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1 INTRODUCTION

Due to advancements in network communication, the Internet of Things (IoT), telemedicine, online biometric systems,
and social media, a large amount of digital images are transmitted over the Internet. The information contained in these
digital images can be illegally intercepted and tampered during the transmission or storage process. Hence, there is
an indispensable need to secure the transmission and storage of digital images, and in this context, image encryption
plays a vital role [24]. Various encryption schemes, such as, DES, 3DES, AES, RSA, etc., are most commonly used for
securing digital data over open networks. But it is pertinent to mention here that the data pattern in images is entirely
different from the text data. Images contain a large number of pixels , and they have a high degree of correlation
between their adjacent pixels [25]. Due to this reason, securing image data is more complex than the text data and
hence, the aforementioned text-based encryption schemes are often unsuitable for image encryption [39]. Moreover,
for the high definition (HD) colored images, these conventional encryption schemes involve extra operations, which
result in increased computational time and power. Consequently, these schemes exhibit low encryption and decryption
speeds that may lead to significant delays in real-time communication. In recent years, there has been a surge in the
number of image encryption schemes proposed in the literature. The application of chaos theory and DNA sequencing
in image encryption has proved to be quite effective and efficient in securing digital images [10, 36, 45, 51]. Therefore,
the main motivation of this paper was to develop a chaos and DNA-based image encryption scheme, specifically for
HD-colored images that should not only be highly secure but should also address the latency issues faced during the
encryption and transmission processes.

The chaotic maps possess several interesting properties such as pseudo-randomness, unpredictability, mixing
(ergodicity), and high sensitivity due to change in control parameters and initial conditions [10, 25, 30, 51]. In addition to
these properties, chaotic maps also have reducedmathematical complexity and a higher level of security. DNA computing,
on the other hand, involves utilization of DNA coding sequences for carrying and securing digital information [28].
These coding sequences are generated by using four types of DNA nucleotide bases, i.e., A, C, G and T. DNA computing
performs exceptionally well when dealing with large data and parallelism, resulting in reduced computational power
during the transmission of digital information. DNA coding in conjunction with chaotic maps has opened a new
paradigm of image encryption [31, 48, 49] and hence, needs to be properly explored to propose more secure and highly
efficient encryption schemes.

As described previously, the image data is quite large as compared to text data. Therefore, storing and transmitting such
a large amount of data (especially HD colored images) is quite challenging. In addition to increasing the computational
complexity of the encryption algorithm, it also increases the bandwidth requirement of the transmission channel as
well. This makes it difficult to apply complex image encryption algorithms on large-size colored images in real-time. For
better encryption and decryption speeds, recent literature reveals that the deep neural networks based autoencoders
[22] exhibit promising results. Such schemes are based on the encoder-decoder paradigm for dimensionality reduction,
which helps to decrease the computational complexity of the encryption algorithm. Autoencoders solve the latency
issues by first reducing the dimension of the input colour image and then applying the encryption algorithm in the
reduced dimension space. Due to less number of pixels in the reduced dimension space, it becomes comparatively
easy to practically implement complex image encryption algorithms on edge devices. Thus, the motivation to use an
autoencoder-based encryption scheme is to achieve real-time secure image transmission/storage without exerting a
burden on the available bandwidth, especially on edge devices in IoT [26].
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Fig. 2. Basic Workflow of Image Decryption.

Various DNA-based encryption schemes can be found in the literature that exhibits slow encryption and decryption
schemes. Despite being secure enough, these schemes cannot be implemented in real-time on today’s small-size IoT
devices. For instance, the first method to use DNA computing for data encryption was the Hiding Messages in Microdots
[13] scheme, but it was extremely slow. Even some of the recent and novel techniques, such as the Public Key System
by using DNA (PKSDNA) [43], the Chaos-Based Image Encryption (CBIE) [17], the DNA-based Reversible Data Hiding
Scheme (RDHS) [44], and the Double-Layer Data Hiding scheme (DLDH) [47] pose latency issues. These schemes take
a lot of time for encrypting and decrypting multimedia files, and also while generating or retrieve secret keys.

