test. Then examine the virtual
machines memory file when the virtual machine has been sus-
pended. This approach has several advantages. It does not require
3rd party software to dump the content of RAM and avoids the
issue of RAM smearing, which occurs due to ongoing changes to
RAM during the capture process (Case and Richard, 2017).

import hmac
import hashlib
mnemonic = "rude original bachelor leave
round toss lend awful
behave elite april super”
passphrase = ""
passphrase = "mnemonic” + passphrase
mnemonicBytes = mnemonic.encode("utf-8")
passphraseBytes = passphrase.encode("utf-8")
masterSeed = hashlib.pbkdf2_hmac("sha512",
mnemonicBytes,
passphraseBytes, 2048)
print("Master seed:”,masterSeed.hex())

Fig. 6. A python example of BIP39 master seed generation.

Of greatest interest are Van Der Horst et al. (2017) results and
their ability to recover private keys or seed words. They conclude
that they can only recover the private keys from Bitcoin Core when
the wallet is unencrypted. They were unable to recover the private
keys from Electrum. They were able to recover the seed words from
Electrum but only immediately after wallet initialisation. Van Der
Horst et al. (2017) acknowledge that the private keys they recover
from memory are also recoverable from the wallet file on disk.
Capturing and processing RAM is significantly more time
consuming than just parsing the unencrypted wallet file and so
offers no advantages for private key recovery in this case.

Zollner et al. (2019) combine live and postmortem forensic to
analyse Bitcoin artefacts on Windows 7 and 10. Their stated aim is
to locate and extract important Bitcoin artefacts, such as Bitcoin
keys and addresses. They go on to identify that this information
may be used for asset forfeiture in proceeds of crime legislation.
Zollner et al. (2019) present an automated Bitcoin analysis tool
WinBAS. While their paper describes it as open-source, only a
compiled executable is available in the indicted GitHub repository.
They identify that it is trivial to identify Base58Check encoded keys
as they only contain symbols in the Base58 alphabet and the
checksum verifies that the recovered key is valid. The same is true
of extended private keys due to the prefix ‘xprv’. However, they
exclude looking for keys in hex decimal format due to over-
whelming false positives. Zollner et al. (2019) also suggest looking
for prefetch files associated with Bitcoin wallet executables. This is
a fast approach to identify which applications have been used, but
is dependent on prefetch being enabled. In their paper, they
mention that encrypted wallet files may be recovered and that one
approach would be a brute force attack. However, they do not
examine this further.

2.4. Wallet recovery

Wallet recovery aims to enable the seizure of any available
crypto-assets. This can only be done if the collection phase has
recovered the wallet's private key. However, for security most
wallet applications encrypt the private key with a user-supplied
passphrase. In the case of a hardware wallet, the key is inacces-
sible as it never leaves the hardware device. On top of this, hard-
ware wallets are usually secured by a PIN to prevent unauthorised

A. Holmes and W,. Buchanan

use (Ledger n.d.). If the recovery seed words for a hardware wallet
are found they can also be protected with a user-supplied
passphrase.

If an encrypted wallet file is located, attempts to guess the
password can be made. The success of a password guessing attack is
based on the key derivation function used and the strength of the
password. Several open-source tools can perform these attacks,
including Hashcat and BTCrecover. Both BTCrecover and Hashcat
support attacks on MultiBit and Electrum wallets, amongst other-
s(Hashcat 2021; Rothery 2021).

If a hardware wallet recovery seed is found you can try to guess
the associated passphrase. The logical first step is to try an empty
string, this is the case where no password has been set. From the
recovery seed and password, a master seed is generated using the
PBKDF2 function. The wallet extended public key must then be
calculated, which requires an elliptic curve point multiplication. If
an extended public key has been recovered, it can be compared
with the calculated extended public key to ascertain if the pass-
word was correct. If not a set of wallet addresses would have to be
calculated again using elliptic curve point multiplication. However,
every passphrase will result in a valid set of wallet addresses. So the
Blockchain needs to be interrogated to see if any of the calculated
addresses have appeared on the Blockchain. If any of the addresses
have appeared on the Blockchain the guessed password is highly
likely to be correct.

Courtois et al. (2016) examines speed optimisations for elliptic
curve point multiplications. They benchmark existing imple-
mentations and show they achieve a 2.5 times speed increase at a
cost of more RAM by pre-computing data that only depends on the
curve.

2.4.1. Password attacks

Knowledge of how people choose passwords can be used to
increase the chance of guessing the right password. With your
cryptocurrency wallet forgetting the password could lead to the
total loss of any cryptocurrency assets stored in the wallet and
therefore, the password may be recorded somewhere or designed
to be memorable. There has been considerable research conducted
on how people choose passwords and how secure any specific
password is. A naive approach to calculating password strength is
to use the Shannon Entropy metric for information (Pearman et al.,
2017). This is E = loga(R"). Where E is the password entropy, R is the
size of the pool of unique symbols, L is the number of symbols in a
password and R" is the total number of combinations possible. The
value E is the lowest number of bits required to represent the
number of possible password combinations (Shannon 1948).
However, this does provide a way of representing the number of
possible combinations that can be directly compared with the size
of encryption keys. Table 1 shows the calculated entropy of
different password schema, if the password is chosen at random
from the set described by the schema. These are many orders of
magnitude smaller than standard encryption keys, for example, a
128-bit AES key. This makes guessing the password easier than
guessing the encryption key.

To guess passwords there are two popular approaches. First, a

Table 1
Entropy for specific password schema.

Password Schema Entropy (bits)

8 characters [a-zA-Z0-9] 48
8 characters [a-z] 38
3 random words from BIP39 English dictionary 33
1 random word from top 10,000 English words 14
1 random word from BIP39 English dictionary 11

Forensic Science International: Digital Investigation 44 (2023) 301486

brute force attack. A brute-force attack tries every possible com-
bination. For example, brute-forcing a four-digit PIN you would
start at 0000 then try 0001 up to 9999. Second, a dictionary attack,
where you compile a dictionary of more likely passwords and make
guesses from this list starting with the most likely. Let us examine a
brute force attack. If the PIN was chosen at random, on average you
would have to try half the password space to guess the password, so
500 guesses. If you could guess 10 PINs a second on average it
would take 50 s to correctly guess the PIN, and at most 1 min 20 s.
However, if you could only make one guess every minute, it would
take just over 8 h on average. Slowing down guessing attempts is
the approach most password key derivation functions use to pre-
vent successful attacks. This is done by making the key derivation
function take enough time to make attacks impractical but fast
enough not to be noticeable to a user, this is key-stretching.
Depending on the implementation of the key-stretching algo-
rithm, it can be overcome to some extent using custom hardware, a
Graphics Processing Unit (GPU) or distributed computing. Brute
force attacks become less practicable if we start looking at 12
character passwords chosen from upper and lower case characters,
the digits O to 9 and special characters, due to the number of
possible combinations. Therefore, success is more likely with a
dictionary attack, taking advantage of the weaknesses in the way
people choose passwords. A simple approach to building a dictio-
nary is to gather leaked password data sets. Then analyse the data
set for the frequency each password appears in the data set, and
sort them with the most frequent passwords first.

There are two ways to make your dictionary attack more
effective, guess faster and guess smarter using a better dictionary.
Guessing faster is often constrained by current hardware and can be
costly to implement. Currently, an NVIDIA RTX 3090 based graphics
card retails for around £2000 (Scan Computers International Ltd
2021). Guessing smarter was explored by Weir et al. (2009) who
examine large data sets of leaked passwords to calculate the
probability of specific password structures occurring. They
compared their approach to the popular John The Ripper applica-
tion using several dictionaries. They found that their system
cracked 28%—129% more passwords.

Wang et al. (2018) conducted a study of large data sets of
password breach data from real-world sources. They identified that
34.3% of users used the same password across multiple services and
a further 12.1% used the same password modified with a simple
rule. Pearman et al. (2017) also found high password reuse finding
that users in their study used 9.88 passwords across 26.34 websites.
If a triage tool can extract users passwords for other services, the
research suggests that they can then be used effectively, to inform
password guesses.

2.4.2. Password based key derivation functions

Password-Based Key Derivation Function Two (PBKDF2) is a
popular password-based key derivation function. PBKDF2 uses a
Central Processing Unit (CPU) intensive pseudo-random function
with a large number of iterations to make it slow to compute
(Visconti et al., 2015). PBKDF2 is used by BIP39 to calculate the
master seed from the recovery seed words and passphrase using
2048 iterations of HMAC-SHA512. However, while PBKDF2 is CPU-
intensive it requires minimal memory to compute and is trivial to
compute in parallel. Therefore, it can be accelerated using a GPU or
an Application Specific Integrated Circuit (ASIC). These typically
contain a large number of small processing units that can access a
large global memory, a small amount of fast local memory and a
limited number of registers (Ruddick and Yan 2016). There are two
primary programming languages used to write GPU code, Compute
Unified Device Architecture (CUDA) which is NVIDIA specific and
Open Computing Language (OpenCL) which is supported by a large

A. Holmes and W,. Buchanan

range of GPUs. OpenCL and CUDA GPU code can be leveraged in the
Python programming language with the appropriate Python
modules (Holm et al., 2020).

Visconti et al. (2019) examined the practicality of brute-forcing
passwords stretched with PBKDF2 for full volume encryption on
Linux. Rather than just looking at the number of passwords per
second that can be processed, they take a different approach. They
compare the dollar cost of the password attack. In their calculation,
they included the cost of the hardware, its life expectancy and the
cost of the electricity used. The disadvantage of this approach is
that their results will become outdated very quickly as costs change
and hardware performance increases. This is minimised by only
comparing the relative difference in cost between the hash func-
tions and platforms examined. Visconti et al. (2019) also show that
using consumer-grade (Nvidia GTX/RTX series) GPUs rather than
commercial-grade (Nvidia Tesla series) GPUs to conduct password
attacks is more cost-effective. An approach adopted by this paper.

Ruddick and Yan (2016) explore why oclHashcat outperforms
competitors calculating many cryptographic primitives, including
PBKDF2; before proposing their own optimised algorithm to
calculate PBKDF2 using OpenCL running on cheap consumer-grade
GPUs.

