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A B S T R A C T

Personalised learning offers an alternative method to one-size-fits-all education in schools, and has seen
increasing adoption over the past several years. Personalised learning’s focus on learner-driven education
requires novel scheduling methods. In this paper we introduce the hourly, learner-driven activity planning
problem of personalised learning, and formulate scheduling methods to solve it. We present an integer linear
programming model of the problem, but this model does not generate schedules sufficiently quickly for use
in practice. To overcome this, we propose an adaptive large neighbourhood search metaheuristic to solve the
problem instead. The metaheuristic’s performance is compared against optimal solutions in a large numerical
study of 14,400 instances. These instances are representative of secondary education in the Netherlands, and
were developed from expert opinions. Solutions on average deviate only 1.6% from optimal results. Further, our
experiments numerically demonstrate the mitigating effects changes to the structure and staffing of secondary
education have on the challenges of satisfying learner instruction demands in personalised learning.
1. Introduction

Traditional methods to organise secondary education fix schedules
and learning goals on an annual or semi-annual basis. Such schedules
do not emphasise individual competencies, but rather the predictable
performance of the entire learner group. In education, this so-called
‘class-teacher model’ (Asratian and De Werra, 2002) poses problems
for learners in deviation of the average.

Personalised learning (PL) offers a shift away from this traditional
model, towards a learner-oriented perspective on education. Although a
singular definition of PL is lacking, emphasis is placed on learner-driven
instructional objectives, content, pace, and sequencing. Activities are
frequently learner-initiated, with learners receiving instruction in the
material based on learner demands, allowing learning paths and cur-
riculum pacing to be adjusted to each learner’s needs. This description
matches that of the Swedish Kunskapsskolan, which expressly aims to
facilitate PL (Eiken, 2011). The Kunskapsskolan model, introduced in
2000, is now being implemented in more than 100 schools around the
world (Kunskapsskolan, 2019). In Europe, the European Commission
regards PL as an important strategy to transform education (European
Political Strategy Centre, 2019). The individual nature of PL poses
challenges for school timetabling: dynamic learner demands prove a
poor fit for the long-term schedules that are generated by most classical
scheduling methods. PL calls for new, short-term scheduling methods
based on learner demands.
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This paper introduces the hourly learning activity planning problem
(HLAPP) of PL schools, and a metaheuristic procedure for solving the
problem. In the HLAPP, learning activities on specific learning topics
are formed every hour by assigning suitable teachers and classrooms
based on individual learner demands. In PL schools, when learner
demands for activities are known for a longer period (e.g., for a week),
a static longer-term initial learning activity plan can be used. The
HLAPP aims to supplement these longer-term initial plans at times in
which there is a need for dynamic (re)scheduling based on changes
in learner demands or in the availability of teachers and classrooms.
Based on these changes, an initial plan must be updated promptly to
reflect the new state of learner demands (see Veenstra and Vis, 2016
for scheduling under perturbances in classical timetabling). Hourly and
weekly learning activity planning does not only differ in the planning
horizon. When the length of the planning horizon becomes longer than
an hour (e.g., daily or weekly), plans should take into account con-
straints relating to the sequence of activities assigned to each learner.
For example, in Aslan et al. (2020), where a weekly activity plan is
formed, course activities must be assigned to learners sequentially. In
contrast, HLAPP instead focuses on the aspect of assigning learners to
their most preferred activities in a given hour, where the sequencing
constraints are presented implicitly by the course activities learners opt
to take. Due to the hourly aspect of HLAPP, it is particularly important
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to obtain solutions quickly, within just a few minutes. We propose an
efficient adaptive large neighbourhood search (ALNS) metaheuristic for
solving the HLAPP. ALNS approaches are successful in various schedul-
ing problems (Wen et al., 2016; Lei et al., 2018). Our metaheuristic
complements longer-term timetabling methods that provide an initial
schedule; it resolves in real-time any updates to learner demands and
other inconsistencies that occur as the initial schedule unfolds.

School timetabling problems typically studied in the literature
concentrate on traditional educational models. To the best of our
knowledge, there are only a few studies which explore learner-centred
timetabling problems. Santiago-Mozos et al. (2005) present a student-
preference based course timetabling problem in a Spanish university.
Kristiansen et al. (2011) study a student-centred elective course plan-
ning problem in Danish high schools. Kannan et al. (2012) propose
a multi-stage graph-theoretic approach to the scheduling problem of
a group of personalised learning schools in New York City. In all of
these studies, learners provide preferences or demands over a set of
courses at the beginning of a semester or a year, to be considered in
the longer-duration timetables. Both Pillay (2014) and Johnes (2015)
note the increased use of metaheuristics in high school timetabling
in recent years. Neither, however, mention ALNS as a metaheuristic
for the timetabling problem, despite several papers finding good re-
sults (Sørensen et al., 2012; Sørensen and Stidsen, 2012; Kristiansen
et al., 2013). More recently, Kiefer et al. (2017) also observe good per-
formance with an ALNS-based approach for a static course timetabling
problem.

The rest of this paper is organised as follows. Section 2 formally
describes the HLAPP. In Section 3 we provide an integer linear program
for the HLAPP, and in Section 4 we develop our metaheuristic solution
approach. We compare the performance of this approach to optimal
solutions through a series of numerical experiments based on Dutch
secondary education in Section 5. Finally, Section 6 concludes the paper
and presents suggestions for future research.

2. Problem definition

In a broad classification, PL schools form a collection of four basic
resources: a set of learners 𝑙 ∈ 𝐿 who demand learning activities,
teachers 𝑡 ∈ 𝑇 to instruct the activities, course modules 𝑚 ∈ 𝑀 that
efine the precise learning topics, and finally classrooms 𝑐 ∈ 𝐶 where
he activities are scheduled. The HLAPP produces hourly learning
ctivity plans based on learner demands by assigning these resources
o form the demanded learning activities. For this, the HLAPP uses the
ost up-to-date learner demands for modules

(

𝐷𝑙𝑚 ∈ R≥0
)

, with the
bjective of assigning each learner 𝑙 to an appropriate module 𝑚 such
hat the learners are assigned to their most demanded learning topics.
uch an assignment is modelled with the decision variable 𝑦𝑙𝑚 ∈ {0, 1}.