To solve the aforementioned problems of existing schemes, this paper presents a new autoencoder based image
encryption scheme for large size colored images. The proposed scheme consists of twomodules; 1) A deep learning-based
convolutional autoencoder for dimensionality reduction module, and 2) A Chaos and DNA-based image encryption
module.The basic workflow of the proposed image encryption and decryption modules is given in Fig. 1 and Fig. 2,
respectively. A colour image having a dimension of N×M×3 is first compressed to a lower dimension P×Q using the
proposed convolutional autoencoder model. Encryption is performed in the compressed domain. The encrypted image
is then decrypted using the decryption module to retrieve back the plaintext image of dimension 𝑃 ×𝑄 . This decrypted
image is then given to the decoder to get back the original colour image of dimension 𝑁 ×𝑀 × 3. It is pertinent to
mention that the proposed autoencoder is designed to reconstruct the original colour image with negligible perceptual
distortion as evident from the results presented in the paper.

Following are the important contributions of this work:
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• A convolution autoencoder is proposed to reduce the dimension of the input colour image.
• A new image encryption technique is proposed that uses DNA, chaos, and multiple s-boxes to effectively

encrypt and decrypt images in lower dimension space.
• Due to the utilization of multi-chaotic maps, the proposed scheme has a significantly higher keyspace when

compared with other schemes.

The remaining sections are structured as follows. Recent literature covering image encryption schemes that use
chaos, chaos+DNA, and deep learning is presented in Section 2. Important details related to the chaotic maps used
in this paper are discussed in Section 3. In Section 4, the proposed image encryption scheme is presented. Section 5
contains experimental results depicting the quality of reconstructed images and the encryption algorithm, thus proving
the effectiveness of the proposed scheme. Finally, Section 6 presents conclusion and future directions.

2 RELATEDWORK

In the literature, several encryption schemes for images employing chaotic maps have been proposed [32, 33, 37].
Chaotic maps are used due to their inherent properties, such as unpredictability, pseudo-randomness, high sensitivity
for control parameters and initial conditions, and mainly ergodicity. For example, various architectures using chaos
to permute and diffuse digital images are presented in [20]. Similarly for video encryption, a chaos-based scheme is
presented in [2] that uses the inherent property of the HEVC standard to achieve improved security and exhibit secure
real-time video encryption with an optimal bit rate. In addition, chaos with multi-dimensional feature vectors has
also been utilized in improving the security of steganographic approaches [7]. The results show that irrespective of
the size of the message, the presented steganalysis system can effectively detect hidden information. Furthermore,
a neural network based on chaos having key dependent hash functions is presented in [1]. Pseudo-chaotic samples
have been generated that are fed into the neural structure as parameter values. The presented architecture helps in
generating hash functions having good statistical features along with high message and key sensitivity. Moreover, the
effectiveness of chaotic functions against cryptanalysis has been analyzed in [14]. For this purpose, various s-boxes
have been designed by using two heuristic methods. The designed s-boxes exhibit exceptional results when compared
to other s-boxes available in the literature.