Benchmarks conducted with Hashcat running on an Nvidia RTX
3090 GPU show it can calculate 1,232,000 PBKDF2-HMAC-SHA512
operations using 999 iterations in 1 s. The Hashcat benchmark
outputs are shown in the appendix. This suggests a maximum hash
rate of about 600,000 hashes per second, with 2048 iterations.
There are functions like scrypt that are memory expensive and so
cannot be successfully accelerated with GPUs (Visconti et al., 2019).

2.4.3. Cloud compute platforms

There are now many different cloud-based compute instances
that can be rented for a short to a long duration. These are offered
by the big three cloud providers Amazon, Google and Microsoft as
well as a range of mid-sized and small vendors, like OVH and
vast.ai. Each of these vendors has multi-GPU instances that have
per second/minute billing plans and an API so that provisioning and
destroying instances can be scripted. These cloud compute plat-
forms allow you to provision a large number of GPUs for a short
period. This makes them ideal for providing the compute resources
necessary to conduct short-duration password attacks economi-
cally. There is an almost linear relationship between the number of
GPUs employed and the number of passwords per second that can
be processed. Therefore, the number of passwords you can guess is
only limited by the number of compute instances you can instan-
tiate. If you double the number of GPUs you will double the cost but
almost double the number of passwords per second that can be
guessed. For a specific attack, the number of password guesses per
unit cost can be calculated. Amazon, Google and Microsoft employ
costly commercial GPUs like the NVIDIA Tesla V100. Vast.ai is a
platform where individuals can sell time on their GPU platforms.
These are generally lower cost consumer-grade GPUs. Fig. 7 shows a
typical current price for an instance with a single NVIDIA RTX 3090
GPU.

2.4.4. Wallet password attacks

Volety et al. (2019) examine cracking Electrum and MultiBit
wallet recovery seeds on a Windows desktop environment. Multi-
Bit wallet was depreciated in 2017 (Heutmaker 2017). The process
they use is to extract the seed word dictionary from the wallet's
running process. They then create a database holding all possible
combinations of 12 dictionary words. Using automation software
they automate the recovery process using the seed words and the
wallet application. They find that between 1% and 10% of the
combinations entered are accepted by the application. They state

Forensic Science International: Digital Investigation 44 (2023) 301486

that this method is very slow compared with other offline brute
force methods. When they find a set of accepted seed words, they
have control over the wallet, but if the address has never been used
they find an empty wallet. The paper gives no idea of the time per
guess using their method, or the number of empty wallets to active
wallets discovered. This approach is inefficient as most of the
guesses are rejected by the software because the BIP39 checksum is
invalid. These could have been removed before being added to the
database. From the BIP 39 specification, we know the number of
valid possible combinations is 2!28. Therefore, the probability of
finding a wallet that is in use is very small. Chainalysis (2018)
suggest that there are 640 million addresses in use on the Bitcoin
Blockchain; the number of wallets in use will always be less than
this as a wallet can hold multiple addresses. We can approximate

the chance of finding an wallet in use with %ixxll%f =1in5.3 x 10%,
Therefore, this is not a realistic approach.

Vasek et al. (2016) conducts a dictionary attack on brain wallets
using their open-source application BrainFlayer. Brain wallets
generate the master seed from a password or phrase. They tried
over 300 billion passwords from a custom set of dictionaries. From
this, they only identified about 1000 addresses that have previous
transactions. One of the reasons they were able to guess so many
passwords was that they were only using a single SHA256 hash to
generate the master seed from the password. However, they still
needed to identify addresses in use for each guess. Vasek et al.
(2016) describe how they use an optimised secp256k1 library
from Bitcoin core to calculate the associated invoice address. Then
having downloaded the entire Blockchain extracted all the invoice
addresses using the znort987 block passer and loaded them into a
sorted bloom filter, they were able to quickly identify addresses
that may have been used. If they found an address possibly in use,
they made a request to the Blockchain.info API for all the details and
current balance. This work is very relevant to this paper, and the
approach taken by Vasek et al. (2016) has some advantages with
one disadvantage. The advantages are that each address lookup in
the bloom filter is very quick. The lookups will be orders of
magnitude quicker than an API call to an online resource. The only
disadvantage is that the bloom filter requires continual updating
and will always be out of date.

3. A framework for bitcoin triage and asset recovery

This section examines the results of the literature review to
propose a framework for Bitcoin triage. The framework will adhere
to the popular four-stage forensic model. The framework will also
take into account guidance from the Association of Chief Police
Officers (ACPO) digital principles for digital evidence (Williams
2012). Following Principle One and Two means we must mini-
mise the tool's footprint on the target machine. It is also necessary
to hash the data obtained to ensure its ongoing integrity. Lastly, to
comply with Principle Three, the tool needs to log all the actions
performed.

This is by design a triage tool to recover Bitcoin private keys. The
intention is not to acquire all possible forensic artefacts for
evidential purposes as this is better performed later in a laboratory
setting. As this is a triage process, it should be something that an
investigator can perform during a premises search. It is unlikely to
be practicable if the process from beginning to end takes longer
than 2 h. It should also be heavily automated, so it can be operated
by a relatively unskilled technician. An overview of the process is
shown in Fig. 8.

The collection phase will take place on the live target system
and extract relevant artefacts which will be saved to a removable
storage device. The collection phase can be augmented with the

A. Holmes and WJ. Buchanan

Forensic Science International: Digital Investigation 44 (2023) 301486

3 A FRAMEWORK FOR BITCOIN TRIAGE AND ASSET RECOVERY

1271258 3646 Viken, NO :
WS X299 SAGE
1 X RTX 3090 PCIE3.0,16x 11.7 GB/s
44 4rors 24308 Core™ i9-10980XE
vast.ai Max CUDA: 11.3 769.0 GB/s 9.0/36 cores 32/129 GB

1742.0 Mbps Max Duration $0552/hr
1823.2 Mbps 11 days
CT2000MX500S.. 27.00wPerf Refiability m
443MB/s 220.0GB 48.9 DLP/S/hr 99.78%

Fig. 7. Vast.ai RTX 3090 instance pricing.

results of any physical search. This may include a recovery seed or
passwords that had been written down. The examination phase
will be conducted on the examiner's laptop computer at the scene.
It will extract wallet types, keys, addresses and passwords from the
recovered artefacts. The analysis phase will be performed on a
cloud compute platform, this is because typically the examiner's
laptop will not have sufficient compute performance to perform
wallet attacks in a reasonable period. This phase will identify
wallets that can be attacked and then perform the attack. This
would include dictionary attacks against encrypted wallet files or
recovery seeds, identifying unencrypted wallets and wallets of
significant value. By offloading this to the cloud, it will allow
massive parallelisation to increase the number of attempts at
guessing the password per second.

3.1. Collection

The aim of the collection phase is to gather relevant artefacts
(Kent et al., 2006) including:

Artefacts that indicate that Bitcoin is in use

Artefacts that contain private keys

Artefacts that contain recovery seeds.

Artefacts that may assist the recovery of private keys.
— Artefacts that contain public keys

— Artefacts that contain passwords or passphrases.

To reduce the collection processes overall footprint, the appli-
cation should have a relatively small memory footprint. It should
also not change data on the target computer unless it cannot be

Target }_} _
Computer Capture
Examiner's .]

Examine Log actions
Computer
Cloud Compute 1_} i

Platform Analyse
Examiner's - 1_» P
Computer P 9

Fig. 8. Framework overview.

prevented. If changes are made, they should be documented in the
logs. An overview of the collection phase is shown in Fig. 9.

3.1.1. Prefetch files, registry and known file locations

These searches aim to quickly identify wallet applications
installed or used on the target system. Searching for registry keys
relating to specific applications or the default installation di-
rectories can identify the presence of these applications. Zollner
et al. (2019) show prefetch files are useful to identify the wallet
applications and browsers in use on a system. While this requires
prefetch to be enabled, it is enabled by default on desktop Windows
10 builds. However, access to the prefetch files requires Adminis-
trator privileges, so it may not always be possible. Prefetch files are
stored in the folder "C:\windows\prefetch”. There are several
utilities for parsing these files, including Nirsoft's WinPrefetchView
(Sofer n.d.). Identifying specific wallets applications that have been
run or installed on the system allows us to target specific known
application artefacts. Including registry keys, configuration files, log
files and wallet files which can be captured very quickly.

3.1.2. Running processes

Van Der Horst et al. (2017) investigates Bitcoin Core and Elec-
trum wallet forensics, focusing on the analysis of the applications
process memory. This is normally done by capturing the whole of
RAM and then extracting artefacts with string searches or the
volatility framework (The volatility Foundation, 2020). It is also
possible to dump only a specific processes memory; a popular
utility for this is ProcDump a Microsoft Sysinternals tool
(Russinovich and Richards 2021). Dumping just the process you are
interested in is faster, and the data is limited to the specific appli-
cation of interest. In contrast, dumping the entire contents of RAM
is slower, but may allow the recovery of artefacts from terminated
processes and closed files. Anecdotal reports suggest that the pro-
cess of RAM capture can sometimes cause Windows to crash. This
must be considered, as we may lose access to volatile data on the
system due to a crash.

A software wallet cannot operate without having the private
keys in RAM at some point during the signing of a transaction. Van
Der Horst et al. (2017) find that they recovered a large number of
public keys and, in limited cases, private keys from process mem-
ory, demonstrating how useful this artefact is.

3.1.3. Browser artefacts

Several useful browser artefacts can be recovered, including
browsing history and cached credentials. Browsing history may
identify the use of a hosted wallet for example with Coinbase; in
this case, legal routes may be available to freeze the assets directly
through the hosted wallet provider (Coinbase n.d.). Recovered
cached browser credentials can be added to any dictionary used to
guess the password or passphrase. If several sets of credentials are
obtained they may identify the schema used to generate the

A. Holmes and W,J. Buchanan

Search prefetch files,
known registry keys and
known file locations

Recover wallet
specific artefacts

Wallet application
found?

<

€S—»|

Obtain
running
process list

Capture process
Yes— dump and wallet
specific artefacts

Wallet application
found?