As a convenience, 𝐷𝑙𝑚 = 0 expresses that a learner 𝑙 is ineligible for
module 𝑚.

If a suitable teacher 𝑡 and classroom 𝑐 are available for a group
f learners, we call the assignment of the group of learners to this
lassroom–teacher pair an activity. We distinguish two types of ac-
ivities: instruction activities where a group of learners with demand
or the same module receive instruction from a qualified teacher, and
elf-study activities where learners work independently on different
odules, with a teacher present for supervision only. We assume an

nstruction activity by a qualified teacher results in better learner
emand satisfaction than self-study activities. In particular, we say
hat a self-study activity satisfies only a fraction 𝑤 (0 ≤ 𝑤 ≤ 1) of
he demand 𝐷𝑙𝑚 a learner 𝑙 has for a module 𝑚, where 𝑤 is a self-
tudy penalty parameter that schools can use to balance self-study and
nstruction assignments in the hourly plan. Our models can also easily
e extended to the case where 𝑤 varies by learner and module.

It is helpful for our modelling in later sections to track self-study
assignment through a dedicated module. We let 𝑚𝑆 ∈ 𝑀 denote this
self-study activity module. The demand for 𝑚 is given by 𝐷 =
2

𝑆 𝑙𝑚𝑆
𝑤max𝑚∈𝑀⧵𝑚𝑆
𝐷𝑙𝑚 for each learner 𝑙, since in a self-study assignment

learners are assumed to work on their most-preferred module.
The decision variables 𝑥𝑚𝑐𝑡 ∈ {0, 1} track activities of modules

𝑚 ∈ 𝑀 , classrooms 𝑐 ∈ 𝐶, and teachers 𝑡 ∈ 𝑇 . Not all teachers and
lassrooms can be paired with each module 𝑚. Whether teacher 𝑡 is
ualified for module 𝑚 is governed by the binary qualification matrix
𝑇
𝑡𝑚 ∈ {0, 1}. All teachers are qualified to supervise a self-study activity,

that is, 𝑄𝑇
𝑡𝑚𝑆

= 1 for each teacher 𝑡. Similarly, not all classrooms 𝑐
are equipped to host an activity for module 𝑚, which is tracked by the
binary qualification matrix 𝑄𝐶

𝑐𝑚 ∈ {0, 1}.
Due to the seating capacities 𝑁𝑐 ∈ N of classrooms 𝑐 ∈ 𝐶, there

is a natural upper bound on the maximum number of learners that
can attend the same activity. Additionally, the HLAPP considers two
additional bounds on the activity size: 𝛿− ∈ N specifies the minimum
number of learners needed for an activity to be scheduled, and 𝛿+ ∈
N the maximum number of learners that can attend an instruction
activity. The lower bound 𝛿− prevents very small activities from being
scheduled. Such activities might not be considered an efficient use
of classroom space or teacher hours. The upper bound allows one
to regulate maximum instruction activity sizes, in addition to the
classroom capacity. Such maximum instruction activity sizes commonly
differ between education programs. For self-study activities, 𝛿+ is not
enforced.

Table 1 summarises the notation introduced above.

3. Model

The formulation for the HLAPP is as follows. We aim to optimise
the objective

max
𝑥,𝑦

∑

𝑙∈𝐿

∑

𝑚∈𝑀
𝐷𝑙𝑚𝑦𝑙𝑚 (1)

subject to
∑

𝑙∈𝐿
𝑦𝑙𝑚 ≤

∑

𝑐∈𝐶
min

(

𝛿+, 𝑁𝑐
)
∑

𝑡∈𝑇
𝑥𝑚𝑐𝑡 ∀𝑚 ∈ 𝑀 ⧵ {𝑚𝑆} (2)

∑

𝑙∈𝐿
𝑦𝑙𝑚𝑆

≤
∑

𝑐∈𝐶
𝑁𝑐

∑

𝑡∈𝑇
𝑥𝑚𝑆 𝑐𝑡 (3)

∑

𝑙∈𝐿
𝑦𝑙𝑚 ≥ 𝛿−

∑

𝑐∈𝐶

∑

𝑡∈𝑇
𝑥𝑚𝑐𝑡 ∀𝑚 ∈ 𝑀 (4)

∑

𝑚∈𝑀
𝑦𝑙𝑚 = 1 ∀𝑙 ∈ 𝐿 (5)

∑

𝑚∈𝑀

∑

𝑐∈𝐶
𝑥𝑚𝑐𝑡 ≤ 1 ∀𝑡 ∈ 𝑇 (6)

∑

𝑚∈𝑀

∑

𝑡∈𝑇
𝑥𝑚𝑐𝑡 ≤ 1 ∀𝑐 ∈ 𝐶 (7)

∑

𝑐∈𝐶
𝑥𝑚𝑐𝑡 ≤ 𝑄𝑇

𝑡𝑚 ∀𝑡 ∈ 𝑇 , ∀𝑚 ∈ 𝑀 (8)

∑

𝑡∈𝑇
𝑥𝑚𝑐𝑡 ≤ 𝑄𝐶

𝑐𝑚 ∀𝑐 ∈ 𝐶, ∀𝑚 ∈ 𝑀 (9)

𝑦𝑙𝑚 ≤ 𝟏𝐷𝑙𝑚>0 ∀𝑙 ∈ 𝐿, ∀𝑚 ∈ 𝑀 (10)

𝑥𝑚𝑐𝑡 ∈ {0, 1} ∀𝑚 ∈ 𝑀, ∀𝑐 ∈ 𝐶, ∀𝑡 ∈ 𝑇 (11)