Moreover, in the last few years, chaos-based encryption has been utilized in conjunction with DNA computing
to devise new image encryption schemes [10, 51, 52]. DNA computing is the application of various biological and
algebraic processes applied to DNA sequences, e.g., addition, XOR and subtraction operations on DNA coded sequences.
These operations are recently being preferred to be used with chaos-based encryption schemes, for example, an image
encryption algorithm based on a compound chaotic map and varying DNA coding is presented in [50]. The proposed
algorithm executes effectively in terms of security performance and can be compared with already available chaos-based
encryption schemes. Similarly, another image encryption algorithm is presented in [46] that combines a 1D logistic map,
DNA coding, and multi-objective particle swarm optimization (MOPSO). The presented results exhibit resistance of the
proposed algorithm against several attacks along with excellent entropy and correlation-coefficient of the ciphertext.
Apart from 1D chaotic systems, a 3D chaotic system has also been used with DNA coding in [23]. The presented
encryption scheme utilizes all 24 rules of DNA coding with 16 joint operations that make this scheme resistant to
several attacks and an excellent scheme for securing digital images. Furthermore, DNA encryption and chaos have
also been utilized for the encryption of coloured images [9]. This scheme utilizes permutation by shuffling the RGB
components of the input colour image. The permuted components are then recombined by DNA encoding, and finally,
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diffusion is used on the encoded DNA matrix. DNA encryption schemes are also being preferred for cloud environments
[34], [35], [41]. In [34] DNA computing is used for generating a 1024-bit secret key, and a DNA reference key for better
security. Similarly, in [35] for a key generation the DNA computing has been combined with user attributes and the
MAC address of the user for improved security. DNA computing-based multifold symmetric key encryption scheme
has been presented in [41] which encrypts data before uploading it to the cloud. DNA computing also plays a potential
role in securing medical images in smart healthcare systems [5, 8, 12, 18].

In addition to chaos and DNA encryption, deep learning has recently been playing a potential role in image en-
cryption. Most of the presented techniques utilize the encoder-decoder approach. Autoencoders are extensively being
utilized for dimensionality reduction and to increase the networks’ performance. Recently, various stacked autoencoders
and convolutional autoencoders have been explored and designed for encryption/decryption purposes, for example, a
stacked autoencoder based on a multi-layer model for compression and encryption of images has been presented in
[21]. The first layer of the model compresses the input image. The compressed image is then encrypted using a chaotic
logistic map. Such models hold importance in applications where transmission speed is also as important as the security
of the images. Similarly, another framework utilizes a neural network-based encoder and decoder for encryption and
decryption, respectively [19]. The presented framework is targeted for lossy encryption and decryption and exhibits
adequate performance where exact reconstruction of the input image is not a strict requirement.

Majority of the image encryption schemes available in the literature, including the ones discussed above have latency
problems in case encryption and decryption of large-size images are required. This problem becomes more pronounced
when the input image is a colour image. In such a case, there are three colour planes, thus increasing the size of the
images by three times. Although several autoencoders can be found in literature, however, the reconstructed image
quality is not very high. Moreover, most of the autoencoders available in the literature have been designed for low to
medium size digital images. To address the aforementioned problem, the proposed scheme uses a new autoencoder
design to effectively reduce the dimension of the input image from 𝑁 ×𝑀 × 3 to 𝑃 ×𝑄 . Thus a colour image is converted
by the autoencoder into a grayscale image. For example, in this paper, the input colour images used have dimensions
512× 768× 3 pixels. The autoencoder converts the input colour image to a gray-scale image having dimension 384× 512
pixels. Encryption and decryption are then performed in the reduced dimension space using a new DNA-based technique
employing multiple chaotic sequences and substitution boxes to make the cipher image random, as evident from the
results presented in the paper.

3 PRELIMINARIES

3.1 Utilized Chaotic Maps

There are two broad categories of chaotic systems: one-dimensional and multi-dimensional. Unlike multi-dimensional,
one-dimensional chaotic systems such as logistic maps etc., are straightforward to implement. However, there are
drawbacks of one-dimensional maps that include their susceptibility to high correlation, as well as their restricted or
discontinuous chaotic range and high probability of uniform data distribution in the output chaotic sequence. Thus, in
this work, we have used four multi-dimensional maps due to low correlation, higher keyspace and non-uniform data
distribution.