No
\

Capture
browser
history

A

A4

Capture
browser
credentials

v
Run keyword
search
Y

QR code
search

Capture RAM

v

Hash resultant
files

Fig. 9. Collection process.

passwords. This will be invaluable if a wallet file or recovery seed
needs to be attacked as passwords can be generated using this
schema which can be added to the password dictionary used in the
attack. Sofer (n.d.) has written utilities that will extract both of
these artefacts from the most popular browsers. However, the
utility to extract cached browser passwords is often incorrectly
detected as malware as it accesses sensitive information. This re-
quires any real-time antivirus protection to be disabled before
running the utility.

10

Forensic Science International: Digital Investigation 44 (2023) 301486

3.14. File searches

Keyword and regular expression searches of files, partitions and
disks are slow compared to other operations. This type of low-level
search will find artefacts in unallocated and slack space, but is
limited by the read speed of the physical storage device. With
newer computers having mid-sized fast SSDs it is more practical to
perform keyword searches now than in the past. However,
searching the disk from beginning to end is still unlikely to be
practical for a triage operation. Bayne et al. (2018) explored the use
of a Graphics Processing Unit (GPU) to speed up pattern matching,
but since the collection phase is performed on the target system,
we are limited by its hardware which may not include a GPU.
However, practical searches can be achieved on most hardware by
reducing the search space. This can be accomplished by only
searching files in specific locations or specific file types and
ignoring known operating system files. Keyword searches often use
Regular Expressions to describe complex search patterns. Global
Regular Expression Print (GREP) being the most popular tool (Forte
2004). Zollner et al. (2019) provides Regular Expressions for Bitcoin
keys and addresses in several formats. Searching for saved recovery
seeds could also be performed by searching for a run of 12—24
words from the 2048 word dictionary. Another option for a quick
keyword search is to search the Windows file index database.
Windows by default indexes certain file types and allows you to
perform keyword searches against all indexed files in a matter of
seconds (Chivers and Hargreaves 2011). However, this is very
dependent on the search and file index setting on the target com-
puter and will not work if the user has disabled file indexing.
Regular expressions are also not supported.

3.1.5. QR code search

QR codes are convenient for exchanging Bitcoin addresses, most
wallet software produces QR codes of keys and addresses. Image
analysis is a relatively slow process. However, search speed can be
increased by pre-filtering. It is unlikely any QR code saved as an
image will be larger than a few tens of kilobytes and are predom-
inantly black and white. The filtered images could then be analysed
by QR code library, for example, ZBar (Brown 2011). After the data
encoded in the QR code is recovered, it can be compared with
popular key and address formats. Any matching artefacts can be
saved for later analysis.

3.1.6. RAM dump

The RAM dump may allow the recovery of data from applica-
tions that have since been closed. However, this data is very
ephemeral, and a large number of factors like usage and the time
since the application was closed can affect successful recovery. User
passwords may be contained within RAM and recovered by
extracting all strings from the RAM dump. We need to extract both
UTF-8 and UTF-16 strings. These strings can be added to a custom
dictionary for later password attacks.

3.2. Examination

The examination phase is responsible for extracting data from
the artefacts obtained during the collection phase which may assist
us to identify a wallet's current value or help attack the wallet. This
process will run on the examiner's laptop. The process starts by
identifying any recovered wallets. If the recovered wallet is unen-
crypted the private keys are extracted. Where the wallet is
encrypted xpub, ypub and zpub extended public keys are recovered
from the artefacts where possible. These will allow the balance of
the wallet to be obtained through a Blockchain API call. The first
source of these are configuration files, then the wallet process
dump. These sources tie the recovered keys to a specific wallet

A. Holmes and W,J. Buchanan

application. Next, the RAM dump and other recovered files are
examined, these sources are secondary as they may not be able to
be tied to a specific wallet application. If the extended public key
cannot be obtained, addresses associated with the wallet applica-
tion should be extracted where possible. From a single address, it is
not possible to calculate any other addresses that are part of a
deterministic wallet. Therefore, any API calls for balance will only
relate to that specific address, not the wallet as a whole. The process
is summarised in Fig. 10.

Next, any recovery seeds are examined to determine if the
wallet type can be identified, as not all wallets use BIP39 seeds. If
not the recovery seed is treated as a BIP39 seed. From this the
private key and extended public keys are calculated. These will
allow the balance of a specific wallet to be queried through a
Blockchain API call. The process is summarised by Fig. 11.

Identification of hosted wallets is performed by searching the
browser history for known hosted wallet URLs. These will just be
reported to the investigator. Brute forcing a hosted wallet, requiring
an online attack, is not usually practicable due to the security
measures put in place to prevent this. In some cases, it is unnec-
essary as the cryptocurrency assets can be preserved through legal
requests to the service provider.

The next step is to examine the cached browser passwords.
Users practise poor password security and research has shown
password reuse is common (Wang et al., 2018; Pearman et al.,
2017). Therefore, this may identify passwords for wallets.

If any wallets or seeds have been found then as part of the ex-
amination phase, a list of passwords is generated. These would be
generated from the browser password cache and may be expanded
with password mangling rules. Strings can also be extracted from
the RAM dump which can be added to the password list. Adding
actual users passwords to any custom dictionary later used to
attack wallets or seed words is likely to be critical to success. A rule-
based password expansion could also add significant value to that
process.

Any addresses and public keys identified by the QR code capture
or keyword search process will be added to the list of found public
keys and addresses. These are not as significant as keys and ad-
dresses associated with a specific wallet. Seed phrases found will be
added to a list of seed phrases to be passed onto the analysis phase.

3.3. Analysis

The analysis phase will be predominately conducted on a cloud-
based computing platform but will be orchestrated from the in-
vestigator's laptop. This allows for scalability and massive

Examine
recovered
wallet

artefacts

Process

Known
wallet type artefacts for

xlylzpub keys

Yes—p|

Recover

Recover
private keys

wallet
addresses

Examine
recovered =
seeds

Yes

Fig. 10. Examination phase one.

1

Forensic Science International: Digital Investigation 44 (2023) 301486

Examine

recovered
seeds

Calculate
private key
and extended
public keys

4

Examine
browser
history

Treat as
BIP39 seed

Fig. 11. Examination phase two.

parallelisation. The amount of computing power that can be
brought to solve the problem is effectively limited by cost only. It is
trivial to split up a dictionary across x platforms to reduce the

processing time. Total time = %ﬁ' where t is the time taken per
permutation and p is the total number of permutations. Fig. 12
shows an overview of the analysis phase.

First, analysis of the browser history and browser credentials for
hosted wallets and associated usernames and passwords is con-
ducted, which may give the investigator a quick win by identifying
a hosted wallet.

The next part of the analysis is to establish if any of the recov-
ered wallets are worth attacking before an attempt is made. This
may not be possible and depends on the artefacts that were
recovered by the collection and examination phase. This is done by
identifying private and extended public keys that are associated
with a wallet application and using these to generate the wallets
addresses. The balance can then be obtained through a Blockchain
API call. Depending on the associated wallet, several derivation
paths may need to be used to generate addresses. There are three
common derivation paths, Legacy, Pay to Script Hash and SegWit.
Addresses recovered that are not associated with a wallet appli-
cation can also be checked for a balance. At this stage, some initial
reporting needs to be made to allow the investigator to choose the
next course of action and set some parameters based on the initial
results.

If wallets or seeds are going to be attacked, the next step is to
compile a dictionary. This will consist of a word list of common
passwords, augmented with the passwords recovered from the
target system in the collection phase. It could also include pass-
words associated with the user from published breach datasets. The
password set could then be mangled to usefully increase the dic-
tionary size further (Jourdan and Stavrou 2019). This dictionary will
be used in subsequent attacks.

It is trivial to split a fixed size dictionary into x parts. With
knowledge of the hashing rate, an estimate can be made for how
long it will take to exhaust the dictionary given x compute plat-
forms. Cloud compute platforms are usually billed by the hour.
Therefore, the cost is similar if the process is run on one platform
for 2 h or two platforms for 1 h. The size of the dictionary you can
process in an hour is just a factor of how much you are willing to
pay and is limited by the number of computing platforms available.

Software wallet files all have some form of checksum that allows
the software to identify correctly decrypted wallet files and hence
the correct password. Each wallet application uses a different
encryption scheme with different password-based key derivation
schemes. It is the password-based key derivation function that has
the biggest impact on the speed at which passwords can be guessed

A. Holmes and W,. Buchanan

Analyse
browser
history

Analyse cached
credentials for user
name and password

Hosted wallet
identified

Analyse recovered
artifacts for
private/public keys and
addresses

If found Yes»| Evaluate wallet value

Analyse artefacts
recovered for attack
opportunities

Create custom
dictionary from RAM
dump and cached
browser credentials

Perform attack
No

Reporting

Attack possible

Fig. 12. The analysis phase.

in an offline password attack.

BIP39 seeds do have a checksum but this only checks the seed
words for unintentional data entry errors. To identify if the correct
password has been supplied you need to use the seed word and
passphrase to calculate the master seed. Then from the master seed,
calculate the extended public key. This can be compared to the
extended public key recovered during the collection phase. If the
extended public key was not found, addresses can be calculated
with popular derivation paths. These addresses can then be
compared with a database of all addresses on the Blockchain. The
full Blockchain data is not used. Instead, an optimised database of
just address hashes can be compiled ahead of time in a similar
manner to Vasek et al. (2016). This reduces the size of the data and
the search times.

The dictionary is split into x parts; each of which will be pro-
cessed by a different cloud compute platform. Either the entire
dictionary will be exhausted without the correct password being
found, or a matching password will be found. Once the wallet
password has been found, the value of the wallet can be verified
using a Blockchain API call and the results presented to the
investigator.

3.4. Reporting

Once the process is complete, a full report covering all four
stages is presented to the investigator. This will summarise the
artefacts found, the extracted identifiers, any recovered wallets
along with their current value and associated keys. A full audit log

12

Forensic Science International: Digital Investigation 44 (2023) 301486

will also be generated separately covering ACPO Principle Three. All
the recovered files and reports will be hashed to allow the detection
of unintentional changes to the files. A hash of all of the file hashes
will then be created. This hash value should be made immutable by
the investigator as soon as practicable, to allow detection of unin-
tentional and malicious changes to the files.

4. Experimental methodology

The core focus of this work is it to attack a Bitcoin wallet
application during a law enforcement search, to gain control of the
cryptocurrency assets. It includes whether sufficient forensic arte-
facts be recovered to enable an attack to take place, and an attack be
performed quickly enough to make it practicable during a search.