𝑦𝑙𝑚 ∈ {0, 1} ∀𝑙 ∈ 𝐿, ∀𝑚 ∈ 𝑀 (12)

The objective (1) is to assign learners to their most demanded modules.
Constraint (2) ensures the number of learners assigned to a module for
an instruction activity does not exceed the capacity of the assigned
classrooms. Since this involves instruction activities, the capacity of
each classroom 𝑐 is given as the minimum of 𝛿+ and 𝑁𝑐 . Constraint
(3) ensures the same for self-study activities, where 𝛿+ does not play a
role. Constraint (4) guarantees the minimum group size is met for all
activities, whether they be instruction or self-study. Constraint (5) as-
signs each learner to a module. Constraints (6) and (7) ensure teachers
and classrooms are assigned to at most one activity, respectively. Con-
straints (8) and (9) guarantee only qualified teachers and classrooms
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Table 1
Definitions of inputs and decision variables.

Notation Definition

𝑙 ∈ 𝐿 Set of learners.
𝑐 ∈ 𝐶 Set of classrooms.
𝑡 ∈ 𝑇 Set of teachers.
𝑚 ∈ 𝑀 Set of modules, including 𝑚𝑆 , the self-study module.

𝐷 ∈ R|𝐿|×|𝑀|

≥0 Demand matrix. 𝐷𝑙𝑚 specifies the demand of learner 𝑙 ∈ 𝐿 for module 𝑚 ∈ 𝑀 . This demand
is 0 when the learner is ineligible for the module.

𝑄𝑇 ∈ {0, 1}|𝑇 |×|𝑀| Teacher qualification matrix. 𝑄𝑇
𝑡𝑚 = 1 if teacher 𝑡 ∈ 𝑇 can teach module 𝑚 ∈ 𝑀 , 0 otherwise.

𝑄𝐶 ∈ {0, 1}|𝐶|×|𝑀| Classroom qualification matrix. 𝑄𝐶
𝑐𝑚 = 1 if classroom 𝑐 ∈ 𝐶 can host an activity for module

𝑚 ∈ 𝑀 , 0 otherwise.

𝑤 ∈ [0, 1] Self-study penalty to balance instruction and self-study assignments.

𝛿− ∈ Z≥0 Minimum activity size.

𝛿+ ∈ Z≥0 Maximum instruction activity size.

𝑁𝑐 ∈ N Capacity of classroom 𝑐 ∈ 𝐶.

𝑥𝑚𝑐𝑡 ∈ {0, 1} Decision that is 1 if an activity with module 𝑚 ∈ 𝑀 is scheduled in classroom 𝑐 ∈ 𝐶, taught
by teacher 𝑡 ∈ 𝑇 , 0 otherwise.

𝑦𝑙𝑚 ∈ {0, 1} Decision that is 1 if learner 𝑙 ∈ 𝐿 is assigned to module 𝑚 ∈ 𝑀 , 0 otherwise.
i
i
A
a

are assigned for each module activity. Constraint (10) ensures learners
𝑙 are assigned only to modules 𝑚 they are eligible to take, using an
ndicator that is 1 when 𝐷𝑙𝑚 > 0 and 0 otherwise. Finally, (11) and
12) are boxing constraints on the binary variables 𝑥 and 𝑦.

The decision variables 𝑥 and 𝑦 produce an implicit schedule, as they
ssign learners to modules (through 𝑦) and ensure sufficient teachers
nd classrooms are available for activities to be planned for the given
umber of learners and modules (through 𝑥). We turn this into an
xplicit schedule that can be used by schools by ‘filling’ the activities
with learners in a simple post-processing step. First, the minimum

roup size is met for all classroom–teacher pairs assigned to a module
y assigning 𝛿− learners of the learners demanding this module to
ach classroom–teacher pair. Then, all remaining module learners are
cheduled into these pairs in a second pass, respecting the upper bounds
+ and 𝑁𝑐 for each activity.

The formulation of (1)–(12) combines a simple assignment problem
nvolving the variables 𝑦 with feasibility side constraints involving
he three-dimensional variables 𝑥. These variables 𝑥 complicate the
ormulation because they turn the problem into a variant of the three-
imensional assignment problem, which is well-known to be 𝑁𝑃 -hard.
s such, we explore an alternative, metaheuristic solution strategy in
ection 4.

. Solution approach

We propose an adaptive large neighbourhood search (ALNS) meta-
euristic for our problem. Røpke and Pisinger (2006) originally intro-
uced the ALNS procedure for vehicle routing problems, and a recent,
eneral treatment is given in Pisinger and Røpke (2019). Pseudo-code
or the metaheuristic is given in Algorithm 1. In this section we describe
ow to design the building blocks of our metaheuristic for solving the
LAPP.

In general, the ALNS metaheuristic consists of several steps. The
lgorithm begins with an initial solution. This solution should be feasi-
le, but need not be very good. Then the algorithm iterates for a fixed
umber of iterations. In each iteration, it selects a destroy and repair
perator from the operator collection (𝑂𝐷 for destroy and 𝑂𝑅 for repair
perators, respectively), which transform the current solution 𝑠 into a
andidate solution 𝑠𝑐 . This candidate solution is then evaluated, and
he operator selection mechanism is updated based on the evaluation
utcome.

The rest of this section is structured as follows. We first propose an
nitial, constructive solution for the HLAPP. Then we describe a set of
estroy and repair operators tailored to our problem. We then explain
he acceptance criterion we use to determine if the candidate solution
3

hould replace the current and best solutions. If the candidate solution
s a new best solution, we apply a local search (LS) procedure to further
mprove the new solution. Finally, we describe the adaptive part of our
LNS metaheuristic, which uses updating weights to select the destroy
nd repair operators.
Algorithm 1: Adaptive large neighbourhood search.

Input : Initial feasible solution 𝑠.
Output: Best observed solution 𝑠∗.

