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Wireless communications are vulnerable against radio frequency (RF) interference which might be caused either intentionally or
unintentionally. A particular subset of wireless networks, Vehicular Ad-hoc NETworks (VANET), which incorporate a series of
safety-critical applications, may be a potential target of RF jamming with detrimental safety effects. To ensure secure com-
munications between entities and in order to make the network robust against this type of attacks, an accurate detection scheme
must be adopted. In this paper, we introduce a detection scheme that is based on supervised learning. %e k-nearest neighbors
(KNN) and random forest (RaFo) methods are used, including features, among which one is the metric of the variations of relative
speed (VRS) between the jammer and the receiver. VRS is estimated from the combined value of the useful and the jamming signal
at the receiver. %e KNN-VRS and RaFo-VRS classification algorithms are able to detect various cases of denial-of-service (DoS)
RF jamming attacks and differentiate those attacks from cases of interference with very high accuracy.

1. Introduction

A prevalent prediction is that fully autonomous vehicles,
capable of self-navigating in unpredictable real-world en-
vironments with little human feedback, will flood the global
market by 2025 [1]. Autonomous vehicle control imposes
very strict security requirements for the wireless commu-
nication channels [2] which are used by a fleet of vehicles [3].
Specifically, the connected vehicles use the connected
adapted cruise control (CACC) technology, in which the
following vehicles learn the lead vehicle’s dynamics via
intervehicle communication and through them they deter-
mine their movement. However, an RF jamming attack can
overload the wireless medium leading to large packet losses.
So, the platoons of vehicles can become unsafe and collisions
are possible. Moreover, with the intelligent vehicle grid
technology, each vehicle becomes a sensor platform ab-
sorbing information from the environment or from other
vehicles (also called Internet of Vehicles (IoV)). Vehicles

also feed each other or infrastructure for assisting in safe
navigation and traffic management.

Wireless communications, however, are vulnerable
against a wide range of attacks. An attack that is particularly
hard to detect in every wireless network is the RF jamming
attack [4]. An RF jamming attack reduces the availability of
the wireless medium making the successful detection of a
jamming attack may be obstructed by several conditions that
might occur in an urban environment, such as unintentional
interference caused by other wireless nodes, poor link
conditions, etc. In a VANET, RF jamming attack detection is
even more challenging due to the constant and rapid
changes in topology and the high mobility of the vehicles.
Detection becomes even harder with the presence of a va-
riety of jammers and unintentional interference sources in
the same area. Jamming may affect the communication
between vehicles (V2V communication) or the communi-
cation between vehicles and roadside units, namely, RSUs
(V2R communication).
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Over the last few years, there have been several exper-
imental approaches for jamming detection [4–7], some of
which suggest the use of machine learning techniques [6, 8].
However, only Puñal et al. [6] examine closely the adoption
of machine learning techniques for jamming detection.
None of the related works that focused onmachine learning-
based schemes has investigated the use of the speed of the
involved vehicles as an extrafeature for classifying jamming
attacks in VANETS. In this work, we show that this is a
critical feature and, more specifically, the variations of
relative speed (VRS) metric. VRS is used as a new feature for
jamming classification in realistic scenarios with a minimum
number of assumptions leading to increases in classification
accuracy.

%e proposed VRS metric, extracted at the application
layer [9, 10], is combined with classic physical layer metrics
leading to a cross-layer classification scheme. %e intuition
behind the use of the VRS is the following. In the general
case, jamming reduces the receiver signal-to-interference-
and-noise ratio (SINR), a problem that can be addressed
with classic communication algorithms. However, SINR can
be reduced due to unintentional interference, a problem very
prevalent in dense populated areas where vehicles operate.
Hence, for jamming detection, the actual reason behind the
reduction in the SINR and the packet-delivery-ratio (PDR)
has to be determined. %e proposed VRS metric reveals the
behavior of the jammer in relation to the receiver, specifi-
cally, the variations of its relative speed. An unintentional
source of interference does not exhibit a specific pattern in
its relative speed, allowing us thus to effectively differentiate
the cases where a malicious intentional source of interfer-
ence, namely, jammer, moves in ways that intend to disrupt
communication. Our extensive results indicate that the
proposed scheme can effectively differentiate the case of
jamming attack from that of an interfering wireless source.

Accurate detection is also important because these two
problems could be addressed differently; that is, in the case
of interference, an interference cancellation (IC) scheme [11]
is needed, while techniques such as spectral evasion (channel
surfing and spatial retreats) scheme can be used for jamming
attacks. With the use of more sophisticated techniques for
alleviating the problem, the proposed scheme can be used as
a first step of a process that aims at keeping alive the wireless
communication between a transmitter and receiver, by
detecting the exact cause of the wireless interference fol-
lowed by appropriate actions related to the physical location
of the nodes. Such actions could be the de-routing of the
malicious vehicle from a specific area or the rerouting of
legitimate vehicles towards different areas, free of any RF
jamming or interference. Lack of such smart detection
mechanisms could lead to incorrect de-routing decisions
that may compromise the different objectives of applications
that use intervehicle communications (IVC). For this reason,
we tested both, a typical form of RF jamming, which is the
continuous jamming, and a more smart reactive jamming.

%e main contribution of this paper is the introduction
of a proactive detection method against potential RF jam-
ming attacks with fairly good detection results. %is de-
tection system is also able to differentiate interference from

malicious RF jamming. Additionally, it is able to distinguish
the unique characteristics of each attack especially when the
proposed VRS metric is utilized among the other cross-layer
features. %e accuracy of the proposed detection method is
about or over 90% under different supervised learning
testing cases and under realistic values of the relative speed
between the jammer and the receiver. %is result is signif-
icantly improved as compared to other corresponding
methods in the literature.

One key application area for our scheme is vehicle
platoons in which an exterior or an interior attacker can
cause significant instability in the CACC of the vehicle
stream [12]. Our classifier could be used as a trustworthy
indicator of a jamming attack; thus, the control model of the
platoon could change from CACC to noncooperative
adaptive cruise control (ACC), relying solely on radar
techniques. %is control mode switch can be considered as a
mitigation technique to the impact of the attack [12]. For the
evaluation of our approach, one interference-only scenario
and two jamming attack scenarios have been designed and
tested.