The two wallet applications that the experiments will be tested
against will be Electrum (version 4.1.5) a software wallet and Led-
ger Nano S hardware wallet (Ledger Live version 2.34.2). The pop-
ular Electrum wallet was chosen as it is open-source and written in
Python which allowed it to be trivially reverse engineered. The
Ledger hardware wallet was chosen as it is the most popular
hardware wallet (Thomas et al., 2020). The Ledger Live software is
also open-source making it trivial to reverse engineer.

4.1. Artefact collection

The goal of the collection tool is to obtain sufficient artefacts and
identifiers for an attack to be conducted. The identifiers contained
in the artefacts we are looking for are Bitcoin private keys, extended
public keys and addresses. We are also looking for encrypted keys.
The tools constraints are: it should not unnecessarily alter data on
the system, it should record a log of the actions taken and it should
complete within a reasonable period.

Before the tool could be built, an examination of the forensic
artefacts left by each of these two applications was conducted. This
was done by creating a Windows 10 virtual machine and then
taking a baseline snapshot. The applications were then installed
one at a time on the baseline snapshot, during which the files and
registry entries created were monitored with Microsoft's Sysinter-
nals Process Monitor. These files and registry entries were then
examined to identify reliable methods of identifying if the appli-
cation was installed. In each application, a hierarchical Bitcoin
wallet was created with a known seed phrase and derivation path.
This allowed identifiers to be searched for, as the keys and ad-
dresses are known allowing the identification of specific file and
memory structures where these are identifiers are stored. In both
applications, a known password was used to encrypt the wallet
data so that the plain text password could be searched for. Once this
was completed, a dump of the running application process was
conducted and the process dump was then examined for these
identifiers. A code review of these applications was also conducted,
targeting the decryption of the wallet data and, in the case of
Electrum, the storage of private keys in RAM. Once the location of
the relevant identifiers had been reliably found, a collection tool
was designed to collect the artefacts containing these identifiers.

The collection tool was also designed to collect possible user
passwords so that they can be added to any word dictionary used in
the subsequent attack stages. These are extracted from cached
browser passwords and the RAM dump.

The collection tool was written in PowerShell and leveraged
several free or open-source utilities. Predominately open-source
forensic tools are written in Python, for example, Autopsy and the
Volatility Framework (Basis Technology 2021, The volatility
Foundation, 2020). However, this is not the first forensic tool
written in PowerShell, Barakat and Hadi (2016) developed a
function-rich forensic PowerShell Module. PowerShell was chosen

A. Holmes and W,. Buchanan

as it allows for quick code revisions and did not require an inter-
preter to be installed on the target system. While a Python appli-
cation can be compiled into a standalone executable with utilities
like pyinstaller (PyInstaller Development Team, 2021), the resulting
executable is often large. The completed collection tool makes use
of the following utilities:

@ NirSoft WebBrowserPassView

@ NirSoft BrowsingHistoryView

@ Microsoft Sysinternals ProcDump
® Google/Velocidex WinPmem

@® Microsoft robocopy

The collection tool does not implement all of the possible
functions identified in the collection framework, it does not
perform a search for QR codes and does not perform a keyword
search through all files in the file system. This is because both of
these functions were found to be very time consuming during
initial testing (Microsoft 2018). The final collection tool PowerShell
script is listed in the appendix.

4.2. Artefact collection evaluation

The collection tool was tested on a freshly installed Windows 10
virtual machine. The tool is run at three different stages:

1. Before the installation of any Bitcoin wallet application.

2. After the Bitcoin wallet application has been configured and is
running.

3. 15 min after the application has been terminated with the
computer being left idle.

The first collection will identify false positives. The second and
third collection simulates two states that the investigator may find
the target system in. The wallet applications will be installed with
the default options. A known wallet will then be restored in the
application from a set recovery seed. In the case of the Ledger
hardware wallet, after the device is restored with the recovery seed,
the hardware device is synchronised with the Ledger Live appli-
cation on the computer. Between each application being tested, the
virtual machine will be reset to the baseline snapshot. The baseline
snapshot was taken just after the Windows 10 installation was
complete. All of the wallets were set up with the same recovery
seed, "rude original bachelor leave round toss lend awful behave
elite april super” and used the default address type, which for both
Ledger and Electrum is a native SegWit wallet. After all three col-
lections have been completed, the collected artefacts will be
examined to identify if they contain the expected plain text or
encrypted wallet files, private keys, extended public keys and
addresses.

4.3. Bitcoin wallet attack development

The goal of the wallet attack tool is to identify the user-supplied
password that has been used to encrypt the wallet file, encrypt the
private key or protect the recovery seed. While it is impractical to
use a dictionary or brute force attack against the encryption key, it
is possible to leverage the flawed way people choose passwords to
guess the user's password from which the encryption key is
derived. The correct password is identified by making repeated
guesses from a dictionary and checking the output from the
decryption function for a condition that indicates success. This is
referred to as an offline dictionary attack.

To develop the tools, the artefacts found during the collection
phase were analysed to identify possible attack vectors. These

13

Forensic Science International: Digital Investigation 44 (2023) 301486

included the encrypted wallet file from Electrum, the encrypted
private keys recovered from the process memory and password
protected recovery seeds. Some of the identifiers found within the
recovered artefacts were found to assist with identifying the suc-
cess condition, for example, the extended public key recovered
from the Ledger Live application.

The literature review identified several tools that could conduct
dictionary attacks on encrypted Electrum wallet files, including
Hashcat. Where a tool existed it was evaluated for performance.
Where a tool did not exist a custom tool was developed using Py-
thon. The Python module PyOpenCL was used to support writing
performance-critical sections of the code in OpenCL to run on a
Graphics Processing Unit (GPU). Code reviews of the open-source
applications were conducted to reverse engineer the encryption
scheme and file formats. Rather than writing the OpenCL crypto-
graphic primitives from scratch, these were borrowed from Hash-
cat. This allowed for quick development and also allowed the tool to
leverage the highly optimised Hashcat primitives. The tools were
then developed using these cryptographic primitives to implement
the reverse-engineered encryption scheme. A large password dic-
tionary was also created to test the functionality and performance
of the tools.

Hashcat was tested against the recovered encrypted wallet file
created by the Electrum application, and two custom attack tools
were developed. The first targets an encrypted private key found in
the process dump of the Electrum application. The second targets a
recovered BIP39 seed phrase protected by a password. This tool
leverages the extended public key recovered from the Ledger Live
application to identify the success condition.

4.4. Bitcoin wallet attack evaluation

To test the practicality of a dictionary attack against the wallet,
we will use the artefacts and identifiers recovered by the collection
tool tests with Hashcat or our custom written tools to try to recover
the user password protecting the wallet file, encrypted private key
or seed phrase. The experiment will run the wallet recovery tool to
evaluate how many passwords can be guessed in a given period on
two distinct platforms. A typical laptop an examiner may use dur-
ing a search, in this case, a Dell 7390 laptop with an integrated Intel
UHD 620 GPU. Secondly, a cloud platform with a high-end con-
sumer GPU, an NVIDIA RTX3090. The tools are then assessed on
these platforms to see how many passwords can be guessed per
second. To calculate the password rate, the tool was timed pro-
cessing a dictionary containing 64,000,000 passwords. Then the
number of guesses in an hour for a fixed cost of £25 is calculated
based on the tool running across a collection of hired cloud GPU
instances.

5. Results

This section first sets out the results from the forensic exami-
nation of the Electrum and Ledger Nano S wallet applications.
These results identify what Bitcoin artefacts and identifiers can be
recovered and, how they assist with any subsequent attacks against
the wallet. Second, we document the artefact collection tool eval-
uation, which identifies if the collection tool correctly collects the
available artefacts and identifiers. Finally, we present the results of
the dictionary-attack tools in terms of their password guessing rate
and calculate how many guesses can be made in 1 h for £25 using a
public cloud compute platform. This provides an insight into how
practicable a particular attack is.

A. Holmes and WJ. Buchanan
5.1. Collection tool electrum

Evaluation of the artefacts collected before the installation of the
Electrum wallet application shows the recovery of no wallet files,
extended public keys, extended private keys or addresses. This is
the expected outcome. Any results at this stage would be false
positives.

Evaluation of the artefacts collected while the Electrum wallet
application was running, showed the tool recovered the encrypted
wallet file from the disk. The tool also recovered an extended public
key, an encrypted extended private key and addresses associated
with the wallet from the Electrum process memory dump. These
values are stored in a Python nested dictionary structure in the
Electrum process memory. There are two substructures of interest
the "keystore” shown in Fig. 13 and "addresses”. The addresses
structure contains a list of receiving and change addresses used by
the wallet. These addresses can be quickly checked using a com-
mercial Blockchain API for the balance and transaction history. The
wallet password and the recovery seed phrase were not recovered
from the Electrum process memory dump.

The Keystore structure was found to contain the extended public
key and the deterministic wallet derivation path, these can be used
to generate addresses associated with the wallet for Blockchain API
queries. There is also an entry for the extended private key which
appears to be encrypted. Examination of the Electrum source code
shows that this is encrypted with AES256-CBC using the wallet
password. The decryption process as pseudocode is shown in
Fig. 14. The code highlights a second possible approach to con-
ducting a dictionary attack on an Electrum wallet if the encrypted
extended private key is recovered. This would cost two SHA256
operations and a single block AES decrypt. This compares to a
PBKDF2-HMAC-SHA512 with 1024 iterations for the wallet file.
Therefore attacking the encrypted extended private key should be
orders of magnitude faster than attacking the wallet file. However,
the encrypted extended private key was only obtained when the
Electrum application was running.

Evaluation of the artefacts recovered 15 min after the Electrum
application was terminated, identified that the encrypted wallet file
was still recovered. However, no extended public keys, encrypted
extended private keys or addresses associated with the wallet were
found in the memory dump. The password was also not located in
the memory dump. A summary of the results is shown in Table 2.

The results show that we can only obtain the extended public
key, addresses and encrypted extended private key if the Electrum
application is running, otherwise, all we can obtain is the encrypted
wallet file. No memory artefacts appear to persist for any length of
time after the application is terminated.

The collection tool was profiled with Microsoft Sysinternals
Process Monitor to identify how much RAM was used during
execution. The logs also show what file and registry entries were
changed during its execution. A screenshot showing the memory
usage for the tool is shown in Fig. 15.