Four different chaotic maps are used in this work to introduce randomness at different stages of the encryption
process. The four chaotic maps are the TD-ERCS map, the Intertwining map, the Chirikov map, and the NCA map. A
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brief description of these maps is as follows:

TD-ERCS Map
The TD-ERCS map is a two-dimension chaotic system proposed in the year 2004 and further developed to exhibit a
large domain, zero correlation and a stable probability distribution [27]. In this work, the TD-ERCS map is used for
random permutation of pixel values. The TD-ERCS map is expressed as:


𝑥𝑛 = − 2𝑘𝑛−1𝑦𝑛−1+𝑥𝑛−1 (𝜇2−𝑘2

𝑛−1)
𝜇2+𝑘2

𝑛−1

𝑦𝑛 = 𝑘𝑛−1 (𝑥𝑛 − 𝑥𝑛−1) + 𝑦𝑛−1, 𝑛 = 1, 2, 3...
(1)

where

𝑘𝑛 =
2𝑘 ′𝑛−𝑚 − 𝑘𝑛−1 + 𝑘𝑛−1 (𝑘 ′𝑛−𝑚)2

1 + 2𝑘𝑛−1𝑘 ′𝑛−𝑚 − 𝑘 (𝑘 ′𝑛−𝑚)2

𝑘 ′𝑛−𝑚 =


− 𝑥𝑛−1
𝑦𝑛−1

𝜇2 𝑛 < 𝑚

− 𝑥𝑛−𝑚
𝑦𝑛−𝑚

𝜇2 𝑛 ≥ 𝑚

𝑦0 = 𝜇
√︃
1 − 𝑥20

𝑘 ′0 = −𝑥0
𝑦0
𝜇2

𝑘0 = −
tan𝛼 + 𝑘 ′0
1 − 𝑘 ′0tan𝛼

𝜇 ∈ (0, 1)
𝑥0 ∈ [−1, 1]
𝛼 ∈ (0, 𝜋)
𝑚 = 2, 3, 4, 5...

In the above equation, 𝜇, 𝑥0, 𝛼 and𝑚 are called the initial parameters. As outlined in our previous work [3], the TD-ERCS
map holds the property of being sensitive to the initial conditions and ergodicity and hence can be effectively used for
image encryption.

Intertwining Map
The intertwining map is used for random matrix generation and is written as [4]:


𝑋𝑛+1 = (𝜆 ×𝐴1 × 𝑌𝑛 × (1 − 𝑋𝑛) + 𝑍𝑛)𝑚𝑜𝑑 (1),

𝑌𝑛+1 = ( 𝜆×𝐴2×𝑌𝑛+𝑍𝑛

1+(𝑋𝑛+1)2 )𝑚𝑜𝑑 (1),

𝑍𝑛+1 = (𝜆 × (𝑋𝑛+1 + 𝑌𝑛+1 +𝐴3) × 𝑠𝑖𝑛(𝑍𝑛)𝑚𝑜𝑑 (1).

(2)

where 𝑋𝑛 , 𝑌𝑛 and 𝑍𝑛 ∈ (0, 1), 0 ≤ 𝜆 ≤ 3.999, |𝐴1 | > 33.5, |𝐴2 | > 37.9, |𝐴3 | > 35.7.
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Chirikov Map
The Chirikov map is used to randomly select the DNA coding rules. Its mathematical model is as follows [15]:

𝐴𝑛+1 = (𝐴𝑛 + 𝐵𝑛) mod(𝑁 ), (3)

𝐵𝑛+1 = (𝐴𝑛 + 𝜂 × Sin( 2𝜋𝐴𝑛
𝑁

)) mod(𝑁 ), (4)

where 𝑁 is the height/width of a square image, 𝜂 > 0 and is used as a control parameter for the secret key, 𝐴𝑛 and 𝐵𝑛
are real numbers whose range is between 0 to 𝑁 .

NCA Map
The Nonlinear Chaotic Algorithm (NCA) is employed for randomly selecting one of the three S-boxes. These S-boxes
are discussed in our previous work [38]. The NCA map is expressed as [4]:

𝐶𝑛+1 = (1 − 𝜉−4) .cot( 𝜒

1 + 𝜉 ) .(1 +
1
𝜉
)𝜉 .tan(𝜒𝐶𝑛).(1 −𝐶𝑛)𝜉 , (5)

where the seed parameters are: 

