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Around the world, numerous companies strive to successfully facilitate digital trans-
formation. One of the key goals of many countries around the globe is the development of
its digital infrastructure [1]. Whether in the public or private sectors, achieving data and
infrastructure security is crucial to the success of any digital transformation. To guarantee
a smooth and secure digital transformation, IT system security in all enterprises requires
specific attention. People are becoming more reliant on ICT technology to do daily tasks
at home or at work as a result of the digital revolution [2]. Systems that support essen-
tial elements of this intelligent way of living are classified as critical, and their security
level is higher than that of other systems. The idea of digitally managed services, which
include security monitoring, managed network services, or the outsourcing of business
processes that are essential to the operation, dependability, and availability of critical na-
tional infrastructures, has been introduced by novel cybersecurity regulations. Following
the COVID-19 epidemic, which compelled practically all daily operations to go digital, this
shift is being emphasized more than before [3]. This unexpected transformation has an
impact on almost every industry, including critical infrastructures, education and others.
Furthermore, because of the lockdown brought on by the Coronavirus epidemic, online and
remote working are now crucial. However, because many companies were not prepared to
employ e-working technologies, several difficulties arose while attempting to digitize the
business processes, including the lack of cybersecurity preparedness [4].

There are already a variety of frameworks on the market that businesses may use to
increase the effectiveness of their cybersecurity [5]. These frameworks encourage both
individual and corporate action. As emphasized already [6,7], there is a high significance
of providing employees with training and information security awareness in order for
any security improvement program chosen by an organization to be successful and se-
cure [8]. Teaching front-end users will act as the first line of defense against attackers, thus
this should be incorporated into the risk/security assessment plan followed by all levels
of administration [9].

A system’s or infrastructure’s cybersecurity posture can be evaluated using a number
of techniques, such as vulnerability assessment [10], risk management, maturity assessment,
or posture assessment. An enterprise can create a successful information management sys-
tem, standardize cybersecurity rules, and increase the security of an organization by using
well-known cybersecurity frameworks like NIST or ISO. These frameworks can be incredi-
bly effective in aiding organizations in comprehending the dangers they face, analyzing
their vulnerabilities, and organizing their security countermeasures and mitigation plans.
To better represent the system processes and operations, those models still need to be modi-
fied for use in specialized fields like banking, healthcare, maritime [11,12], education [13]
or vital components like critical infrastructures [14] and industrial systems [15]. Many of
the proposed frameworks define a set of metrics for gauging organizational maturity or
competency in terms of a collection of widely accepted best practices, competencies, or

Computers 2022, 11, 159. https://doi.org/10.3390/computers11110159 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11110159
https://doi.org/10.3390/computers11110159
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-5360-9782
https://doi.org/10.3390/computers11110159
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11110159?type=check_update&version=2


Computers 2022, 11, 159 2 of 4

standards. To conduct a gap analysis against several security requirements, MAFs may
combine the General Data Protection Regulation (GDPR), Payment Card Industry Data
Security Standard (PCI DSS), and Data Security and Protection Toolkit (DSPT), among
others, depending on the business processes of the business sector. The metrics used can be
classified into groups and expressed in terms of performance. The measurable transitions
between levels are usually based on empirical data that have been validated in practice,
and each level in the model is more mature than the previous level. Although the existing
maturity models have managed to incorporate several directives, regulations and frame-
works, and have been tailored to specific sectors, they still fail to incorporate the reliability
aspect of a system [16,17].

On the other hand, reliability is a metric used to gauge a system’s capacity to execute
in accordance with its requirements under given temporal and operational conditions. The
possibility that the system will function properly for a set amount of time is known as
reliability [18]. The system’s ability to meet the needs of the application is dependent on
those requirements. We must have a thorough grasp of the system’s constituent parts and
how they function in order to determine the system’s reliability. Calculating the depend-
ability of each subsystem or entity, as well as their connections and inter-dependencies, is
necessary to determine a system’s reliability. The Mean Time to Failure (MTTF) and Mean
Time to Repair (MTTR), among other measures, are used to measure the system’s reliability.
For many years, extremely critical systems have been developed with a focus on reliability,
efficiency, and optimization. The robustness of a system can be supported by the use of
reliability theory in analyzing the behavior of complicated systems and creating ones that
are incredibly stable. By embracing the fundamental ideas of reliability, securability can be
used as a metric to show how well a system can function in accordance with the demands
of the services it is being supplied [19–22].

Since faults and failures are elements that affect the system’s proper operation, they
can and ought to be considered in the analysis of securability [23]. The triptych of analysis,
prediction, and optimization is where the concept of security is found. The operation
of the system under analysis could be modeled using terms like Mean Time to Attack
(MTTA), Mean Time to Compromise [24] and Mean Time to Recovery (MTTR), which are
based on current incident response and mitigation plans. Using patterns that combine
security and dependability and attack prediction using Markov models, some initial steps
in this approach have already been taken [25]. New methodologies that could define the
system requirements by incorporating security (and privacy) with reliability (and safety),
however, are still lacking and are anticipated to be introduced in the upcoming years.
These methodologies would also introduce a new research area under the umbrella term
of securability.

Another interesting concept would be to manage to integrate the reliability analysis as
a part of a maturity assessment framework, like the risk analysis element that already is
incorporated in many MAFs. The idea of including a probabilistic model of the behavior of
a part (or the whole system) in terms of tentative failures or errors could provide a better
picture of the system in analysis and a prediction of future states [21]. As an example lets
imagine that we are trying to analyze a system’s behavior (from a high level perspective)
when the also have a disaster recovery facility in place. Data and computer processing must
be replicated at an off-premises location unaffected by the incident for disaster recovery
to work. A business must restore lost data from a backup location when servers go down
due to a natural disaster, equipment malfunction, or cyberattack. In order to maintain
operations, a company should be able to move its computer processing to that distant site
as well, thus managing to continue to offer the services to the clients [26].

The main system is represented as MS and the Disaster Recovery Site as DR. Working
in an abstract level, we can represent the states of the system using a Markov chain (See
Figure 1), where

• State A is when both the system and the DR site are operating normally.
• State B is when the system is down due to a malfunction or attack.
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• State C is when the DR site is off.
• State D is when both S and DR are off.

and

• λMS is the failure rate of the system, and
• λDR is the error rate of the Disaster Recovery Site.

Figure 1. State transition rate diagram of a system.

The transition from State B or State C to State A is done with rates µMS and µDR,
respectively, representing the repair/restore rate of the system/DR. In order for the organi-
zation to be able to offer the service 24/7, the λ rates must be smaller compared to µ rates.
Using the Markov model of Figure 1, we can calculate the MTTF (Mean Time to Failure)
or MTTA (or Mean Time to Attack) and the MTTR (Mean Time to Restore, Respond or
Repair depending on the model we are using). The correct values of the these rates de-
mand a thorough analysis of the components of the systems, their inter-dependencies [27],
along with an up to date threat assessment. This analysis is demanding and must be done
in several steps following a top-down approach. The main system can be divided into
sub-systems. A state transition diagram must be created for each sub-system along with a
general model that will represent the dependencies among subsystems in the general form
r out of n (r-out of n:G). In this model, the at least r subsystems (or elements) must be in a
good state in order for the system to be operational [28]. When incorporating cybersecurity
into this reliability analysis, the calculation of the failure probability of each component
must include failures as well as possible attacks.
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