1 𝑠∗ ∶= 𝑠, 𝜌𝐷 ∶= (1,… , 1), 𝜌𝑅 ∶= (1,… , 1).
2 repeat
3 Select destroy and repair methods 𝑑op ∈ 𝑂𝐷, 𝑟op ∈ 𝑂𝑅 using

𝜌𝐷 and 𝜌𝑅.
4 𝑠𝑐 ∶= 𝑟op(𝑑op(𝑠))
5 if 𝑠𝑐 is accepted then
6 𝑠 ∶= 𝑠𝑐

7 if 𝑠𝑐 has a better objective value than 𝑠∗ then
8 𝑠∗ ∶= Local-Search(𝑠𝑐)
9 𝑠 ∶= 𝑠∗

10 Update 𝜌𝐷 and 𝜌𝑅
11 until maximum number of iterations is exceeded
12 return 𝑠∗

Initial solution. The initial solution assigns all learners to self-study
activities. These activities are formed by selecting a random teacher
𝑡 and qualified classroom 𝑐, and inserting up to 𝑁𝑐 learners into the
resulting activity. Since all teachers are qualified to supervise self-study
activities, there is no need to test their qualification. Although it is
theoretically possible that there are insufficient qualified classrooms to
assign all learners to self-study activities, that concern seems largely
theoretical: we have never observed a situation where no feasible
initial solution existed, and it seems unlikely that such school buildings
actually exist in practice.

Destroy operators. The destroy operators each remove approximately
𝑑 > 0 learners from their current assignments.

1. Random activity removal
This operator randomly removes entire activities (recall that
an activity is an assignment of groups of learners to a single
classroom, teacher and module) from the solution. All learners
in a removed activity are marked unassigned, and the activ-
ity’s teacher and classroom are also unassigned. The procedure
repeats until at least 𝑑 learners have been removed.

2. Smallest activity removal
This operator removes small activities (in terms of number of

learners assigned) until at least 𝑑 learners have been removed
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from the solution. The motivation for this operator is that it
unassigns classrooms and teachers that are used by only a small
number of learners, potentially freeing them for use in activities
with more learners.

3. Random learner removal
This operator randomly removes a learner from an activity and
marks it as unassigned. This is only done if the learner can
feasibly be removed, that is, such that at least 𝛿− learners remain
in the activity after this learner is removed. The procedure
repeats until 𝑑 learners have been removed from their respective
activities, or until no more learners can be removed without
rendering the remaining activities infeasible.

4. Worst regret learner removal
This operator removes a set of learners from the solution that are
least met in their demands. The rationale for this operator is that
it removes learners whose scheduling decisions incur significant
regret. We compute this regret as the difference between the best
and current assignments for each learner. Formally, for learner
𝑙 ∈ 𝐿 assigned to module 𝑚 ∈ 𝑀 in the current solution, we
compute the regret as

𝑟𝑙𝑚 = max
𝑚′∈𝑀

{

𝐷𝑙𝑚′
}

−𝐷𝑙𝑚,

where larger regrets are worse.
We sort these regrets in decreasing order, and keep track of the
associated learners. A total of 𝑑 learners are selected using a
skewed distribution, which favours larger over smaller regrets.
Our distribution is (decreasing) triangular for the first 𝑑 values,
and uniformly flat thereafter, for all costs with index in {𝑑 +
1,… , |𝐿|}. A learner 𝑙 with cost at index 𝑗 ∈ {1,… , |𝐿|} then
has probability

Pr(select 𝑙) =
⎧

⎪

⎨

⎪

⎩

𝑑−𝑗+1
∑𝑑

𝑖=1 𝑖+|𝐿|−𝑗
if 𝑗 ≤ 𝑑,

1
∑𝑑

𝑖=1 𝑖+|𝐿|−𝑗
otherwise,

of being selected. Each of the selected 𝑑 learners is removed from
the solution, if this leaves behind at least 𝛿− learners in their
respective activities.

epair operators. Each repair operator re-inserts all unassigned learners
nto the solution, such that the resulting solution is feasible.

1. Break-out activity
This operator creates new activities from the unassigned learn-
ers. All such learners are grouped by the modules they demand.
The modules are ordered by decreasing aggregated learner de-
mand. For each such module, if an activity can be scheduled
(𝛿− is respected, and a qualified classroom and teacher are
available), all grouped learners are reassigned to the new activ-
ity. The operator attempts to select second-degree teachers for
second-degree modules, rather than use a first-degree teacher for
a second-degree module. Similarly, for classrooms it attempts to
select the smallest classroom where the grouped learners fit: if
this turns out to be impossible, the largest available classroom is
selected instead, and not all learners will be scheduled into this
activity.
When a new activity is scheduled, the operator also attempts to
schedule self-study learners into the new activity, if that is an
improvement over their current self-study assignments. Finally,
if no new activities can be scheduled and some learners remain
unassigned, greedy learner insert is applied to the remaining
learners.

2. Greedy learner insert
This operator randomly selects an unassigned learner and in-
serts the learner into the best feasible instruction activity. Such
an insertion is feasible only when the instruction activity has
less than min{𝛿+, 𝑁 } learners assigned, and when the selected
4

𝑐

learner demands the activity’s module. If no feasible instruction
activity exists, the learner is assigned to a self-study activity,
or a new self-study activity is created. In rare cases that too
might not be possible: when this happens, the instruction activity
with the smallest contribution to the objective value is converted
into self-study, and the learner is assigned there. The procedure
repeats until all unassigned learners have been assigned to an
activity.

cceptance criterion. A new solution 𝑠𝑐 is accepted based on a simu-
ated annealing (SA) procedure, motivated by the good results Santini
t al. (2018) find using this acceptance criterion in ALNS metaheuristics
or various problems. The SA criterion works as follows. If the new
olution 𝑠𝑐 is better than the current solution 𝑠, it is always accepted.
therwise, it is accepted with probability

r(accept 𝑠𝑐 ) = exp
{

𝑓 (𝑠𝑐 ) − 𝑓 (𝑠)
𝑇

}

,

with 𝑇 the temperature in the current iteration, and 𝑓 (⋅) the objective
value function. The temperature 𝑇 is set to the starting temperature
at the beginning of the metaheuristic procedure, and then decreased in
every iteration by multiplying it with a cooling rate parameter 𝛾 ∈ (0, 1)
until a final temperature is reached.