𝐶𝑛 ∈ (0, 1)
𝜒 ∈ (0, 1.4]
𝜉 ∈ [5, 43]
or
𝐶𝑛 ∈ (0, 1)
𝜒 ∈ (1.4, 1.5]
𝜉 ∈ [9, 38]
or
𝐶𝑛 ∈ (0, 1)
𝜒 ∈ (1.5, 1.57]
𝜉 ∈ [3, 15]

3.2 DNA Coding

Adenine (A), cytosine (C), guanine (G) and thymine are the nucleic bases to generate different DNA sequences. The
nucleic bases, ‘adenine and thymine ’ and ‘guanine and cytosine’ are complements of each other. In the proposed
encryption scheme, the aforementioned DNA nucleic bases A, T, G and C are represented by the binary codes 00, 01, 10,
and 11, respectively. Hence, 24 different coding sequences can be produced. However, the binary codes ‘00 and 11’, and
‘01 and 10’ are complements of each other and hence, only 8 out of 24 coding rules satisfy the complementary criterion
for the four bases. The 8 rules for DNA coding are shown in Table 1 [49]. Furthermore, each pixel of a gray-scale image
is represented by a value between 0 and 255. The binary representation of a pixel value can be divided into 4 groups,
each group made up of two bits. The two bits of each group can then be represented using the DNA basis, depending
on the selected rule. As an example, a pixel having a value of ‘200’ can be represented in binary as ‘11001000’, and by
following the R2 rule given in Table 1 [49], the DNA sequence for this pixel is ‘TACA’. DNA decoding can be performed
similarly by following the appropriate rule.
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Table 1. The Eight DNA rules with binary coding.

Code R1 R2 R3 R4 R5 R6 R7 R8
00 [A] [A] [C] [C] [G] [G] [T] [T]
01 [C] [G] [A] [T] [A] [T] [C] [G]
10 [G] [C] [T] [A] [T] [A] [G] [C]
11 [T] [T] [G] [G] [C] [C] [A] [A]

DNA based Encryption

DNA based
Decryption

Convolutional
AutoEncoder - Decoder

Original Image (NxMx3) Encoded Output (PxQ)

Convolutional AutoEncoder - Encoder

Encrypted Image
(PxQ)

Decrypted Output
(PxQ)

Reconstructed Image
(NxMx3)

Fig. 3. A Pictorial Flow Depicting the Workflow of the Proposed Scheme.

4 THE PROPOSED METHODOLOGY

The proposed scheme consists of two main parts, the Convolution Autoencoder-based dimensionality reduction module,
and the DNA-based image encryption module. A colour input image of size 𝑁 × 𝑀 × 3 is first reduced to a lower
dimension gray-scale image of size 𝑃 ×𝑄 after passing through a trained convolution-based encoder model. The cipher
image is obtained by applying the encryption algorithm on the 𝑃 ×𝑄 gray-scale image. The encrypted image is then
decrypted using the decryption module and subsequently decompressed using upsampling by the decoder to retrieve
the original colour image with negligible loss of information. Figure 3 shows the workflow of the proposed colour image
encryption scheme and Fig. 4 shows the detailed architecture of the proposed autoencoder illustrating the encoder,
decoder along with the encryption and decryption modules. The Kodak dataset1 has been used in this paper for both
the dimensionality reduction module and the encryption module. The next section presents details about the proposed
autoencoder module for dimensionality reduction.

1https://r0k.us/graphics/kodak/
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Fig. 4. Detailed Architecture of the Proposed Autoencoder along with DNA-based Encryption and Decryption Modules.