%e rest of this paper is structured as follows. Section 2
provides an overview of related work in the domain of attack
detection. Section 3 describes the topology and the channel
model of our scenarios. Section 4.1 describes the method-
ology used for the estimation of the relative speed. Section
4.2 presents the proposed machine learning-based jamming
detection system. Section 5 describes the simulation setup.
Section 6 presents the experimental results and comparisons.
Finally, Section 7 summarizes our findings and concludes
our work.

2. Related Work

Several recent works have proposed machine learning-based
techniques for attack detection in vehicular ad-hoc net-
works. Puñal et al. [6] used metrics that include the noise
and channel busy ratio (CBR), packet delivery ratio (PDR),
maximum inactive time (Max IT), and received signal
strength (RSS), to detect attacks with machine learning
techniques, and examined the cases of reactive and constant
jammers.

Azogu et al. [5] proposed a new mechanism, called the
hideaway strategy, according to which all nodes should
remain silent while the network is under a jamming attack.
Bißmeyer et al. [13] proposed a detection scheme that is
based on the verification of vehicle movement data and on
the assumption that a certain space will be occupied by only
one vehicle at a certain time.

Malebary et al. [14] presented a two-phase jamming
detection method that utilized metrics such as the RSS, the
packet delivery/send ratio (PDSR), and the packet loss ratio
(PLR), as well consistency, checks to distinguish a jamming
from a no-jamming situation. In the first phase, which is the
initialization phase, the values of the RSS, the packet de-
livery/send ratio (PDSR), and packet loss ratio (PLR) are
calculated by the RSUs in a jammer-free network. Fur-
thermore, a max value for the RSS is obtained for every
PDSR value as well as two threshold values, equal to the
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maximum PDSR and to the minimum PLR, respectively. In
the second phase, when a PDSR value is lower than the
defined threshold and a PLR value is higher than the re-
spective threshold, a consistency check is conducted to
determine whether the low PDSR value is consistent with the
RSS value assigned in phase one, thus determining a jam-
ming or no-jamming situation.

%e authors in [15] proposed a data mining-based
method for real-time detection of radio jamming DoS at-
tacks in IEEE 802.11p V2V communications for platoon of
vehicles.%e state-of-the-art methods are compared with the
proposed method which allows operating under the realistic
assumption of random jitter accompanying every cooper-
ative awareness message (CAM) transmission. However,
only features from the network layer are utilized. Mokdad
et al. [16, 17] proposed a scheme for detecting a jamming
attack in vehicular ad-hoc networks that depends on the
variations of the PDR.%e approach is based on the premise
in which only packets that originate from the sender are
allowed through the cyclic redundancy check (CRC) and the
PDR is equal to the ratio of these packets and the total
number of packets received. Puñal et al., in [18], generated a
set of jammers and implemented a variety of jamming
scenarios, both indoor and outdoor, under different jam-
ming behaviors (constant, reactive, and pilot jamming) in
order to address the impact of an RF jammer in VANET
communications.

Quyoom et al. [19] presented an RF jamming attack that
consists of radio signals maliciously emitted to disrupt le-
gitimate communications. %is type of jamming is already
known to be a big threat for any type of wireless network.
With the rise in safety-critical vehicular wireless applica-
tions, this is likely to become a constraining issue for their
deployment in the future.

RoselinMary et al. [20] proposed an approach that is
based on the detection of malicious and irrelevant packets
using the number of broadcast packets per second (fre-
quency) and the velocity of the vehicle that the packets are
sent from. %is method calculates the frequency, e.g., the
number of broadcast packets per second, and the velocity
and then starts the detection algorithm. If the frequency and
the velocity are both high and above a threshold, then the
packets are malicious, whereas if they are between a low and
a high threshold value, the packet is real.

A subcategory of related papers dealt with real-time
medium access control- (MAC-) based jamming detection
method to meet the requirements of safety applications in
vehicular networks. %ese methods operate either under
realistic assumption of random jitter accompanying every
CAM transmission [21] or the decision of the detector
(monitor) depends on the number of nearby vehicles and the
number of successful transmissions and failed transmissions
[22]. %ese detection methods can more accurately distin-
guish the causes of failed transmissions such as contention
collisions, interference, and jamming attacks. In [23], the
authors proposed a method for DoS attack detection in
wireless sensor networks (WSNs). %is method is based on
the grouping of sensor nodes and the timestamp and the
PDR calculated from one node to another one. However, all

the above papers focused on simplistic jamming attacks such
as “random jamming” or “ON-OFF jamming” without
taking into account smarter jammers such as reactive
jammer. Lastly, Mowla et al. [24] proposed a federated
learning-based on-device jamming attack detection security
architecture for flying ad-hoc network (FANET) using the
RSSI and PDR features with a fairly good accuracy results in
detecting the RF jamming attack. All the aforementioned
jamming detection approaches used parameters only from
the MAC or the physical layer for training and testing
without exploiting upper layer features. Feng and Hua [25]
proposed jamming detection schemes based on a variety of
machine learning algorithms. %ey incorporate the infor-
mation from the physical layer, the MAC layer, and the
network layer (such as RSS, carrier sense time, noise, and
PDR) for training and testing. Lastly, there are recent works
in the literature that use either machine learning [26] or deep
learning for a multistage jamming detection scheme in 5G
networks: the cloud radio access network (C-RAN) [27].
However, these methods have not been tested on vehicular
networks that have special features such as high-speed
moving nodes. Only the authors, in [28], adopt a cross-layer
approach incorporating also an application layer features for
detecting and classifying different types of RF jamming
attacks in VANETs. Specifically, the IDS that was proposed
in [28] is able to differentiate a RF jamming attack from
spoofing attacks in connected autonomous vehicles (CAVs).

Sharanya and Karthikeyan [29] proposed a support vector
machine (SVM) algorithm with modified fading memory
(MFM) for classifying legitimate and malicious nodes. %e
proposed classification scheme considers the following critical
parameters to classify a node as malicious node, namely,
power ratio, signal strength, packet delivery ratio, speed of
node, number of packets generated, and transmission power.
%eir proposed system has two specific phases.

Lastly, Karagiannis and Argyriou [10] proposed an RF
jamming attack detection scheme using unsupervised
learning with clustering. %e novelty of the above paper is
that the relative speed metric is utilized between the jammer
and the receiver, along with other parameters, in order to
differentiate intentional from unintentional jamming as well
as identify the unique characteristics of each jamming attack.
However, this relative speed metric is assumed to be
available without any form of estimation.