Local search (LS). When a new best solution is found, a reinsert learner
operator is applied to improve the solution further. This operator
first determines all improving relocation moves between activities that
learners can make, given the activities that are currently scheduled
in the solution. It then applies these moves in order of decreasing
objective gain (best moves first). If a move has been rendered infeasible
because another learner has moved previously, the move is skipped.
The operator is then called again on the improved solution, which is
repeated until no further improving moves are found.

Updating and operator selection. We apply the same roulette wheel
mechanism when determining which operator to select as outlined
in Røpke and Pisinger (2006). Assuming there are 𝑘 ∈ N operators,
each with weights 𝑧𝑖 ≥ 0, 𝑖 ∈ {1,… , 𝑘}, the probability of selecting
perator 𝑗 is given by

r(select 𝑗) =
𝑧𝑗

∑𝑘
𝑖=1 𝑧𝑖

.

We maintain two lists of such weights: one for the destroy operators
(𝜌𝐷), and one for the repair operators (𝜌𝑅). At the start of the algorithm,
these weights are all initialised to 1.

To update the weights of the destroy and repair operators, we
determine their performance based on three possible outcomes: (i)
a new best solution is found, (ii) the current solution is improved,
but the global best solution remains unchanged, and (iii) the solution
is accepted as the new one, without improving its objective. Each
outcome is assigned a factor 𝜔𝑖, 𝑖 ∈ {1,… , 3}. For a given operator 𝑗 and
observed outcome 𝑖, the weights are updated as a convex combination
of the original weight and the observed outcome, as

𝑧𝑗 ∶= 𝜃𝑧𝑗 + (1 − 𝜃)𝜔𝑖,

using a decay parameter 𝜃 ∈ [0, 1], which controls how quickly the
metaheuristic responds to changes in the effectiveness of its operators.
As we cannot differentiate the effect of the destroy and repair operators
in a single iteration, both are updated by the same factor.

5. Experiments

We turn to numerical experiments to validate our proposed meta-
heuristic. In addition, we investigate various policy decisions regarding
the number and composition of classrooms and teachers. In contrast
to traditional school timetabling (Post et al., 2012), no standardised
benchmarks yet exist for PL in the Dutch setting. As such, we formulate
our own set of benchmark cases based on expert estimates.
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Table 2
Experiment parameters and their levels.

Parameter Levels

Self-study penalty parameter (𝑤) 50%, 75%
Demand spread (𝜎) 0, 1, 2, 3
School size (# learners) 800, 1200, 1600
Teacher qualification distribution (1; 0; 0), (0.5; 0.5; 0), (0.4; 0.4; 0.2)
Instruction classrooms and capacities Regular number of classrooms of 32 capacity,

double the number of classrooms of 16 capacity.
Minimum activity size (𝛿−) 5
Maximum instruction activity size (𝛿+) 30
q
t

m
w

E

Our experimental design is given in Section 5.1. In Section 5.2, the
etaheuristic performance is compared with the model outcomes, and
olicy effects are discussed.

.1. Experimental design

Each experimental instance consists of a complete description of all
arameters required by the exact model of Section 3 and metaheuristic
f Section 4. We define classrooms, course modules, teachers and
earners to represent a six-year secondary education program in the
etherlands. With these experiments we investigate the effects of all
arameter level combinations given in Table 2 (full factorial design).
hese combinations result in a total of 144 experiments of 100 instances
ach, in line with Veenstra and Vis (2016).

We consider medium (M), large (L) and extra large (XL) school sizes
with the following characteristics:

• M: 800 learners, 80 teachers, 40 instruction, and 3 large self-study
classrooms.

• L: 1200 learners, 120 teachers, 60 instruction, and 4 large self-
study classrooms.

• XL: 1600 learners, 160 teachers, 80 instruction, and 6 large self-
study classrooms.

Each instruction classroom has a capacity of 32 learners, and a self-
study classroom a capacity of 80 learners. Finally, each school is
assumed to teach 12 courses of 48 modules each (nominally 8 per year).

Since learners under the PL paradigm may work on a number of
different modules at any time, it is likely that group sizes for instruction
activities related to a specific module are considerably smaller than
those in classical methods of educational organisation, where fixed year
groups remain common. As such, it is expected that most contempo-
rary school buildings feature classrooms with capacities that exceed
the needs for PL instruction activities. Motivated by this observation,
we investigate a policy where all instruction classrooms are split in
two. This may be achieved within existing school buildings via e.g.
he installation of partition walls. Note that the aggregated classroom
apacity is unchanged between policies.

We set 𝛿− to 5 and 𝛿+ to 30, for all experiments. These parame-
ers are based on expert insight into traditional timetabling, and not
xpected to change under the PL paradigm.

Teachers in Dutch secondary education are qualified per course ac-
ording to a first- and second-degree structure. A first-degree teacher is
llowed to teach all modules in a given course. A second-degree teacher
n the same course is barred from teaching more advanced modules,
n particular those of the upper three years of the six-year secondary
ducation program. Thus, the first 24 modules of each course can be

taught by teachers with either a first- or second-degree qualification,
while the final 24 modules require a first-degree qualification.