4.1 The Proposed Convolutional Autoencoder for Dimensionality Reduction

Autoencoders are artificial neural networks that can be used for image compression using unsupervised learning. If
properly trained, they can be used to compress unseen images with an impressive compression ratio. Autoencoders are
widely used for dimensionality reduction in generative models of data and contain three components; the encoder,
latent vector and decoder. In the encoder, the size of the input is reduced by decreasing its dimension. The middle
layer known as a latent vector has a few neurons as compared to the input and output layers. This layer holds the
input information but in reduced dimensions named as the latent vector or shortcode. The output is reconstructed
through the decoder using the reduced representation from the encoder output. Convolutional Autoencoders (CAE)
effectively learn features of the input image in an unsupervised manner by employing a convolutional neural network
(CNN). Convolution autoencoders can reconstruct the input image with minimum error. Once the autoencoder model
is trained, it can generate a compressed representation of an unseen input image.
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Autoencoder Architecture
The proposed autoencoder architecture along with the encryption and decryption modules is shown in Fig. 4. The
first part is the encoder in which an input RGB image of size 𝑁 ×𝑀 × 3 (512×786×3) is given as input to the encoder
and a gray-scale image having dimensions 𝑃 ×𝑄 (384×512) is obtained at the output of the encoder. This compressed
two-dimensional image can then be used by the encryption module instead of using the original colour image. This
greatly helps to improve encryption and decryption speed as it is done in a lower dimension space. The encrypted
image is obtained by employing four key-dependent different chaotic maps to randomize the process of permutation
and diffusion. The same key is used at the decryption end to successfully recover the gray-scale image. The decrypted
image is then given to the decoder module of the autoencoder model. If decryption is correctly done, the reconstructed
image from the decoder is perceptually similar to the original colour image with the same dimension. Table 2 shows the
architectural details of the proposed autoencoder model. The experimental setup for implementing the autoencoder
consisted of Google Colab with 12 GB NVIDIA Tesla K80 GPU and 12 GB ram. Moreover, Keras-based Application Pro-
gramming Interface (API); v2.10 is used with TensorFlow v2.7 to create deep learning architecture, and OpenCv2-v4.5.5
is used for image dimension correction and normalization in this paper.

Table 2. Convolution Autoencoder Architecture Details.

Neural Network Layer The Feature Maps Size Kernel Stride Activation Functions

Input Layer Input Image - 512×768×3 - - -
1 Conv2d_1 128 512×768×128 3x3 1 ReLU
2 Max Pooling 2D 128 256×384×256 2x2x2 1 -
3 Conv2d_2 64 256×384×64 3x3 1 ReLU
4 Max Pooling 2D 64 128×192×128 2x2x2 1 -
5 Conv2d_3 32 64×96×32 3x3 2 ReLU
6 Flatten - 196608×1 - - -
7 Encoder-Out - 384×512 - - -
8 Decoder-In - 384×512 - - -
9 Flatten - 196608×1 - - -
10 Reshape - 64×96×32 3x3 - -
11 Conv2d_transpose1 32 128×192×32 3x3 2 ReLU
12 Conv2d_transpose2 64 256×384×64 3x3 2 ReLU
13 Conv2d_transpose3 3 512×768×3 3x3 2 Sigmoid

Output Image - 512×768×3 - - -

Coloured input images of size 512×786×3 are fed to the auto-encoder model. Convolution filters of sizes 128, 64, and
32 are used for the encoder part to extract spatial information. The dimension of the input layer is reduced by using
Max Pooling. Except for the last layer of the encoder part, all other convolutional layer strides are of size 1. Padding of
the same size is used for all the layers. The output after conv2d_3 is 64 × 92 × 32 which contains 32 feature maps but to
get a latent vector, this layer has been flattened to produce a vector of 𝑅 × 1 dimension. For the specific colour image
size considered in this paper, R is a latent vector of size 196608. This vector is then reshaped to obtain a 2-dimensional
gray-scale image 𝑃 ×𝑄 (384×512). The compression ratio for this work is 6:1. The gray-scale image is encrypted using
the proposed encryption algorithm. Once the gray-scale image is decrypted, it is then given to the decoder part of the
autoencoder which uses transpose convolutional filters to regenerate the original input colour image with negligible
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loss of information. The proposed CAE model is very lightweight. In terms of trainable parameters, the encoder has
95,840 and the decoder has 29,475 parameters. Due to low training parameters, the compression time is very low for the
proposed convolutional autoencoder technique.