In all the previous works that were proposed, machine-
learning based schemes, the estimated variations of the
relative speed have not been considered as a classification
feature. Our proposed system is the first one in the literature
that uses the point-to-point RF communication in order to
estimate the relative speed metric.

3. System Model

3.1. Topology. Our system topology is represented in Fig-
ure 1. In the left part (a), an interference scenario is pre-
sented, in which we assume that no jammer is present in the
network. %is scenario is important in order to be able to
evaluate the efficiency of our method in differentiating
jamming from interference. %e vehicle travels, when, at

Security and Communication Networks 3



some point, it passes through an area with significant RF
interference that is caused by a RSU. In the right part of this
figure (b), a jamming situation is presented.%e topology we
adopt for this case involves a moving vehicle Rx, which
serves as the target of the jammer, another vehicle Tx that is
the transmitter of the useful signal, and the jamming vehicle
Jx that tries to intervene in the communication between Rx

and Tx. %e travelling speed of Rx, namely, uRx
, is equal to

the travelling speed of Tx, namely, uTx
. Moreover, we assume

the presence of a static object in the area that causes mul-
tipath fading from reflections, as it is usually in urban en-
vironments. Upon spotting its target, the jammer begins
following it and starts jamming either continuously or

periodically (in order to stay undetected for as long as
possible).

3.2. Rician Fading Model. In our work, we adopt the Rician
fading model that is a channel model which includes path
loss and also Rayleigh fading [30]. When a signal is trans-
mitted, whether it is a useful signal or a jamming one, this
model adds multipath fading in addition to thermal noise. It
is assumed that a line-of-sight (LOS) ray and N − 1 nonline-
of-sight (NLOS) ray exist in the area. %e combined base-
band signal that the receiver receives from the jammer and
the transmitter is

y(t) � 
N−1

n�0
h1(t, n)xpilot[N − n]

��
P1


+ h2(t, n)s[N − n]

��
P2


   + w(t), (1)

where

h1(t, n) � Ray1(n) +
1

dist21(t)
 e

j(2π/λ) fc+fd,max cos θ1( )τ1(n)( )δ t − τ1(n)( , (2)

h2(t, n) � Ray2(n) +
1

dist22(t)
 e

j(2π/λ) fc+fd,max cos θ2( )τ2(n)( )δ t − τ2(n)( , (3)

where h1(t, n) and h2(t, n) are the Rician fading channel
models between transmitter-receiver and jammer-receiver,
respectively. %is type of channel model includes path loss
and also Rayleigh fading. Ray1(n) and Ray2(n) are complex
Gaussian variables capturing the Rayleigh fading between
transmitter-receiver and jammer-receiver, and
xpilot[N − n] and s[N − n] are the symbols that are

transmitted from the transmitter and the jammer, respec-
tively, for which the BPSK modulation is used. %is mod-
ulation scheme is preferred because it achieves lower bit
error rate providing a reliable communication between Tx

and Rx. Moreover, this modulation scheme is the most
robust in a high interference environment. In (2) and (3), fc

is the carrier frequency, fd,max is the maximum Doppler

V2R

A

Jammer

Tx

B

Static
Object

NLOS rays

LOS rays

V2V
Rx

Figure 1: Topology. In the left part (a), the interference only situation is illustrated, while in the right part (b), we have the jamming situation
with the presence of a moving jammer. Blue arrows represent the LOS V2V wireless communication. Purple arrows represent the NLOS
components that are caused by reflections from a static object.
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shift, P1 and P2 are the transmission power per symbol of the
useful and of the jamming signal, respectively, and w(t) is
the channel noise at time instant t. %e terms ds anddj

correspond to the distance between the transmitter and the
reflected object and between the jammer and the reflected
object, respectively.

%e terms r1n(t) and r2n(t) correspond to the distance
between the transmitter and the receiver and between the
jammer and the receiver. In (2) and (3), the travel distance of
the LOS rays is equal to dist1(t) � r1n (t) and dist2
(t) � r2n(t). On the contrary, the travel distance of the
NLOS rays is dist1(t) � 2ds −r1n(t) and dist2(t) � 2dj − r2n

(t), respectively. Moreover, θ1 is the incidence angle of
departure (AOD) between the vector of speed u

→
Tx

and the
signal vector of the transmitter, θ2 is the incidence AOD
between the vector of speed u

→
Jx
and the signal vector of the

jammer, (τ1 � dist1(t)/c, τ2 � dist2(t)/c) is the excess delay
time for the transmitter and jammer signal ray (that may be
caused due to ground reflection), and t is the current time
instant. For the remainder of this paper, we will use the
parameter c1 (c1 � (Ray1(n) + (1/r21n(t)))) as the trans-
mitter-receiver complex amplitude associated with the LOS
path and the parameter c2 (c2 � (Ray2(n) + (1/r22n(t)))) as
the jammer-receiver complex amplitude.%e above complex
amplitude values are known at the receiver.

3.3. System Overview. In our system model, a fixed number
of known pilot symbols are sent using the wireless IEEE
802.11p standard [14] over consecutive time instants from
the transmitter to the receiver. At the same time, the jammer
simultaneously transmits over consecutive time instants’
random jamming symbols to the receiver. Using these pilots,
the LOS channel and the N − 1 NLOS channels between the
jammer and the receiver are estimated by the receiver.

%e basic idea is to first estimate the relative speed
between the jammer and the receiver, exploiting the RF
Doppler shift. We use the variations of the estimated relative
speed as a new feature in a supervised machine learning
algorithm for RF jamming attack detection. Along with the
relative speed from the application layer, we use cross-layer
data that we obtain from the physical layer, such as the
received signal strength indicator (RSSI), the SINR, and the
PDR. Two classification algorithms are investigated, namely,
the k-nearest neighbors (KNN) and the random forest
(RaFo) algorithm, respectively.

3.4. Jamming Scenarios. We assume that the jammer con-
tinuously transmits so as to overload the wireless medium
conducting a DoS attack [31]. We investigate three different
attack scenarios, namely, interference scenario, smart attack
scenario, and constant attack scenario, each representing a
jamming attack case that could affect a VANET in real life.