We stated in Section 2 that self-study assignments do not require
qualified teachers: any teacher suffices to supervise such an activity. We
now introduce a third-degree teacher qualified only to supervise self-
study, but not instruction activities. The qualification distribution may
be expressed as a triplet of (𝑝; 𝑞; 1 − 𝑝 − 𝑞) for respectively the fraction
f first-degree, second-degree, and third-degree teachers in the teacher
et 𝑇 (𝑝 + 𝑞 ≤ 1, 𝑝, 𝑞 ≥ 0). This is the notation used in Table 2. We
5

investigate three levels: (1; 0; 0), where all teachers have a first-degree
ualification, and are thus allowed to teach any and all modules within
heir courses; (0.5; 0.5; 0), which offers a mix of second- and first-degree

teachers and is commonly encountered in Dutch secondary education;
and (0.4; 0.4; 0.2), which introduces a small group of these third-degree
teachers. Investigating the effects of such a third-degree qualification is
relevant economically, as higher-qualified personnel is more expensive,
and pragmatic, as there is a considerable shortage of qualified teaching
personnel in Dutch secondary education in general (Ministerie van
Onderwijs, Cultuur en Wetenschap, 2020). We test if the quality of
schedules does not significantly alter when staff composition is varied.

Table A.3 (Appendix A) lists a representative set of courses, the
classroom qualifications required for their modules, and the total num-
ber of hours learners generally spend on each course per week in
current timetabling. These are given by expert estimate. We use the
weekly hours to assign teacher and classroom qualifications by dividing
the total number of teachers and classrooms over the courses based on
the fraction of the weekly hours spent on each course. As an example:
a course that is scheduled for 3 h in a 30 h schedule is assigned 10%
of all teachers, and 10% of all instruction classrooms are assigned
the course’s room type. Given an assignment of teachers to courses,
we then populate the qualification matrix 𝑄𝑇 based on the teacher
qualification distribution. Similarly, the instruction classroom room
type assignments are encoded in the classroom qualification matrix
𝑄𝐶 . We assume all ‘‘Regular’’ classrooms can be used for self-study,
in addition to the dedicated, large self-study classrooms.

We randomly assign a learner demand to a module in each course,
as follows. We take the nominal progression as a basis for module
selection. This is achieved by computing the midpoint module a learner
in year 𝑦𝑙 ∈ {0, 1,… , 5} should be working on, assuming they follow the
nominal learning path of 8 modules per year. We compute 𝜇𝑙 = 8𝑦𝑙 +4.
We introduce some randomness to simulate different learner aptitudes
by drawing a realisation from a  (𝜇𝑙 , 𝜎) distribution and rounding it
to the nearest integer in {1, 2,… , 48}. The 𝜎 parameter follows from
Table 2, and specifies the standard deviation of the normal distribution
(for 𝜎 = 0, we have a degenerate distribution centred at 𝜇𝑙). The
𝜎 parameter thus controls the measure of demand spread between
learners: larger values of 𝜎 result in learner demands that are much
more spread out over modules. This results, on average, in smaller
instruction activities. In practice, the values of 𝜎 presented in Table 2
result in 95% of learners from the same cohort working on course
modules that are within 5 (for 𝜎 = 1), 9 (for 𝜎 = 2), or 13 (for 𝜎 = 3)

odules from each other. For 𝜎 = 0, all learners from the same cohort
ork on the same, nominal module.

For the module so obtained a demand value is drawn from an
xp(𝛽 = 2) distribution, which is a convenient choice for a non-

negative, continuous distribution. We select 50% and 75% as two levels
for the self-study penalty 𝑤.

An overview of the parameter levels for each experiment is given in
Table A.4 (Appendix A).

5.2. Results

The model of Section 3 is implemented in Python 3.9 and solved

with Gurobi 9.1. The ALNS metaheuristic of Section 4 is implemented
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Fig. 1. Operator quality results, as box-and-whisker plots. The top row presents the performance of the complete metaheuristic, with all operators. Each following row shows the
results of taking the named operator out of the metaheuristic. The whiskers indicate the bandwidth between the minimum and maximum values.
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in Python 3.9 as well, using the open-source ALNS package. For the
model, each experiment instance was initially given eight hours of run-
time on two Intel Xeon E5 2680v3 2.5 GHz CPU cores with 32 GB of
memory. Around 88% of experiment instances solved within these time
and memory limits (12,710 out of 14,400 instances). The remaining
12% were given another attempt, with one day of run-time on two CPU
cores, and 64 GB of memory. This solved another 11% of the instances,
resulting in an overall completion rate of 99% (14,274 out of 14,400
instances). By contrast, our proposed metaheuristic has very limited
resource requirements: a single processor core with 2 GB of memory
and a run-time of just ten minutes is sufficient for all instances.

We present our parameter tuning in Section 5.2.1. In Section 5.2.2,
we compare the ALNS metaheuristic performance with optimal re-
sults on the benchmark instances generated in Section 5.1. Finally, in
Section 5.2.3, we present some practical insights, and investigate the
effects on schedule quality of splitting classrooms and introducing a
special third-degree teaching qualification for self-study activities.

5.2.1. Tuning
We generate a single tuning instance for each of the 144 exper-

iments described in Section 5.1. We tune a number of parameters
on these instances using SMAC3 (Lindauer et al., 2022), a Bayesian
optimisation package for hyperparameter optimisation. In particular,
we tune the weight factors 𝜔𝑖, the decay parameter 𝜃, and the degree
f destruction 𝑑. For these parameters we consider valid configuration
anges to be in [0, 50] for each 𝜔𝑖, [0.5, 1] for the decay parameter 𝜃, and
0% to 50% of the learners for the degree of destruction 𝑑. The SMAC3
lgorithm draws parameter configurations from these ranges, and eval-
ates them on a tuning instance given 1,000 iterations of the ALNS
etaheuristic. We perform twenty independent runs of the SMAC3

lgorithm, each lasting twelve hours. The best observed configuration
mongst these twenty independent runs is given by 𝜔 = (21.8, 13.6, 3.8),

𝜃 = 0.8, and 𝑑 = 15% (all values rounded to one decimal), and we will
se these values for our metaheuristic.