"keystore": {"type": "bip32",

"pw_hash_version": 1,
"xpub”:"zpub6rdRcr57RL1TuSXFcGyTC1nMLBB7Udsx20gL9dXbiMG585uGsS
uT6gGzLckpGSwRvtmgpUEJAXhcQD2exFyDiUiyX1Am4eJ4wMZmNmZzSH6" ,
"xprv": "oChWWzfakm0z8E4tJewcUCW3k7iwKN3rZoF02vqoF+MxRPPOVQRIPs
MeIwdG9aLWpD9kpf700jidsmlTUXKXLiStfmuCFFNktzBpcXnFZ7Sp91ULEOGgwW
NGJ090B61;jf9B63qj1dsyL+FGUetgGc7c06JUbM7bSEVNIYCOhQNLIE=",
"derivation”: "m/84'/0'/0'",

"root_fingerprint”: "f202e755"}

Fig. 13. The keystore, extracted from the process memory dump.

14

Forensic Science International: Digital Investigation 44 (2023) 301486

data = base64_decode(xprv)

key = sha256(sha256(password))

iv, cyphertext = data[:16], data[16:]

plaintext = AES256_CBC_Decrypt(key,iv,cyphertext)

Fig. 14. Decryption of the extended private key (xprv) in python.

5.2. Collection tool ledger

Evaluation of the artefacts collected before the installation of the
Ledger Live application shows the recovery of no extended private
keys, extended public keys or addresses. This is the expected
outcome. Any results at this stage would be false positives.

The artefacts collected while the Ledger Live application was
running and had been synchronised with a Ledger Nano S hardware
device, include the extended public key and some addresses. These
were recovered from the Ledger Live process memory dumps.
However, these are also available in the file "%APPDATA%\Ledger
Live\app.json”. This file contains a wealth of information, including
identifiers for the hardware devices being used, the extended
public key, the derivation path, addresses, current balance and
historic balances over the preceding 12 months. A snippet of this
file is shown in Fig. 16. If the Ledger Live application is protected
with an optional password the public extended key is encrypted in
the app.json file. Reviewing the source code shows that it is
encrypted with AES-256-CBC using PBKDF2-SHA512 with 10,000
iterations to stretch the key. This would make it relatively slow to
conduct a dictionary attack against it. If the process is running and
the password has been entered the extended public key can be
recovered from the process memory dump. The password used to
decrypt the extended public key was also found several times in the
process memory dump taken while the application was running.

Evaluating the artefacts recovered 15 min after the Ledger Live
application was closed, identified that the "%APPDATA%\Ledger
Live\app.json” file was still recovered. However, none of the arte-
facts found earlier in the process memory dump could be found in
the RAM dump. A summary of the results are shown in Table 3.

The results show that we can obtain the extended public key
and associated addresses during and after the execution of the
Ledger Live application as long as the optional password feature has
not been used.

5.3. Electrum wallet file dictionary attack

Conducting a dictionary attack on an Electrum wallet file can be
done with existing open-source tools. First, a hash compatible with
Hashcat (2021) is created using electrum2john.py (Kholia 2021)
part of the John the Ripper jumbo release (Open Wall 2021). Then
Hashcat is used with a password dictionary to guess the password.
On a typical contemporary laptop, for example, a Dell 7390 with
16 GB of RAM, an i7-8650U CPU and an Intel UHD 620 GPU, Hashcat
can check approximately 3300 passwords per second. On a state-
of-the-art consumer GPU for example, an NVIDIA GeForce RTX
3090, Hashcat can check approximately 880,000 passwords per
second. Therefore the laptop could check just under thirteen
million (12,880,000) passwords an hour. The RTX 3090 could check
just over three billion (3,168,000,000) passwords per hour. Table 4
shows the time it would take to exhaust popular dictionaries using
this attack.

It was identified that the collection tool also recovered an
encrypted extended private key from the Electrum process mem-
ory. This can be attacked as well. It can be seen from Fig. 14 that this
is protected by two SHA256 operations and a single AES-256 block
decrypt operation. This should be orders of magnitude faster to
process than the wallet file, protected by PBKDF2-HMAC-SHA512

A. Holmes and WJ. Buchanan

Table 2
Collection tool results for electrum.

Forensic Science International: Digital Investigation 44 (2023) 301486

Information Recovered Before Installation

During Execution After Execution

wallet file (encrypted) X v 4
private key (encrypted) X 4 X
private key (plaintext) X X X
public key X v X
wallet password X X X
recovery seed X X X
addresses X 4 X
7 Process Activity Summary - o X
Processes generating events during trace:
Process Name PID CPU FieEvents FieEvents File /O Bytes Registry Events Registry Events Commit Peak Private Bytes Working Set Peak Working Set
- powershell exe 3800| 8.790 15,648 78.7MB 93.9MB
4 procdump64 exe 18336 14,804 1,123} 252MB 8.89MB
§7 BrowsingHistoryView exe 14436 53,561 416 8.76 MB D 75.9MB| Y
gthebEmwserPass\ﬁew exe 18776 1,755 917] 6.12MB] 26.2mB[||
Robocopy.exe 3644 128 l 176 1.17MB 6.14MB
Robocopy.exe 10092 120| 176 1.19MB | 6.15MB [
Robocopy exe 13976 175 l 180| 222MB 7.10MB
Robocopy.exe 15944 122| 176 1.17MB | 6.16MmB[][
Robocopy.exe 1436 120 176 1.19MB 6.14MB
Robocopy.exe 17584 132] 176| 1.17MB l 6.14MB| |
Robocopy.exe 18936 122| 176 120 MB 6.12MB
Robocopy exe 19440 173 180 139MB 6.30MB
Robocopy.exe 14564 m 180| 164 MB 6.50 MB
Robocopy exe 18752 189 180 212MmB 6.98 MB
Robocopy.exe 3636 34 173] 1.09MB 589MB
Robocopy.exe 11640 U 173] 1.10MB 590MB|
Robocopy exe 12076 34 173 1.09MB [589 MB J
Robocopy.exe 2728, 4 | 180| 212MB 7.02MB
Robocopy exe 5588 120 176 1.17MB 6.14MB
Robocopy.exe 17012 120| 176 121 MB 6.16 MB
Robocopy exe 7708 7 180 137M8 633MB
Robocopy.exe 11524 176 180| 1.60 MB 6.52MB
Robocopy exe 708, 151 180| 1.22M8B 6.15MB
Robocopy exe 16416 147 180 1.23MB 6.14MB
Robocopy exe 11182 148 180| 121MB 6.14MB
Robocopy.exe 18108 122| 176 1.19MB 6.16 MB
Robocopy exe 6316 122 176 1.19MB | 6.10MB
Robocopy.exe 14412 122| 176| 121 MB 6.12MB
Robocopy.exe 4508 132] 176 121 MB 6.17MB
Robocopy exe 5236 126 176 117MB 6.16 MB
Robocopy.exe 14084 165| | 180| 136 MB 6.32MB
Robocopy exe 6748 426 | 180 214MB 7.03MB
Robocopy.exe 15804 120| 176 121 M8 6.18MB
Robocopy.exe 1604 120| 176 120 MB | 6.16MB| |
Robocopy exe 17924 120 176 1.20MB 6.15MB
Robocopy.exe 12860 120| 176 120 MB 6.16 MB
Robocopy exe 3104 120 176 121 MB 6.17MB
k% winpmem_mini_x64_rc2.exe 688 33949 Ty [106 16.7MB[[T 204MB[[
Command Line: powershell.exe -ExecutionPolicy Bypass -File "C:\Users\arran\OneDrive\Doct
Started: 22/10/202121:11:33 Total User CPU: 00:00:01.0000000
Ended: 22/10/2021 21:12:35 Total Kernel CPU: 00:00:02.1718750

Fig. 15. Collection tool profiling.

"accounts”: [
{
"data": {
"id": "libcore:1:bitcoin:xpub6CxulWjH7xvWCr91wZQCmgbLzEtDbPtxCant
aqjpxLWK1tGpN8aKrYxiJCqeGddb7cYEKX3BFCzWddoXWs9C81MmnKmutpf6PuSU
baLCWop:native_segwit"”,
"seedIdentifier”: "@48a0d3ce3dd74cab35f532d63218dab1a6f54395764b7
f24d12a38f94e1b72a30b43c2f2f5ebdbd358ef6f332a9fd2ec92d86a55f@1dac
1c17b8b9fa69688765¢c",
"name": "Bitcoin 1",
"starred": false,
"used": false,
"derivationMode”: "native_segwit",
"index": 0,
"freshAddress”: "bclqv7wymgqr2qr64czhdyl5cgykrsgzjtmdsh2zn6”,
"freshAddressPath”: "84'/0'/0'/0/0",}}

Fig. 16. A Snippet from app.json.

with 1024 iterations. Initially, a C program was written using the
OpenSSL library for the AES and SHA256 cryptographic primitives.
This was tested and performed 1.7 million passwords guesses per

15

second using a single CPU thread on the laptop described above.
Next, a Python version was developed using pyOpenCL to leverage
the GPU. This used the OpenCL cryptographic primitives library
from Hashcat (2021). The biggest bottleneck found was Python
loading passwords from a password file and formatting them in
memory to present to the GPU. This was solved by formatting the
dictionary in a pre-process so that it could be read straight into
memory and passed to the GPU in blocks of 10 million passwords.
This pre-processing traded an increased dictionary size in bytes for
speed. The tool was tested on the same laptop and performed 3.9
million guesses per second using the integrated GPU. The code
design takes a few shortcuts to increase guesses per second. First,
the AES decryption is only performed on the first 16 bytes (1 AES
Block) of the encrypted extended private key. To identify success,
the first 4 bytes of the decrypted result is checked for the string
xprv, yprv or zprv. While this is faster it does generate some false
positives. However, after candidate passwords have been identified
they can be verified by performing the full decryption and verifying
the Base58Check checksum. Running on an Nvidia RTX 3090 the
tool performed about 16.8 million password guesses per second.
This is almost 20 times faster than attacking the wallet file on the

A. Holmes and W,. Buchanan

Table 3
Collection tool results for ledger live.