In the interference scenario, we assume that no jammer
is present in the network. %is scenario is useful for eval-
uating the efficiency of our method in differentiating jam-
ming from interference. %e vehicle travels, when, at some
point, it passes through an area with significant RF inter-
ference that affects the communication with other vehicles

or the RSU. %e smart attack scenario models an intelligent
jammer behavior [32]. %is smart jammer is designed to
start transmitting in a reactive way upon sensing energy
above a certain threshold.We set the latter to −75dBm as it is
empirically determined to be an average threshold between
jammer sensitivity and false transmission detection rate
[18, 33]. Using this minimum threshold, each ongoing
transmission can be detected by the reactive jammer. %e
standard protocol wireless access in vehicular environment
(WAVE) IEEE 802.11p orthogonal frequency-division
multiplexing (OFDM) frame format consists of the OFDM
PHY layer convergence protocol (PLCP) preamble, PLCP
header, MAC header, wave short message protocol (WSMP)
header, PLCP service data unit (PSDU), tail bits, and pad
bits. In the PLCP preamble field, the preamble consists of ten
identical short training symbols and two identical long
training symbols. %e smart jammer is designed to affect the
header of the 802.11p frame sent from Tx to Rx. When the
next OFDM signal can be transmitted, there is an idle time of
Tprep � 10 μs required to set up the next transmission. If the
detected energy exceeds the threshold during a certain time
span (Treaction � 12μs), an ongoing 802.11p transmission is
assumed by the jammer. %e time interval of the detection is
the sum between the idle time Tprep and a small value as the
detection time Tdetection � 2μs to avoid reacting to sporadic
noise power peaks. In the case where the detected energy
exceeds the threshold during a certain time span, the jammer
starts its transmission for a duration of (Tduration � 64μs) in
order to jam a substantial part of the packet header to
prevent being decoded by the receiver, as illustrated in
Figure 2.

Specifically, a smart jammer starts following the victim
vehicle, while transmitting a jamming signal. When the
jammer reaches its target at a distance of about 10m, it
retreats to a different position in order to stay undetected
and transmits in a reactive way as described above. %e most
common approach in [33] is when the jammer keeps
changing its transmission power, thus achieving the same
disrupt or thwart in the communication (DoS attack)
without the need of changing its distance from the target.
With our smart attack, we aim at affecting the communi-
cation of the Tx-Rx pair, with the jammer detection being
more difficult, pointing out the importance of the proposed
VRS metric for the detection accuracy results. For that
reason, the smart jammer alters also its position with the aim
of staying undetected.

In the constant attack scenario, we study the case of a
jammer that follows the receiver while transmitting con-
stantly at a minimum power. When the jammer reaches its
target, it begins transmitting constantly with its full power
without any intention to stay undetected as in the smart
attack scenario.

4. Proposed Detection System Based on
Supervised Learning

4.1. Relative SpeedEstimation. In this section, we present the
basic idea regarding the estimation of the relative speed (Δu)

between the jammer and the victim vehicle. Based on the
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obtained values, the VRS metric is generated and then used
for classification. %e relative speed metric as defined in [10]
is

Δu � u
→

Jx
− u

→
Rx



, (4)

where u
→

Jx
and u

→
Rx

are the speed of the jammer and the
speed of the receiver, respectively.

From (3), the N multipath combined channels (h1 + h2)

are estimated, using a minimummean square error (MMSE)
estimator [9]. By exploiting the Doppler phenomenon for
modeling the LOS hLOS

2 channel between the jammer and
the receiver, we estimate the above-defined relative speed
metric, as described in [9]. Note that the jammer esti-
mation method is based on the passive communication
between Jx-Rx.

4.2. Proposed Algorithm. To make our detection method
robust, apart from using physical and network metrics that
were already used in related works, we use the VRS metric
that is derived from the application layer and can be effi-
ciently estimated from the RF signals (see Section 4.1). Our
method uses this new metric, as an extrafeature in a cross-
layer approach, along with other metrics from the physical
layer for the classification process. All these metrics are
presented in Table 1.

To generate the VRS metric for classification, we make
three fundamental assumptions [34]:

(1) When the relative speed is equal to zero and remains
unchanged, it indicates the existence of a constant
jammer that follows the victim vehicle

(2) When the relative speed is not equal to zero and
remains unchanged, it indicates the absence of a
moving jammer as the relative speed is equal to the
speed of the receiver and the speed of the jammer is
equal to zero

(3) When the relative speed is not equal to zero for a
period of time and then becomes zero while
remaining unchanged, it indicates the existence of a
jammer that begins following the target after
reaching it

%e common characteristic of these assumptions is that
the speed of the participating nonmalicious vehicles remains
unchanged and is always greater than zero.

However, in a real-life scenario, such as the one that we
study, the speed—and as a consequence the relative
speed—may not remain constant during the observation
period. In other words, if we want to accurately model an
urban environment, we have to consider the fact that the
vehicles can alter their travelling speed. To handle these real-
life situations, while still using the previously presented
assumptions, we introduce the Variations of Relative Speed
(Algorithm 1) (VRS algorithm).

�e VRS algorithm detects changes in the relative speed
of the training sample. To ensure that the relative speed in
the current time instance along with the speed from previous
as well as subsequent observations are used along with a
series of control flow statements, the algorithm is divided
into two main parts; the first considers the case in which the
relative speed value is not equal to zero and the second the
opposite case, each one with its own logical checks to de-
termine the existence of a threat.

Apart from the estimated relative speed, in order to
handle cases of speed alterations, the speed of the receiver
has to be examined as well. If Δu is not equal to zero, then
either there is no jammer present (and only interference may
potentially affect the wireless communication) or there is a
jammer that has not yet reached the receiver. To identify in
which case we are, we have to examine whether or not there
has been a variation in the relative speed compared to a
previous time instance.

Observing a variation in the relative speed, however, it is
not, by itself, a clear indicator of the presence or absence of a
jammer. For that reason, the speed of the receiver uRx is,
also, used. %e equality between the relative speed (Δu) and
the speed uRx, while Δu changes, indicates the absence of a
jammer, since the speed of the jammer uJx is equal to zero
and the speed of the receiver uRx is in fact the relative speed.
On the contrary, a difference between Δu and uRx indicates
the presence of a jammer that follows the receiver.