For the cooling schedule we select a starting temperature based on
he initial solution, analogous to Røpke and Pisinger (2006). The initial
emperature is set such that, in the first iteration, a solution with an
bjective up to 5% worse than the initial solution is accepted with
robability 0.5 (see Roozbeh et al., 2018 for computational details).
e set the number of iterations to 25,000, which balances solution

uality and computation times. The cooling rate is then set such that
he temperature decays to an end temperature of 1 in 25,000 iterations.
6

We also investigate operator quality using the 144 tuning instances.
First, we solve the tuning instances to optimality using the ILP formu-
lation of Section 3. This resulted in 142 optimally solved instances. We
then solve each of these 142 tuning instances with the metaheuristic,
where we take out one of the destroy, repair, or LS operators in turn.
This provides insight into the relative merit of each operator. Fig. 1
visualises the results: we present optimality gaps in Fig. 1(a), and
run-times in Fig. 1(b).

It is clear that the solution quality degrades significantly without
the break out repair operator, as evidenced from Fig. 1(a). When this
repair operator is not available, no new activities can be created, which
has a detrimental effect on the search procedure, resulting in much
worse solutions. Interestingly, the exclusion of the greedy insert repair
operator improves the solution quality on average from 2.25% to 1.65%
at the cost of 30% to 40% longer run-times, as evidenced from Fig. 1(b).
This is due to the increased application of the expensive break out
operator, which accounts for up to 40% of total run-time in the full
configuration. Removing other operators generally worsens the solution
quality. Of these other operators, the exclusion of the random activity
destroy operator worsens the solution quality the most: from gaps of
2.25% on average to 4.1%.

Since the greedy insert repair operator does not appear to be effective
and appears to worsen the solution quality, we do not use it when
evaluating the heuristic’s performance in the next section.

5.2.2. Metaheuristic performance
We compare the results of the metaheuristic on the instances gen-

erated in Section 5.1. The ILP model of Section 3 is used to solve
the experimental instances to optimality. An overview of the data at
the experiment level is given in Table B.5 (Appendix B). The heuristic
solves most instances within just a few minutes, and all instances within
ten. We compute percentage gaps as (𝑓 (𝑠∗) − 𝑓 (𝑠))∕𝑓 (𝑠), with 𝑓 (𝑠∗) the
bjective value of an optimal solution 𝑠∗, and 𝑓 (𝑠) the objective of the
etaheuristic solution 𝑠.

The metaheuristic performs very well: across all experiment in-
tances, it on average deviates only 1.6% from the optimal objective
alue. At worst, in experiment 43, the metaheuristic finds a solution
ith an objective 6.8% above the optimal objective value. By contrast,
fter ten minutes of run-time, the worst ILP gap is still 28.1% for an
nstance in experiment 93, although the ILP gaps are on average much
etter than that, at just 0.7%. That small gap is largely due to the
LP’s performance on cases without any learner demand spread (𝜎 = 0):
these solve very quickly. When 𝜎 > 0, the ILP’s performance behaves

https://github.com/N-Wouda/ALNS
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Fig. 2. Self-study learners by learner demand spread and school size.

Fig. 3. Self-study learners by self-study penalty and school size.

Fig. 4. Self-study learners by classroom split and school size.

more erratically, and the variation in optimality gaps after ten minutes
increases (the standard deviations are 1.9% for 𝜎 = 1, 2.2% for 𝜎 = 2,
and 2.6% for 𝜎 = 3). Instead, our metaheuristic offers much more
predictable performance (the standard deviations are 1.2% for 𝜎 = 1,
1.3% for 𝜎 = 2, and 1.4% for 𝜎 = 3), using much less resources and run-
time. Further, the metaheuristic does not rely on commercial software,
which reduces the complexity of its implementation in schools.

5.2.3. Practical insights
In this section we investigate the effects of various parameters

and policy choices explained in Section 5.1 on the outcomes of the
experimental instances solved by the exact model of Section 3. We use
the percentage of learners assigned to self-study activities as a measure
of schedule quality. This is a good performance indicator, since a high
percentage indicates the model had difficulty grouping learners into
groups of sufficient size for an instruction activity to be scheduled,
which would have avoided the self-study penalty.

Fig. 2 investigates the demand spread effect, based on the parameter
𝜎 introduced in Section 5.1. Even modest demand spread already causes
7

Fig. 5. Self-study learners by teacher distribution and school size.

sizeable increases in the number of learners assigned to self-study. For
the medium school size this rises from on average 82 learners (𝜎 = 0)
to 316 (𝜎 = 1), 457 (𝜎 = 2), and reaches 491 for 𝜎 = 3. Under such
a system, learners would spend anywhere between 10% to 61% of
their school day in self-study activities. The effect is similar, but less
pronounced in the larger schools, where even for 𝜎 = 3 around half or
more of the learners are assigned to instruction activities (L: 47.6%,
XL: 54.4%). This is intuitive: with the same number of modules, on
average more learners have a demand for a particular module in larger
schools, and can be scheduled in an instruction activity respecting
the minimum activity size constraint. Our observation corroborate the
findings of Aslan et al. (2020), who also report it is difficult to schedule
instruction activities when learner demands are spread over many
course modules, in particular in smaller schools. Given those outcomes
it is interesting to study in what way changes in class room sizes and
composition of the teacher group impact the amount of learners in self-
study and in what way they are a potential bottleneck in implementing
personalised learning.

Fig. 3 shows the effect of varying the self-study penalty 𝑤. The
average number of learners in self-study activities reduces from 400
to 273 as the value of self-study is decreased from 75% to 50% for
the medium school size. For larger school sizes the effect is more
pronounced, with an average reduction from 489 to 305 learners for the
L school, and 538 to 310 for the XL school. We conclude a self-study
penalty parameter offers an effective control to balance the number of
learners in self-study and instruction activities, with smaller values of
𝑤 resulting in a lower number of learners in self-study activities.