Forensic Science International: Digital Investigation 44 (2023) 301486

Information Recovered Before Installation

During Execution After Execution

wallet file (encrypted) N/A N/A N/A
private key (encrypted) X X X
private key (plaintext) X X X
public key X v 4
wallet password/PIN X 4 X
recovery seed X X X
addresses X v 4
Table 4 The results show that it is likely to be practicable to conduct a

Dictionary and the Time to Exhaust them for Electrum wallets.

Dictionary Number of passwords Wallet attack time (RTX3090)
Rockyou 14,344,392 16.3s

Crackstation 63,941,070 1.21 min

All-in-One-P 15,462,473,182 4.88 h

a-zA-Z0-9 {8} 96,717,311,574,016 3.49 years

same hardware. Table 5 shows the time it would take to exhaust
popular dictionaries using this attack.

5.4. Ledger recovery seed dictionary attack

The examination of the artefacts created by the Ledger Live
application did not identify the recovery seed at any point. Ledger
uses a standard BIP39 recovery seed. The extended public key as-
sists with an attack as it can be used to identify success. It is not
practicable to guess the recovery seed due to the size of the search
space which is approximately 2048 possibilities. However, if the
recovery seed is found, for example in a physical search, but it has
been protected with a password and the extended public key can be
recovered from the target computer, it may be practicable to
conduct a dictionary attack to recover the private key.

BTCrecover has functionality for conducting dictionary attacks
against BIP39 recovery seeds and it supports GPU acceleration.
However, this functionality is reported as being experimental by
the developer. When it was tested it failed to run on the test system.
Instead, a Python application using the OpenCL and cryptographic
primitives from Hashcat was developed. This application used the
extended public key recovered by the collection tool from the
Ledger Live application to identify success. The application was run
on the test laptop, which managed 1200 passwords per second. On
the NVIDIA RTX 3090, it performed 115,500 passwords per second.
Table 6 shows the time it would take to exhaust popular dictio-
naries using this attack.

The previous results are all for a single GPU instance. However,
the problem is trivial to break up into parallel processes that could
run on separate GPU instances. The dictionary can be split into
chunks with each GPU instance processing a different chunk. As we
saw in Fig. 7 the cost of a GPU instance on vast.ai is quite low at
around $0.60 per hour. So for about £25 you could hire 40 RTX 3090
GPU instances for an hour. Table 7 shows the approximate number
of passwords that could be guessed for £25.

Table 5
Dictionary and the Time to Exhaust them for Electrum Key Attack.

dictionary attack against Electrum and Ledger Live under specific
circumstances. Where an encrypted extended public key can be
recovered from a running Electrum process 2.4 trillion guesses can
be made in an hour costing just £25 to hire the necessary GPU in-
stances. Where only the wallet file was recovered we were still able
to make 126 billion guesses in an hour again for approximately £25.
Where a Ledger recovery seed has been found and the extended
public key recovered 16.6 billion guesses can be made in an hour for
approximately £25.

6. Conclusions

This paper proposed a framework for live host-based bitcoin
wallet forensic triage and evaluated the practicability of using a
dictionary attack against an Electrum and Ledger Bitcoin wallet
during a police search, with the intention of seizing the Bitcoin
under Proceeds of Crime Act (POCA) legislation. The ethics of
cracking a Bitcoin wallet should, of course, be strongly considered,
and could probably only be justified within serious criminal
activity.

Based on the literature review, a triage framework for the re-
covery of Bitcoin artefacts during a search was developed. To
answer the research questions, tool were developed and tested
covering the collection and analysis phase of the framework. These
tools were evaluated against the two different wallet solutions, the
Electrum software and Ledger Nano S hardware wallet.

To develop the collection tool first, the research work in this
paper conducted a forensic investigation of the artefacts created by
the two popular Bitcoin wallet solutions. From this work, artefacts
were identified that could either help establish the balance of the
wallet or could assist in a dictionary attack against the wallet. Using
the results of this investigation a PowerShell script was developed
to recover useful artefacts from a target computer, taking advantage
of several 3rd party utilities. This tool was evaluated to answer the
first research question.

Finally, three proof of concept dictionary attack tools were
developed to attack both the Electrum and Ledger Nano S wallets.
These tools use the artefacts collected by the collection tool.

Declaration of competing interest

The authors whose names are listed in the paper certify that
they have NO affiliations with or involvement in any organization

Table 6
Dictionaries and the Time to Exhaust them for Ledger.

Word list Number of passwords Wallet attack, single RTX3090 Dictionary Number of passwords Wallet attack on RTX3090
Rockyou 14,344,392 0.85s Rockyou 14,344,392 2.07 min

Crackstation 63,941,070 38s Crackstation 63,941,070 9.22 min

All-in-One-P 15,462,473,182 15.31 min All-in-One-P 15,462,473,182 37.19h

a-zA-Z0-9 {8} 96,717,311,574,016 66.5 days a-zA-Z0-9 {8} 96,717,311,574,016 26.55 years

16

A. Holmes and W,J. Buchanan

Table 7
The number of guesses achievable for £25.

Target Password Rate (Single GPU) Total Guesses for £25
Ledger seed password 115,500 16,632,000,000
Electrum Wallet file 880,000 126,720,000,000
Electrum encrypted key 16,800,000 2,419,200,000,000

or entity with any financial interest (such as honoraria; educational
grants; participation in speakers’ bureaus; membership, employ-
ment, consultancies, stock ownership, or other equity interest; and
expert testimony or patent-licensing arrangements), or nonfinan-
cial interest (such as personal or professional relationships, affili-
ations, knowledge or beliefs) in the subject matter or materials
discussed in this manuscript.

Data availability

Data will be made available on request.

Appendix
Collection Tool Source Code

Listing 1: https://github.com/billbuchanan/bitcoinframework/
blob/main/runmeasadmin.bat

Listing 2: https://github.com/billbuchanan/bitcoinframework/
blob/main/collect.ps1

Electrum Private Key Source Code

Listing 3: https://github.com/billbuchanan/bitcoinframework/
blob/main/testElectrum.py

Listing 4: https://github.com/billbuchanan/bitcoinframework/
blob/main/xprv.cl

Ledger Recovery Seed Source Code

Listing 5: https://github.com/billbuchanan/bitcoinframework/
blob/main/testLedger.py
Listing 6: https://github.com/billbuchanan/bitcoinframework/
blob/main/ledger_seed.cl

Hashcat Benchmarks

Listing 7: https://github.com/billbuchanan/bitcoinframework/
blob/main/HashcatBenchmarks.txt

Ethics

The tools created during this paper will not be tested against
actual recovered wallet files or artificially created real world wallets.
This is because of the risk of using recovered wallets presents to the
assets contained in the wallet. The second reason is that, if the
wallet is created specifically for the experiment by a volunteer,
there are two possible undesirable outcomes. The volunteer gen-
erates realistic passwords possibly giving away information about
how they construct their real-world passwords or they create an
artificial password that is unrealistic.

While writing this paper, a weakness was discovered in the way

17

Forensic Science International: Digital Investigation 44 (2023) 301486

Electrum stores the extended private key. The key is stored in
memory encrypted with the user's password. However, the key
derivation can be performed very quickly. This allows an attacker to
speed up password attacks in specific circumstances. This is not a
bug; it is a deliberate design decision made by the developers.
Therefore, it has not been reported as a vulnerability.

References

Akhgar, B., Wells, D., 2018. ‘Critical success factors for osint driven situational
awareness’. European Law Enforcement Research Bulletin 18. Retrieved August
1, 2021 from. https://bulletin.cepol.europa.eu/index.php/bulletin/article/view/
332/289.

Barakat, A., Hadi, A., 2016. Windows forensic investigations using powerforensics
tool. In: ‘2016 Cybersecurity and Cyberforensics Conference (CCC)’. IEEE,
pp. 41-47.

Basis Technology, 2021. Autopsy digital forensics. Retrieved August 26, 2021 from.
https://www.autopsy.com/.

Bayne, E., Ferguson, R.I., Sampson, A., 2018. Openforensics: a digital forensics gpu
pattern matching approach for the 21st century. Digit. Invest. 24, S29—-S37.
Bell, G.B., Boddington, R, 2010. Solid state drives: the beginning of the end for

current practice in digital forensic recovery? J. Digit. Foren. Secur. Law 5 (3), 1.
blockchain.com, 2021. Blockchain size (MB). Retrieved October 10, 2021 from.
https://www.blockchain.com/charts/blocks-size.

Brown, D., 2010. Sec 2: Recommended elliptic curve domain parameters. Retrieved
July 17, 2021 from. https://www.secg.org/sec2-v2.pdf.

Brown, J., 2011. Zbar bar code reader. Retrieved August 15, 2021 from. http://zbar.
sourceforge.net/.

Carrier, B.D., 2006. Risks of live digital forensic analysis. Commun. ACM 49 (2),
56—61.

Case, A., Richard III, G.G., 2017. Memory forensics: the path forward. Digit. Invest.
20, 23-33.

Chainalysis, 2018. ‘Mapping the universe of bitcoin's 460 million addresses'.
Retrieved August 7, 2021 from. https://blog.chainalysis.com/reports/bitcoin-
addresses.

Chistyakova, Y., Wall, D.S., Bonino, S., 2019. ‘The back-door governance of crime:
confiscating criminal assets in the UK'. Eur. J. Crim. Pol. Res. 1-21.

Chivers, H., Hargreaves, C., 2011. Forensic data recovery from the windows search
database. Digit. Invest. 7 (3—4), 114—126.

Coinbase (n.d.), ‘Does coinbase freeze accounts?’. Retrieved August 7, 2021 from
https://help.coinbase.com/en/coinbase/other-topics/other/does-coinbase-
freeze-accounts.

Courtois, N., Song, G., Castellucci, R., 2016. Speed optimizations in bitcoin key re-
covery attacks. Tatra Mount. Mathem. Publ. J. Slovak Acad. Sci. 67 (1), 55—68.

Essex Police, 2018. POLICY — proceeds of crime, number:S1150. Retrieved July 21,
2021 from. https://www.essex.police.uk/SysSiteAssets/foi-media/essex/our-
policies-and-procedures/serious-crime-directorate/s1150-policy-proceeds-of-
crime.pdf.