Table 1: Metrics that are jointly processed by the classification
algorithms.

ID Model feature Short description
1 VRS Variations of relative speed (m/sec)
2 RSSI Signal strength indicator (dBm)
3 SINR Signal quantity indicator (dB)
4 PDR Packet delivery ratio

802.11p frame transmission t

Reactive jamming against 802.11p frames t

Preamble Service PayloadPLCP
Header

MAC
Header

WSMP
Header

Reactive (12 μs, 64 μs)

Figure 2: Reactive jammer profiles in the time domain compared with a default 802.11p transmission.
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(1) M← number of observations
(2) vrs←matrix(nrow � M, ncol � 1)

(3) Δu[M]← array of estimated relative speed values
(4) uRx[M]←array of real travelling speed values
(5) k←1
(6) ifΔu[k]� Δu[k+ 1] then
(7) vrs←NA
(8) trigger←0
(9) else if Δu[k] ≠Δu[k+ 1] then
(10) vrs←A

(11) trigger←1
(12) end if
(13) k + +

(14) while(k<M) do
(15) ifΔu[k] ≠ 0 then
(16) if Δu[k] ≠Δu[k− 1] then
(17) if Δu[k]� uRx[k] then
(18) vrs←NA
(19) trigger←0
(20) else ifΔu[k] ≠ uRx[k] then
(21) vrs←A

(22) trigger←1
(23) end if
(24) else if Δu[k]�Δu[k− 1] then
(25) if Δu[k] ≠ uRx[k] then
(26) vrs←A

(27) trigger←1
(28) else if Δu[k]� uRx[k] then
(29) if (Δu[k− 1]� uRx[k− 1] &&
(30) Δu[k+ 1]� uRx[k+ 1]) then
(31) vrs←NA
(32) trigger←0
(33) else
(34) vrs←A

(35) trigger←1 end
(36) end if
(37) end if
(38) else if
(39) Δu[k]� 0 then
(40) if u[k] ≠ 0 then
(41) vrs←A

(42) trigger � 1
(43) else if uRx[k]� 0 then
(44) if Δu[k− 1]� uRx[k− 1] then
(45) if trigger� 0 then
(46) vrs←NA
(47) trigger←0
(48) else
(49) vrs←A

(50) trigger←1
(51) end if
(52) else if Δu[k− 1] ≠ uRx[k− 1] then
(53) vrs←A

(54) trigger←1
(55) end if
(56) end if
(57) end if
(58) end while
(60) return vrs

ALGORITHM 1: %e VRS algorithm
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On the contrary, if no alteration of the relative speed is
observed while the relative speed value is not equal to the
speed value, a possible presence of a jammer is registered.
%is could occur in a situation where the target vehicle
would reduce its speed due to an obstacle. Following our
assumption, the jammer would, also, decrease its travelling
speed, thus keeping the relative speed unchanged but also
different from the travelling speed of the receiver. Contrary
to the previous, if no alteration in the relative speed value is
observed (for the previous and the next measurement),
while having Δu � uRx, we conclude that a jammer is not
following the receiver.

Having examined the case where the observed relative
speed value is not equal to zero, we proceed to the opposite
case. With Δu � 0, a simplistic form of the proposed al-
gorithm (VRS algorithm) is presented, indicating the
existence of a jammer that has reached its target and
follows it closely with the same speed. A real-life envi-
ronment, however, is more complicated. If the travelling
speed uRx of the receiver is not equal to zero, while Δu � 0,
a jammer has reached the receiver and follows it while
disrupting the communications. On the contrary, if the
travelling speed is zero (while Δu � 0), there might be a
jammer present that has stopped moving (following the
behavior of the target). In that case, we have to examine
the previous observation for equality between relative
speed and travelling speed as well as the trigger value to
determine the situation.

%e variables Δu and uRx represent an array of estimated
relative speed values and real travelling speed values of the
receiver, respectively, M is the number of the available
observations upon which the algorithm operates, vrs is an
array used to store the classification result (A for attack or
NA for not attack) of the current observation, and trigger is a
binary variable which indicates the presence of a jammer
(value is equal to 1) or its absence (value is equal to 0). %e
NA and A values are two extreme and distinct values able to
differentiate the attack from the no attack cases and guide
the classification process.

4.3. Supervised Learning Algorithms. %e supervised
learning methods that are used in this work are KNN [35]
and random forests [36]. %eir choice does not affect the
efficiency of our algorithm as our proposed feature is not
constrained by the type of the supervised learning algo-
rithm that is used. %e VRS (Algorithm 1) generates the
new metric which is used as an extrafeature for
classification.

Both supervised learning techniques are very popular, with
the KNN being robust against noisy training data like the ones
obtained from a real-life urban environment and random
forests being one of the most accurate algorithms, due to the
fact that it reduces the chance of overfitting (by averaging
several trees, there is a significantly lower chance of over-
fitting). As it is previously stated, our detection scheme is
currently based on offline training that leverages the use of a
dataset of collected measurements in order to train the
classifier.

5. Simulation Setup

Figures 3(a)–3(c) illustrate the behavior of the jammer by
plotting how SINR varies in time for each of the three
scenarios, namely, interference scenario, smart attack sce-
nario, and constant attack scenario.

5.1. Supervised-Learning Testing Cases. Apart from the
scenarios that we use to evaluate the performance of the
overall system, we also created a series of test cases that are
presented in Table 2. %ey allow for a deeper exploration of
the proposed method depending on the set of observations
that are utilized for both training and testing.

%ese cases only affect how the training and testing is
performed, without any further implications in the sce-
narios.%ey are created in such a way so as to provide insight
about the importance of using the VRS metric for classifi-
cation under different circumstances [37]. Specifically, it is
evaluated for the cases that use or omit the VRS metric as an
extrametric for the classification process. For the sake of
completeness, the trained prediction model is also tested
using data that were collected under a receiver speed of
25m/s, that is, under a speed different from the 15m/s that
we trained the prediction model. We also conducted ad-
ditional experiments using data measurements from the
25m/s receiver speed range used for training. Finally, the
data are normalized prior to their use for training and
testing. By normalization, we refer to the process of changing
the data so as to belong in the 0-1 range. It should be noted
that, in all the other cases than those declared, the data are
not normalized prior to their use for training and testing.