Autoencoder Training
The proposed convolutional autoencoder-based deep learning model was trained for different epochs, hyper-parameters
and optimizers using the Kodak dataset which has 24 uncompressed similar dimension images. The dataset was divided
into a 60% training set and a 40% validation set. The model converged near 550 epochs at the maximum training accuracy
of 97% and a loss of 0.0011, whereas the validation accuracy and loss were 95% and 0.0014, respectively as shown in
Fig. 5. To avoid overfitting, kernel and bias regularization techniques have been used in all convolution layers for the
autoencoder model. L2 regularization with a specific value of 1𝑒−6 is used to reduce the size of weights, as well as the
biases during model training. This helps to avoid overfitting and also removes the fluctuations in model performance
metrics. L2 regularization forces small weights to be removed that are very close to zero. This technique improves the
model performance.

(a) (b)

Fig. 5. Model Training Parameters. (a) Autoencoder Training Accuracy Graph. (b) Autoencoder Training Loss Graph

Autoencoder Tuning
Three types of optimizers were tested during the training of the proposed autoencoder model with different hyper-
parameter values. The Adam optimizer with an adaptive learning rate was initially selected, but it took very long to
improve the training accuracy, therefore, a learning rate of 1𝑒−3 was used which improved the training speed, but the
model accuracy did not improve beyond 88%. The RMSprop optimizer was then used as a replacement for the Adam
optimizer with a learning rate of 1𝑒−4. The model accuracy improved to 90% but still as compared to other research,
this accuracy was not enough. The Adamax optimizer with mean-squared-error loss function, 1𝑒−4 learning rate and
600 epochs, achieved 95% validation accuracy. Data related to model training is presented in Table 3.

Autoencoder Performance
Many researchers have designed deep convolutional neural network-based image compression techniques using differ-
ent datasets such ImageNet’s large database or Kodak’s small dataset and various input image sizes. The authors in [11]
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Table 3. Experimenting Hyper-parameters and Optimizers.

Hyper-Parameters

Optimizer Learning Rate Epochs Validation Accuracy
Adam 0.001 500 88%

RMSprop 0.0001 300 90%
Adamax 0.0001 600 95%

claim that their compression technique is close to JPEG2000 but this technique is used for small grayscale images of
size 128×128. If the input image size is greater than 128×128, then the large size image will split into non-overlapping
small images and each of these samples will be compressed separately. The technique proposed in [11] has produced
better results than [6] using the same database but the model was tested on the Kodak database yielding 13.7% BD-rate
saving average on all 24 images. The PSNR of the reconstructed images for the same Kodak database is between 29-33 dB.

Quality of the Reconstruct Images using the Proposed Autoencoder Module
Using the proposed autoencoder, a few sample images are shown from the Kodak dataset. Table 4 shows the PSNR
values of each image. Specifically, the PSNR value of the Building image is 26 dB, whereas the Field and Shoe images
illustrated in Fig. 7 Fig. 8 have PSNR values of 30 and 31 dB, respectively.

(a) (b)

Fig. 6. Building Image. (a) Original Building Image. (b) Reconstructed Building Image.

Table 4. PSNR Table for Sample Images.

Images PSNR(dB)
Building Image 26
Field Image 30
Shoes Image 31
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(a) (b)

Fig. 7. Field Image. (a) Original Field Image. (b) Reconstructed Field Image

(a) (b)

Fig. 8. Shoe Image. (a) Original Shoe Image. (b) Reconstructed Shoe Image.

4.2 The Proposed DNA based Colour Image Encryption Scheme

Several image encryption schemes employing chaos theory can be found in the literature. Due to sensitivity to initial
conditions, chaotic maps produce a secure ciphertext image. But many of these schemes have been cracked and
cryptanalysis of such schemes is reported in the literature. Therefore, the encryption scheme proposed in this paper
combines chaos and DNA for a high level of security. The proposed encryption scheme has been implemented in
MATLAB R2020b on an Intel(R) Core(TM) i7 processor with 16GB of ram.