Foley, S., Karlsen, J.R., Putnins, TJ., 2019. Sex, drugs, and bitcoin: how much illegal
activity is financed through cryptocurrencies? Rev. Financ. Stud. 32 (5),
1798—-1853.

Forte, D., 2004. The importance of text searches in digital forensics. Netw. Secur.
2004 (4), 13—15.

Gabbatt, A, 2021. How the colonial pipeline hack is part of a growing ransomware
trend in the us. Retrieved July 21, 2021 from. https://www.theguardian.com/
technology/2021/may/19/colonial-pipeline-cyber-attack-ransom.

Hampton, N., Baig, Z.A., 2015. Ransomware: emergence of the cyber-extortion
menace. In: AISM 2015 : Proceedings of the 13th Australian Information Se-
curity Management Conference, pp. 47—56.

Hashcat, 2021. Hashcat - advanced password recovery. Retrieved August 7, 2021
from. https://hashcat.net/hashcat/.

Heutmaker, K., 2017. Multibit is deprecated - do not use. Retrieved August 7, 2021
from. https://github.com/Multibit-Legacy/multibit.

Holm, H.H., Brodtkorb, A.R., Setra, M.L.,, 2020. Gpu computing with python: per-
formance, energy efficiency and usability. Computation 8 (1), 4.

Home Office, 2018. Code of practice issued under section 47s of the proceeds of
crime act 2002. Retrieved August 1, 2021 from. https://assets.publishing.service.
gov.uk/government/uploads/system/uploads/attachment_data/file/678000/
CCS207_CCS0118810738-1_HO_POCA_COP_Search_Seizure_Detention_
Accessible.pdf.

Home Office, 2019. Asset recovery action plan. Retrieved July 21, 2021 from. https://
assets.publishing.service.gov.uk/government/uploads/system/uploads/
attachment_data/file/815900/20190709_Asset_Recovery_Action_Plan_FINAL_
Clean.pdf.

Jafari, F, Satti, R.S., 2015. Comparative analysis of digital forensic models. J. Adv.
Comput. Netw. 3 (1), 82—86.

Jourdan, P, Stavrou, E., 2019. Towards designing advanced password cracking
toolkits: optimizing the password cracking process. In: Adjunct Publication of
the 27th Conference on User Modeling, Adaptation and Personalization,
pp. 203—-208.

Kent, K., Chevalier, S., Grance, T., Dang, H., 2006. Guide to integrating forensic
techniques into incident response. NIST Spec. Publ. 10 (14), 800—886.

https://github.com/billbuchanan/
https://github.com/billbuchanan/
https://github.com/billbuchanan/
https://github.com/billbuchanan/
https://github.com/billbuchanan/
https://github.com/billbuchanan/
https://github.com/billbuchanan/
https://bulletin.cepol.europa.eu/index.php/bulletin/article/view/332/289
https://bulletin.cepol.europa.eu/index.php/bulletin/article/view/332/289
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref2
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref2
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref2
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref2
https://www.autopsy.com/
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref4
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref4
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref4
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref5
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref5
https://www.blockchain.com/charts/blocks-size
https://www.secg.org/sec2-v2.pdf
http://zbar.sourceforge.net/
http://zbar.sourceforge.net/
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref9
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref9
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref9
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref10
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref10
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref10
https://blog.chainalysis.com/reports/bitcoin-addresses
https://blog.chainalysis.com/reports/bitcoin-addresses
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref12
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref12
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref12
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref13
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref13
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref13
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref13
https://help.coinbase.com/en/coinbase/other-topics/other/does-coinbase-freeze-accounts
https://help.coinbase.com/en/coinbase/other-topics/other/does-coinbase-freeze-accounts
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref15
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref15
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref15
https://www.essex.police.uk/SysSiteAssets/foi-media/essex/our-policies-and-procedures/serious-crime-directorate/s1150-policy-proceeds-of-crime.pdf
https://www.essex.police.uk/SysSiteAssets/foi-media/essex/our-policies-and-procedures/serious-crime-directorate/s1150-policy-proceeds-of-crime.pdf
https://www.essex.police.uk/SysSiteAssets/foi-media/essex/our-policies-and-procedures/serious-crime-directorate/s1150-policy-proceeds-of-crime.pdf
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref17
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref17
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref17
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref17
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref17
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref18
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref18
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref18
https://www.theguardian.com/technology/2021/may/19/colonial-pipeline-cyber-attack-ransom
https://www.theguardian.com/technology/2021/may/19/colonial-pipeline-cyber-attack-ransom
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref20
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref20
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref20
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref20
https://hashcat.net/hashcat/
https://github.com/Multibit-Legacy/multibit
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref23
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref23
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/678000/CCS207_CCS0118810738-1_HO_POCA_COP_Search_Seizure_Detention_Accessible.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/678000/CCS207_CCS0118810738-1_HO_POCA_COP_Search_Seizure_Detention_Accessible.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/678000/CCS207_CCS0118810738-1_HO_POCA_COP_Search_Seizure_Detention_Accessible.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/678000/CCS207_CCS0118810738-1_HO_POCA_COP_Search_Seizure_Detention_Accessible.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/815900/20190709_Asset_Recovery_Action_Plan_FINAL_Clean.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/815900/20190709_Asset_Recovery_Action_Plan_FINAL_Clean.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/815900/20190709_Asset_Recovery_Action_Plan_FINAL_Clean.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/815900/20190709_Asset_Recovery_Action_Plan_FINAL_Clean.pdf
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref26
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref27
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref28
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref28
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref28

A. Holmes and W,J. Buchanan

Kent Police (n.d.), ‘Investigate first - progression opportunities’. Retrieved July 21,
2021 from https://www.kent.police.uk/police-forces/kent-police/areas/kent-
police/c/careers/police-officers/new-investigate-first/progression-
opportunities/.

Kholia, D., 2021. electrum2john.py. Retrieved August 26, 2021 from. https://github.
com/openwall/john/blob/bleeding-jumbo/run/electrum2john.py.

Ledger (n.d.), ‘Hardware wallet comparison’. Retrieved August 7, 2021 from https://
shop.ledger.com/pages/hardware-wallets-comparison.

Levi, M., 1997. Taking the profit out of crime: the UK experience. Eur. J. Crime Crim.
Law Crim. Justice 5, 228.

Microsoft, 2018. SetFileTime function (fileapi.h). Retrieved September 18, 2021
from. https://docs.microsoft.com/en-gb/windows/win32/api/fileapi/nf-fileapi-
setfiletime?redirectedfrom=MSDN.

Nakamoto, S., 2008. Bitcoin: a peer-to-peer electronic cash system. Decentral. Bus.
Rev, 21260

National Crime Agency, 2019. Defence against money laundering (DAML). Retrieved
October 6, 2021 from. https://www.nationalcrimeagency.gov.uk/who-we-are/
publications/167-defence-against-money-laundering-daml-fag-may-2018/file.

National Crime Agency, 2021. Suspicious activity reports. Retrieved October 6, 2021
from. https://www.nationalcrimeagency.gov.uk/what-we-do/crime-threats/
money-laundering-and-illicit-finance/suspicious-activity-reports.

Open Wall, 2021. John the Ripper password cracker. Retrieved August 26, 2021
from. https://www.openwall.com/john/.

Palatinus, M., Rusnak, P., Voisine, A., Bowe, S., 2013. Mnemonic code for generating
deterministic keys. Retrieved August 1, 2021 from. https://github.com/bitcoin/
bips/blob/master/bip-0039.mediawiki.

Parlika, R., Pratama, A., 2021. Use of the web api as a basis for obtaining the latest
data on bitcoin prices at 30 exchange places. In: IOP Conference Series: Mate-
rials Science and Engineering, vol. 1125. IOP Publishing, 012035.

Pearman, S., Thomas, J., Naeini, P.E., Habib, H., Bauer, L., Christin, N., Cranor, L.F,
Egelman, S., Forget, A., 2017. Let's go in for a closer look: observing passwords in
their natural habitat. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 295—310.

Povey, K., Wooler, S., Dixon, S., 2004. Joint review of asset recovery since the pro-
ceeds of crime act 2002. Retrieved July 21, 2021 from. https://www.
justiceinspectorates.gov.uk/cjji/inspections/payback-time-joint-review-of-
asset-recovery-since-the-proceeds-of-crime-act-2002/.

Proceeds of Crime Act, 2002. Retrieved July 17, 2021 from. https://www.legislation.
gov.uk/ukpga/2002/29/contents.

PyInstaller Development Team, 2021. Pylnstaller. Retrieved September 17, 2021
from. http://www.pyinstaller.org/.

Rafique, M., Khan, M., 2013. Exploring static and live digital forensics: methods,
practices and tools. Int. J. Sci. Eng. Res. 4 (10), 1048—1056.

Richardson, R., North, M.M., 2017. Ransomware: evolution, mitigation and pre-
vention. Int. Manag. Rev. 13 (1), 10.

Rothery, S., 2021. BTCrecover. Retrieved August 7, 2021 from. https://btcrecover.
readthedocs.io/en/latest/.

Ruddick, A., Yan, J., 2016. Acceleration attacks on pbkdf2: or, what is inside the
black-box of oclhashcat?. In: 10th {USENIX} Workshop on Offensive Technol-
ogies ({(WOOT} 16).

Rusnak, P., 2013. mnemonic.py. Retrieved August 1, 2021 from. https://github.com/
trezor/python-mnemonic/blob/master/src/mnemonic/mnemonic.py.

Russinovich, M., Richards, A., 2021. ProcDump v10.1. Retrieved August 15, 2021
from. https://docs.microsoft.com/en-us/sysinternals/downloads/procdump.

San Pedro, M., Servant, V., Guillemet, C., 2019. Practical side-channel attack on a
security device. In: 2019 31st International Conference on Microelectronics
(ICM). IEEE, pp. 130—133.

Scan Computers International Ltd, 2021. GeForce RTX 3090 graphics cards.
Retrieved September 15, 2021 from. https://www.scan.co.uk/shop/computer-
hardware/gpu-nvidia-gaming/nvidia-geforce-rtx-3090-graphics-cards.

Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27
(3), 379—423.

Sofer, N. (n.d.), ‘Nirsoft Utilities’. Retrieved August 15, 2021 from https://www.
nirsoft.net/.