5.2. VANET Simulation Assumptions. Regarding the details
of our simulation setup, the speed of the vehicles involved in
the legitimate communication (uTx,Rx

), the initial distance
between the jammer and the pair of Rx-Tx(distinitial), the
distance that separates the receiver from the transmitter
throughout the course of the simulation (distTx,Rx

) as well as
the power of all the transmitted signals (PTx,Jx

), and the
reference distance (distref ), with which the path loss com-
ponent is estimated, are presented in Table 3.

%e power of all transmitted signals is measured in
milliwatts (mW) and is converted in the dBm scale prior to
using them in the algorithm. Each signal that is transmitted
from both the jammer and the transmitter consists of
streams that are 500 bits long. In all scenarios, 1000 packets
are transmitted from the transmitter to the receiver. Using a
time sample of 0.1 sec, we simulate the system for 100
seconds and obtain 1000 measurements.

We used Veins that combines the Simulation of Urban
Mobility (SUMO) and the OMNET++/VEINS [38]. SUMO
is adopted as our traffic simulator and OMNET++ is used to
simulate the wireless communication. Furthermore, the
GEMV (a geometry-based efficient propagation model for
V2V) [39] tool was integrated into the VEINS network
simulator for a more realistic simulation of the PHY layer
[32]. For describing the modeled area, GEMV takes the map
of a real area as an input and uses the outlines of vehicles,
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buildings, and foliage. Based on the outlines of the objects, it
forms R-trees. R-tree is a tree data structure in which objects
in the field are bound by rectangles and are hierarchically
structured based on their location in space. Hence, GEMV
employs a simple geometry-based small-scale signal varia-
tion model and calculates the additional stochastic signal
variation and the number of diffracted and reflected rays
based on the information about the surrounding objects.
Last, to set up and test our classification algorithms for the
RF jamming attacks detection on the previously obtained
data, we chose to use the programming language R [40]. Part
of the Erlangen city (see the evaluation setup in [41]) is used
for conducting the simulations.

6. Evaluation

6.1. Detection System Evaluation Setup. To underline the
significance of our proposed system, we implement and
analyze the performance of our model under the different

cases presented previously. In particular, for each supervised
learning testing case presented in Table 2, we execute a
simulation which lasts for 300 seconds and is equally split in
the three jamming scenarios discussed in Section 3.4 so that
the first 100 sec represent the smart attack scenario, the next
100 sec represent the interference scenario, and the last
100 sec represent the constant attack scenario. All the above
scenarios are independent from each other and are run at
consecutive time instants.

To avoid testing with “previously seen data,” thus leading
to biased classification results, we have to ensure that the
training and testing sets are completely separated. So, prior
to presenting the classification results, we have to define the
size of the training and testing sets as well as the total
number of observations used, so as to make them more
interpretable. %e overall simulation utilizes a set of 3000
observations equally split into the three attack scenarios
examined. To avoid overfitting (overfitting occurs when the
classifier tends to memorize the training set and thus

Table 2: %e classification process under different testing cases.

Cases VRS metric utilization
(m/s)

Normalization
(m/s)

Rx speed for training
(m/s)

Rx speed for testing
(m/s)

Same_KNN-VRS and Same_RaFo-VRS ✓ 15 15
Same_KNN and Same_RaFo 15 15
Different_KNN-VRS and Different_RaFo-VRS ✓ 15 25
Different_KNN and Different_RaFo 15 25
Same_KNN-VRS_25m/s and Same_RaFo-
VRS_25m/s ✓ 25 15 or 25

Same_KNN_25m/s and Same_RaFo_25m/s 25 15 or 25
Norm_KNN-VRS and Norm_RaFo-VRS ✓ ✓ 15 15
Norm_KNN and Norm_RaFo ✓ 15 15
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Figure 3: SINR vs. time for an interference scenario and each of the two attack scenarios. (a) SINR vs. time for the Rician fadingmodel in the
interference scenario, (b) SINR vs. time for the Rician fading model in the smart Attack Scenario, and (c) SINR vs. time for the Rician fading
model in the constant attack scenario.
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generalize poorly when facing previously unseen data), only
30% of the total number of the observations are used for
training, while the remaining 70% are used for testing.

Based on the ratio above, the number of the observations
in the training set is 941 (that is, 293 observations from the
interference scenario, 319 from the smart attack scenario,
and 329 from the constant attack scenario), whereas the
number of the observations in the testing set is 2059 (that is,
703 observations from the interference scenario, 685 from
the smart attack scenario, and 671 from the constant attack
scenario), randomly chosen but almost equally split among
the three scenarios in both cases.

To present the classification results, the confusion matrix
is used, where the rows represent classification output and
the columns represent the ground truth. To evaluate the
performance of our detection system in the various scenarios
previously described, we use the accuracy of the prediction
model. Accuracy is a measure that is obtained from the
confusion matrix and is equal to the ratio of all the correctly
predicted labels over all the predictions. %e correctly pre-
dicted labels are the labels of the main diagonal of the
confusion matrix. As an example of the above-defined
confusion matrix for the accuracy calculation of our pre-
diction model for the Same_KNN case compared to the
Same_KNN-VRS case, we present the subsequent confusion
matrices for the KNN algorithm (see Table 4).

6.2. Same_KNN-VRSvs. Same_KNNandSame_RaFo-VRSvs.
Same_RaFo Case Classification Results. Starting from the
first case, the accuracy of the prediction model achieved
while using the VRS metric as an extrafeature in the clas-
sification process is 82.27% for the KNN and 80.04% for the
random forest algorithm.

On the contrary, when omitting the VRS metric, we
observe not only a drop in the classification accuracy but also
a high confusion between interference and jamming cases.
%e accuracy of the prediction model is now equal to 79.16%
and 76.54% for the KNN and the random forest algorithms,
respectively, so the impact of the VRS metric is evident.
Apart from the fact that it increases the success rate of the
classification (compared to the cases where the VRSmetric is
omitted) it ensures, almost perfectly, the differentiation
between the cases of intentional and unintentional jamming
(see Table 5).

6.3. Different_KNN-VRS vs. Different_KNN and
Different_RaFo-VRS vs.Different_RaFoCaseClassification
Results. As stated previously, these cases examine the sit-
uation in which training and testing are based on obser-
vations that were collected under different speeds. %e
accuracy achieved while using the VRS metric as an
extrafeature in the classification process is equal to 66.97%
for KNN and 69.84% for random forest, respectively.