Fig. 4 reports the effect of splitting classrooms. This reduces the
number of learners assigned to self-study from, on average, 410 to 263
for the medium school size, on average from 491 to 304 for the large
school, and 536 to 313 for the extra large school. For each school size,
those numbers amount to a reduction of one third or more, which
suggests splitting existing classrooms is effective at each school size.

Splitting classrooms means that large instruction activities can no
longer be scheduled. We investigate whether this is a problem in
practice in Fig. 6, which presents probability densities of instruction
activity sizes for each demand spread level 𝜎. It is clear that in the
classical case with 𝜎 = 0, splitting classrooms does not seem beneficial:
around 73% of the instruction activities are larger than the resulting
classroom size of 16, and it would not be possible to schedule those
activities after splitting the classrooms. For 𝜎 = 1, however, the number
of instruction activities with more than sixteen learners already drops
substantially to around 20% of all instruction activities. For 𝜎 = 2 only
6% of instruction activities hold more than sixteen learners, and for
𝜎 = 3 this drops to just 2.5%. Thus, in the presence of even modest
demand spread, most activities can still be scheduled when splitting
classrooms, and we conclude that splitting classrooms is an effective
method to adapt existing school buildings for use in PL.

Fig. 5 displays the effects of our teacher qualification distribution
policies. Notice that the difference between teacher distributions of



Computers and Operations Research 151 (2023) 106089N.A. Wouda et al.
Fig. 6. Empirical densities of instruction activity sizes for instances from experiments with regular classroom sizes, for different demand spreads 𝜎. The bumps at 𝛿− = 5 and
𝛿+ = 30 of the density for 𝜎 = 0 are due to the ‘filling’ post-processing step explained in Section 3. The solid vertical line at 16 indicates the maximum size of classrooms after
splitting.
Fig. 7. Percentage of learners assigned to self-study activities as a function of 𝑞, for different demand spreads 𝜎.
(1; 0; 0) and (0.5; 0.5; 0) in terms of the number of self-study learners is
negligible, for each school size. Since about half of all learners work
on modules a second-degree teacher is qualified to teach, this was to
be expected. This also suggests there is no obvious benefit to schedule
quality when teacher qualifications are increased from a mix of first-
and second-degree teachers to one of only first-degree teachers. On the
other hand, introducing the third-degree qualification does result in a
slight increase in the number of learners assigned to self-study, from on
average 326 for (0.5; 0.5; 0) to 358 for the medium school size, from 384
to 423 for the large school, and finally from 410 to 460 for the extra large
school. The number of learners in self-study activities thus increases
modestly by around 10%, suggesting it is indeed somewhat harder
to schedule instruction activities when third-degree teachers make up
20% of the fixed-size teacher set 𝑇 . This will not be a problem if a
school hires third-degree teachers in addition to its existing first- and
second-degree teachers, thus increasing the size of the teacher set.

We next investigate the effects of varying the number of third-
degree teachers. With a slight abuse of notation, we write (1 − 𝑞; 0; 𝑞)
for the teacher qualification distribution, and vary 𝑞 in (0, 0.1,… , 0.9, 1).
For each value of 𝑞, 𝜎, and each of the school sizes, we generate ten
instances with 𝑤 = 50%, 𝛿− = 5, and 𝛿+ = 30, and regular classrooms.
This results in 132 new experiments, and a total of 1,320 new instances.
These are then solved, and the results are displayed in Fig. 7 as the
percentage of learners in self-study activities as a function of 𝑞.

Fig. 7 suggests that for 𝑞 up to one half the number of learners
in self-study are not affected. For 𝑞 > 0.5, the number of learners as-
signed to self-study activities quickly increases to 100% as insufficient
qualified teachers are available for instruction. These results hold for
8

different demand spreads 𝜎 and school sizes, and thus appear to be
rather robust.

Part of the explanation for these results is that our experimental
instances have twice as many teachers as (non-split) classrooms. In-
struction activities can then mostly be planned as long as 𝑞 remains
below 0.5, since there is likely a teacher available: the classrooms are
the bottleneck resource, not the teachers. By implication, this would
require that the remaining first- and second-degree teachers spend most
or all of their working time teaching instruction activities, which is not
realistic since teachers also have administrative tasks, in addition to
their teaching. Thus, 𝑞 should not be set too large, and values around
0.1 or 0.2 might be preferred. Nonetheless, there appears to be ample
room for third-degree teachers to supervise self-study assignments in
PL.

6. Conclusions

In this paper we explore the hourly planning problem of per-
sonalised learning, where learners have varying demands for various
course modules and need to be scheduled into feasible instruction and
self-study activities. We propose an integer linear programming formu-
lation capable of solving the problem to optimality. This formulation
often does not solve within a few minutes, limiting its practical utility
for hourly planning. An ALNS metaheuristic solution approach which
solves the problem quickly was proposed next. The metaheuristic is
validated on an extensive set of realistically-sized numerical experi-
ments in the context of Dutch secondary education, generated based
on expert insight. We find the metaheuristic performs very well, and on
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average deviates only 1.6% in objective value from optimal solutions in
our experiments. We numerically illustrate the difficulties of increased
learner demand spread, and study the effect of several changes to
the structure and staffing of secondary education to mitigate these
difficulties. We show that changes to the structure of school buildings
limits the number of self-study activities, and that a penalty term
for learner assignments to self-study activities also offers an effective
control on the number of self-study activities.

Several directions for future research are worthwhile to explore. Of
practical relevance is a future paper that explores the modifications
to the structure and staffing of existing schools that we investigated
here in more detail, and over longer scheduling horizons. Further, exact
approaches might be feasible for the HLAPP, even at scale. One way
forward in this direction could proceed by formulating novel valid
inequalities for our ILP, including symmetry breaking constraints on
the classroom–teacher assignments. Alternatively, our ILP and solution
approaches could be extended to cover longer scheduling horizons, in
particular a single day or week.
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