18

Forensic Science International: Digital Investigation 44 (2023) 301486

The volatility Foundation, 2020. The volatility foundation - open source memory
forensics. Retrieved August 15, 2021 from. https://www.volatilityfoundation.
org/.

Thomas, T, Piscitelli, M., Shavrov, 1., Baggili, I., 2020. Memory foreshadow: memory
forensics of hardware cryptocurrency wallets—a tool and visualization frame-
work. Forensic Sci. Int.: Digit. Invest. 33, 301002.

Tziakouris, G., 2018. Cryptocurrencies—a forensic challenge or opportunity for law
enforcement? an interpol perspective. IEEE Secur. Priv. 16 (4), 92—94.

Van Der Horst, L., Choo, K.-K.R., Le-Khac, N.-A., 2017. Process memory investigation
of the bitcoin clients electrum and bitcoin core. IEEE Access 5, 22385—22398.

Vasek, M., Bonneau, J., Castellucci, R., Keith, C., Moore, T., 2016. The bitcoin brain
drain: examining the use and abuse of bitcoin brain wallets. In: International
Conference on Financial Cryptography and Data Security. Springer,
pp. 609—618.

Visconti, A., Bossi, S., Ragab, H., Calo, A., 2015. On the weaknesses of pbkdf2. In:
International Conference on Cryptology and Network Security. Springer,
pp. 119—-126.

Visconti, A., Mosnacek, O., Broz, M., Matyas, V., 2019. Examining pbkdf2 security
margin—case study of luks.]. Inf. Secur. Appl. 46, 296—306.

Volety, T., Saini, S., McGhin, T, Liu, C.Z., Choo, K.-K.R., 2019. Cracking bitcoin wallets:
[want what you have in the wallets. Future Generat. Comput. Syst. 91, 136—143.

Wang, C, Jan, S.T., Hu, H., Bossart, D., Wang, G., 2018. The next domino to fall:
empirical analysis of user passwords across online services. In: Proceedings of
the Eighth ACM Conference on Data and Application Security and Privacy,
pp. 196—203.

Weber, J., Kruisbergen, EW., 2019. Criminal markets: the dark web, money laun-
dering and counterstrategies-an overview of the 10th research conference on
organized crime. Trends Organ. Crime 22 (3), 346—356.

Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B., 2009. Password cracking using
probabilistic context-free grammars. In: 2009 30th IEEE Symposium on Secu-
rity and Privacy. IEEE, pp. 391—405.

Williams, J., 2012. ACPO good practice guide for digital evidence. Retrieved August
1, 2021 from. https://library.college.police.uk/docs/acpo/digital-evidence-2012.
pdf.

Wauille, P, 2012. Hierarchical deterministic wallets. Retrieved August 1, 2021 from.
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki.

Zhang, Y., Yang, B., Rogers, M., Hansen, R.A., 2015. Forensically sound retrieval and
recovery of images from gpu memory. In: International Conference on Digital
Forensics and Cyber Crime. Springer, pp. 53—66.

Zollner, S., Choo, K-KR., Le-Khac, N.-A., 2019. An automated live forensic and
postmortem analysis tool for bitcoin on windows systems. IEEE Access 7,
158250—158263.

Glossary

ACPO: Association of Chief Police Officers. 3, 4, 10, 15

API: Application Programming Interface. 4, 9, 10, 13—15, 18
ASIC: Application Specific Integrated Circuit. 9

BIP: Bitcoin Improvement Proposal. 6, 8—10, 13, 15, 17, 20
CPU: Central Processing Unit. 8, 9, 19, 20

CUDA: Compute Unified Device Architecture. 9

DAML: Defence Against Money Laundering. 1

GPU: Graphics ProcessingUnit. 1, 3, 8, 9, 12, 13, 17, 19-21
GREP: Global Regular Expression Print. 13

NCA: National Crime Agency. 1

OpenCL: Open Computing Language. 9

P2PKH: Pay to Public-key Hash. 5

PBKDF2: Password-Based Key Derivation Function Two. 6, 8, 9
POCA: Proceeds of Crime Act. 1, 21

RAM: Random Access Memory. 3, 4, 6—38, 11, 13, 16, 18, 19
SAR: Suspicious Activity Report. 1

https://www.kent.police.uk/police-forces/kent-police/areas/kent-police/c/careers/police-officers/new-investigate-first/progression-opportunities/
https://www.kent.police.uk/police-forces/kent-police/areas/kent-police/c/careers/police-officers/new-investigate-first/progression-opportunities/
https://www.kent.police.uk/police-forces/kent-police/areas/kent-police/c/careers/police-officers/new-investigate-first/progression-opportunities/
https://github.com/openwall/john/blob/bleeding-jumbo/run/electrum2john.py
https://github.com/openwall/john/blob/bleeding-jumbo/run/electrum2john.py
https://shop.ledger.com/pages/hardware-wallets-comparison
https://shop.ledger.com/pages/hardware-wallets-comparison
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref32
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref32
https://docs.microsoft.com/en-gb/windows/win32/api/fileapi/nf-fileapi-setfiletime?redirectedfrom=MSDN
https://docs.microsoft.com/en-gb/windows/win32/api/fileapi/nf-fileapi-setfiletime?redirectedfrom=MSDN
https://docs.microsoft.com/en-gb/windows/win32/api/fileapi/nf-fileapi-setfiletime?redirectedfrom=MSDN
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref34
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref34
https://www.nationalcrimeagency.gov.uk/who-we-are/publications/167-defence-against-money-laundering-daml-faq-may-2018/file
https://www.nationalcrimeagency.gov.uk/who-we-are/publications/167-defence-against-money-laundering-daml-faq-may-2018/file
https://www.nationalcrimeagency.gov.uk/what-we-do/crime-threats/money-laundering-and-illicit-finance/suspicious-activity-reports
https://www.nationalcrimeagency.gov.uk/what-we-do/crime-threats/money-laundering-and-illicit-finance/suspicious-activity-reports
https://www.openwall.com/john/
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref40
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref40
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref40
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref41
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref41
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref41
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref41
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref41
https://www.justiceinspectorates.gov.uk/cjji/inspections/payback-time-joint-review-of-asset-recovery-since-the-proceeds-of-crime-act-2002/
https://www.justiceinspectorates.gov.uk/cjji/inspections/payback-time-joint-review-of-asset-recovery-since-the-proceeds-of-crime-act-2002/
https://www.justiceinspectorates.gov.uk/cjji/inspections/payback-time-joint-review-of-asset-recovery-since-the-proceeds-of-crime-act-2002/
https://www.legislation.gov.uk/ukpga/2002/29/contents
https://www.legislation.gov.uk/ukpga/2002/29/contents
http://www.pyinstaller.org/
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref45
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref45
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref45
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref46
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref46
https://btcrecover.readthedocs.io/en/latest/
https://btcrecover.readthedocs.io/en/latest/
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref48
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref48
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref48
https://github.com/trezor/python-mnemonic/blob/master/src/mnemonic/mnemonic.py
https://github.com/trezor/python-mnemonic/blob/master/src/mnemonic/mnemonic.py
https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref51
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref51
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref51
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref51
https://www.scan.co.uk/shop/computer-hardware/gpu-nvidia-gaming/nvidia-geforce-rtx-3090-graphics-cards
https://www.scan.co.uk/shop/computer-hardware/gpu-nvidia-gaming/nvidia-geforce-rtx-3090-graphics-cards
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref53
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref53
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref53
https://www.nirsoft.net/
https://www.nirsoft.net/
https://www.volatilityfoundation.org/
https://www.volatilityfoundation.org/
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref56
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref56
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref56
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref56
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref57
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref57
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref57
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref57
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref58
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref58
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref58
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref59
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref59
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref59
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref59
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref59
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref60
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref60
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref60
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref60
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref60
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref61
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref61
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref61
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref61
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref61
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref61
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref61
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref62
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref62
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref62
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref63
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref63
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref63
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref63
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref63
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref64
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref64
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref64
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref64
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref65
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref65
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref65
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref65
https://library.college.police.uk/docs/acpo/digital-evidence-2012.pdf
https://library.college.police.uk/docs/acpo/digital-evidence-2012.pdf
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref68
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref68
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref68
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref68
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref69
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref69
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref69
http://refhub.elsevier.com/S2666-2817(22)00167-6/sref69

	A framework for live host-based Bitcoin wallet forensics and triage
	1. Introduction
	1.1. Background
	1.2. Policing, crime and cryptocurrencies
	1.3. Introduction to bitcoin
	1.4. Paper overview

	2. Literature review
	2.1. Live and offline digital forensics
	2.2. Bitcoin
	2.2.1. Hardware wallets
	2.2.2. Software wallets
	2.2.3. Hosted wallets
	2.2.4. Blockchain API
	2.2.5. Key generation
	2.2.6. Invoice addresses
	2.2.7. BIP32 deterministic wallets
	2.2.8. BIP39 recovery seeds

	2.3. Bitcoin forensics
	2.4. Wallet recovery
	2.4.1. Password attacks
	2.4.2. Password based key derivation functions
	2.4.3. Cloud compute platforms
	2.4.4. Wallet password attacks

	3. A framework for bitcoin triage and asset recovery
	3.1. Collection
	3.1.1. Prefetch files, registry and known file locations
	3.1.2. Running processes
	3.1.3. Browser artefacts
	3.1.4. File searches
	3.1.5. QR code search
	3.1.6. RAM dump

	3.2. Examination
	3.3. Analysis
	3.4. Reporting

	4. Experimental methodology
	4.1. Artefact collection
	4.2. Artefact collection evaluation
	4.3. Bitcoin wallet attack development
	4.4. Bitcoin wallet attack evaluation

	5. Results
	5.1. Collection tool electrum
	5.2. Collection tool ledger
	5.3. Electrum wallet file dictionary attack
	5.4. Ledger recovery seed dictionary attack

	6. Conclusions
	Declaration of competing interest
	Data availability
	Appendix
	Collection Tool Source Code
	Electrum Private Key Source Code
	Ledger Recovery Seed Source Code
	Hashcat Benchmarks
	Ethics

	References