On the contrary, when the VRS metric is not used, the
accuracy of the prediction model is reduced to 56% for the
KNN and to 55.37% for the random forest algorithm.
Figures 4 and 5 provide insight to the results for the random
forest, respectively.

%e color of the figures indicates the class in which each
observation is predicted to belong to. %e smart attack
scenario is represented by the red and lasts for the first 100
seconds, the interference scenario is represented by the black
lasts for the time interval 100–200 seconds, and the constant
attack scenario is represented by the green color and lasts for
the time time interval between 200 and 300 seconds(as
described in Section 5.2). In Figure 4, we explain in more
detail the detection process for each scenario:

Table 4: Confusion matrix for the Same_KNN case.

Scenario Interference Smart attack Constant attack
Interference 682 38 33
Smart attack 17 470 160
Constant attack 4 177 478

Table 3: Simulation parameters.

Evaluation parameters in Veins simulator Values
uTx,Rx

15m/sec or 25m/sec
distTx,Rx

35m
distinitial 200m
PTx,Jx

100mW
Minimum sensitivity (Pth) −85 dBm
Transmission range 130–300 meters
fc 5.9GHz
Doppler shift for Δu � 120km/h ±655.5Hz
distref 100m
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Time
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Figure 4: SINR vs. time for the Different_RaFo-VRS case, with the
smart attack scenario represented by the red, the interference
scenario represented by the black, and the constant attack scenario
represented by the green color.
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Figure 5: SINR vs. time for the Different_RaFo case, with the smart
attack scenario represented by the red, the interference scenario
represented by the black, and the constant attack scenario repre-
sented by the green color.
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(1) %e appearance of black or green colors in the smart
attack scenario (0–100 seconds) indicates the mis-
classification of this scenario with the interference
and the constant attack scenarios, respectively. On
the contrary, the points with red color indicate a
correct detection of this attack scenario.

(2) %e points with green or red colors in the inter-
ference scenario (100–200 seconds) indicate the
misclassification of this scenario with the constant
attack scenario and the smart attack scenario, re-
spectively. %e black color indicates a correctly de-
tected of the interference scenario.

(3) Lastly, for the constant attack scenario during the
time interval between (200–300 seconds), the pres-
ence of points with black or red colors indicates the
misclassification with the interference and the smart
attack scenarios, respectively. On the contrary, the
appearance of the green color indicates a proper
detection of the sonstant attack scenario.

Based on the classification results presented above, we can
reach an important conclusion. When testing the prediction
model with observations from a different speed—compared
to the one used in training—we observe an overall reduction
in accuracy. Nevertheless, the use of the VRS metric signif-
icantly increases prediction accuracy (in both supervised
algorithms examined in this paper), while also achieving a
clear separation between interference and jamming.

6.4. Norm_KNN-VRS vs. Norm_KNN and Norm_RaFo-VRS
vs. Norm_RaFo Case Classification Results. In these two
cases, we try to determine whether normalizing the data
prior to using them in training and testing affects the
classification results, with and without the use of the VRS
metric. %e accuracy achieved while using the VRS metric is
equal to 81.25% for the KNN algorithm and 80.09% for the
random forest, with its omission leading to an accuracy
equal to 78.1% and 76.4%, respectively. Once more, the use
of the VRS metric in the classification process leads to a
upturn in the accuracy of the prediction model. In addition
to that, if we compare the previous classification results of
the Same_KNN and Same_RaFo cases with the respective
ones that derive when no normalization is applied to the data
prior to their use, we observe that there is no significant
increase in accuracy results. %us, we conclude that a
normalization of the measurements is not necessary. It
should be noted that in all the previous and the next pre-
sented classification results, the data are not normalized
prior to their use for training and testing.

6.5. Same_KNN-VRS_25m/s vs. Same_KNN_25m/s and
Same_RaFo-VRS_25m/s vs. Same_RaFo_25m/s Case
Classification Results. As already stated, our RF jamming
attack detection system is based on offline training, using a
dataset of measurements collected under a speed of 15m/s so
as to train the classifier prior to its use for testing. For the
sake of completeness, we examine the Same_KNN-VRS and
Same_RaFo-VRS and Same_KNN and Same_RaFo cases

presented previously using the data measurements from a
higher speed at about 25m/s speed range for training.

For the Same_KNN-VRS_25m/s and Same_RaFo-
VRS_25m/s cases, the accuracy of the prediction model
achieved is equal to 94.46% for the KNN and 94.61% for the
random forest algorithm. For the Same_KNN_25m/s and
Same_RaFo_25m/s cases, on the contrary, the calculated
accuracy is equal to 88.68% for the KNN and 89.22% for the
random forest algorithm, respectively.

From the classification results presented above, an im-
portant observation can be made. %ere is an increase in
classification accuracy when the training is done using data
from a higher speed. %e higher classification accuracy
comes from the fact that the increase in speed adversely
influences the effects of jamming. More concretely, in the
constant attack scenario, the jammer overtakes the sender-
receiver pair faster, in the interference scenario, the sender-
receiver pair remains in the jamming area for a shorter
period of time, and in the smart attack scenario, the jammer
reaches its target at a higher speed, thus the gradual effect of
the jamming observed at lower speeds is greatly reduced. All
the above lead to a significant increase in the quality of the
measurements obtained, hence leading to higher classifi-
cation accuracy as well as to better distinction between the
different types of jammers affecting the communication, as
seen in Figure 6, for the KNN algorithm.

We also investigate more thoroughly the effect of the
relative speed metric in the detection probability of a RF
jamming attack in a multiclass environment with three
classes (class of reactive jamming attack, class of continuous
jamming attack, and class of interference). In Figure 7, we
present the detection probabilities of the proposed model
using the KNN algorithm for a range of relative speed Δu
[0, 25]m/s. We observe that, in the medium range of Δu
values, we achieve a perfect RF jamming detection result.
%is result is attributed to the specific characteristics of each
type RF jamming attack. Specifically, the continuous jammer
transmits continuously deteriorating the wireless commu-
nication between the transmitter-receiver. On the contrary,
the reactive jammer starts its activity only when it retreats to
a safe position (close to the receiver). So, for a small range of
Δu values, both types of RF jamming attackers (reactive and
continuous) have started their attack leading to several
misclassification errors between the two corresponding
classes. Finally, at higher Δu values over 20m/s, we have
some misclassification errors between the classes of reactive
jamming and interference because the relative speed value is
approximately equal to the speed of the receiver (25m/s)
when there is no attacker in the area but only a static RSU
that interferes the wireless communication between the
transmitter-receiver.

In Table 6, we summarize the classification accuracy,
exploiting the usage of the proposed VRS metric as an extra
feature, achieved while training with measurements from a
speed of 15m/s and a speed of 25m/s, respectively.

6.6. Result Summary and Comparison with State of the Art.
Figure 8 summarizes classification accuracy percentages that
are presented above. %ese are achieved by both the KNN

Security and Communication Networks 11



and the random forest algorithms when based only on the
features previously used in the literature for jamming attack
detection [26], compared to the proposed approaches, KNN-
VRS and RaFo-VRS, that use the VRS metric. %e VRS
metric increases the accuracy of the classifier and ensures
almost perfect differentiation between cases of intentional
and unintentional jamming. When using the VRS metric
while testing with data from the same speed, there is an

increase up to about 4% in the classification accuracy. When
testing with data of a different speed, the increase in accuracy
is even greater up to about 14%.

We also compare the accuracy of the proposed scheme
versus recent state-of-the-art work. We compare RF jam-
ming detection methods with the same complexity and
without using extrahardware (e.g., multiple antennas at the
receiver [42]). For collecting the used jamming detection
metrics, we assume only a completely passive scheme that is
based on RF communication between the transmitter-
receiver under the presence of a jammer in the area.

As we explained earlier, the authors in [24] proposed a
federated learning-based on-device jamming attack detec-
tion security architecture for FANET. In order to compare
our proposed RF jamming detection method with this
method (Federated-Nischat-2019), we preprocess the sim-
ulated datasets to derive two unbalanced subdatasets. %e
first subdataset contains a higher percentage of nonjamming
instances (80%) and a lower percentage of jamming in-
stances (20%). We show in Figure 9 that the method
(Federated-Nischat-2019) achieves an accuracy of 89.73%
under the ns-3 simulated FANETdataset. %is performance
is better only for the cases where VRS metric is not used.

We also compare the KNN and the RaFo algorithm for
reactive and constant jamming attack detection using the
cross-layer combination of metrics proposed by Feng et al.
named (feng2018-KNN) and (feng2018-RaFo). We observe
in Figure 10 that when the receiver moves at low speeds of
15m/s, we have the same accuracy. When the receiver

Table 5: Confusion matrix for the Same_KNN-VRS case.

Scenario Interference Smart attack Constant attack
Interference 703 0 0
Smart attack 0 494 174
Constant attack 0 191 497
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Figure 6: Plot using the 25m/s speed for testing and training for the Same KNN 25m/s case; with the smart attack scenario represented by
the red, the interference scenario represented by the black, and the constant attack scenario represented by the green color.
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Table 6: Classification accuracy percentages while training lower
and higher speed measurements, respectively

Train with 15m/s
(%)

Train with 25m/s
(%)

Test with 15m/s
(KNN) 82.27 74.31

Test with 15m/s
(RaFo) 80.04 74.41

Test with 25m/s
(KNN) 66.97 94.46

Test with 25m/s
(RaFo) 69.84 94.61
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increases its speed and it moves with a speed of 25m/s, our
proposed jamming detection scheme using the VRS metric
achieves a much better accuracy (an increase of about 13%)
than the competing methods.

Finally, we compare with the work of Lyamin et al.
[21], where the authors use historical observation of
events in the V2V channel for the jamming detection. %e
method is evaluated for two jamming models: random and
ON-OFF jamming. To represent random jamming in our
model, the reactive jammer transmits its jamming signal
randomly and independently with a probability p � 0.7

when it is triggered. When comparing the jamming de-
tection results of the method [21] with the proposed
jamming detection method for a random jammer with
p � 0.7, we have a probability of attack detection (true
positive rate) at about 0.95 for the random reactive
jammer, while the method in [21] achieves a probability of
attack detection at about 0.85 for the same type of jam-
ming. Additionally, a priori knowledge about a platoon is
employed for this method to achieve better detection
results. Only when the number of receivers increases to 20
in the form of a platoon of vehicles (also increasing the
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received observations for the training phase), the method
in [21] manages to reach the probability of attack de-
tection that we achieve using our proposed jamming
detection method with a single receiver.

From this set of comparative results, the effect of the
proposed VRS metric in RF jamming classification is clear.
Especially, when the receiver increases its speed to a speed of
25m/s, the accuracy of the proposed method increases by
over 90%. %is performance is much higher than the other
corresponding methods in the literature.

7. Conclusions

In this paper, we presented a method for detecting a specific
type of DoS attack, namely, RF jamming, based on a cross-
layer set of features and supervised machine learning. We
introduced a novel metric from the application layer,
namely, the variations of the relative speed between the
jammer and the target. %e relative speed is passively esti-
mated from the combined value of the desired and the
jamming signal at the target vehicle combined with metrics
from the network and physical layer. To evaluate the sig-
nificance of the proposed metric and its estimation algo-
rithm, we implemented three different scenarios: two with a
jammer and one with interference only.

With our work, we introduced a proactive approach
against potential RF jamming attacks which is able to dif-
ferentiate interference from malicious RF jamming. Addi-
tionally, it is able to distinguish the unique characteristics of
each attack, especially when the offline training is conducted
with a higher speed than 15m/s. %rough our evaluation
results, we were able to highlight the vital role of the relative
speed and its variations, in addition to other metrics ob-
tained from the physical layer and in jamming detection and
unintentional jamming cases differentiation, as well as in the
overall increase in the prediction accuracy.

As part of our future work, we plan to investigate the
efficiency of our idea in complex vehicular networks with a

large number of communicating nodes and several attackers.
%e target of this classification process will be the charac-
terization of the behavior of a node as malicious or as regular
node, mainly using the proposed VRS metric. %e classifi-
cation results can be collected and managed from a Trusted
Central Authority (TCA) in an area with V2X communi-
cation. Having this information, the TCA could reroute
vehicles towards more jamming friendly areas.
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