This section presents the workflow of the proposed colour image encryption scheme. The overall process is illustrated
in Fig. 9 and various steps are outlined as follows:

(1) The input colour image having a dimension of N×M×3 is first reduced to a smaller dimension, P×Q, thus
forming a gray-scale image 𝐼 using the proposed convolutional autoencoder module.

(2) Hash of the image 𝐼 is then taken using SHA-256 to obtain a key 𝐾 that is sensitive to 𝐼 . Initial conditions are
generated using 𝐾 and the initial values 𝜇0 for the TD-ERCS chaotic map, 𝑋0 for the Intertwining chaotic map,
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Fig. 9. An All-inclusive Flow of the Proposed Encryption Scheme.

𝐶0 for the NCA map, and 𝐴0 for the Chirikov chaotic map. The chaotic maps, TD-ERCS, Intertwining, NCA and
Chirikov are referred to as 𝐶1,𝐶2, 𝐶3 and 𝐶4, respectively.

(3) Randomly permutes rows of the image 𝐼 using the TD-ERCS map 𝐶1 to obtain an intermediate image 𝐼𝑃𝑅 .
(4) Randomly permute columns of the image 𝐼𝑃𝑅 using the TD-ERCS map 𝐶1 to obtain the permuted image 𝐼𝑃 .
(5) A random matrix is generated using the Interwinning map 𝐶2. Since the values of the random matrix are small,

therefore, to scale these values between 0 to 255, multiply each entry of the random matrix by 1014 and take
modulo 256 to get values in the range 0 to 255. Let this random matrix be referred to as 𝑅𝑇 1.

(6) XOR 𝐼𝑃 and 𝑅𝑇 1 to obtain 𝐼𝑃𝑋 .
(7) For each pixel of 𝐼𝑃𝑋 , the NCA map 𝐶3 is used to randomly select one of the three s-boxes. Each pixel value of

𝐼𝑃𝑋 is then replaced with the corresponding value of the randomly selected S-box. After iterating through all
the pixels of 𝐼𝑃𝑋 , the substituted image 𝐼𝑃𝑆 is obtained.

(8) Convert the image 𝐼𝑃𝑆 into a binary matrix and perform DNA encoding by randomly selecting one of the eight
DNA rules shown in Table 1. The Chirikov chaotic map𝐶4 is used for random selection of the rule from Table 1.
The DNA encoded image is referred to as 𝐼𝑃𝐷 .

(9) Generate a random matrix using the Chirikov chaotic map 𝐶4. Since the values of the random matrix are small,
therefore, to scale these values between 0 to 255, multiply each entry of the random matrix by 1014 and take
modulo 256 to get values in the range 0 to 255. Let this random matrix be referred to as 𝑅𝑇 2.
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(a)

(b) (c)

(d) (e)

Fig. 10. Original Image, Histogram and Cipher Image: The Building Image. (a) Original building image. (b) The Encoded variant. (c)
The histogram of the encoded variant. (d) The Encrypted image. (e) The histogram of the encrypted image.

(10) Convert the random matrix 𝑅𝑇 2 into a binary matrix and perform DNA encoding of each entry of 𝑅𝑇 2 by
randomly selecting one of the eight DNA rules shown in Table 1. Furthermore, to select a random DNA code
from Table 1, the Chirikov chaotic map 𝐶4 is used, which in turn generates the DNA encoded image 𝑅𝑇𝐷 .

(11) XOR 𝐼𝑃𝐷 and 𝑅𝑇𝐷 to obtain 𝐼𝑃𝑌 .
(12) The cipher image 𝐶 of dimension 𝑃 ×𝑄 is obtained by performing DNA decoding of 𝐼𝑃𝑌 .

5 SECURITY EVALUATION OF THE PROPOSED SCHEME

Several security evaluation parameters, such as histogram of the cipher image, entropy, NPCR, UACI, key sensitivity,
contrast, etc., are presented in this section to evaluate the efficacy of the proposed DNA encryption technique.
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(a)

(b) (c)

(d) (e)

Fig. 11. Original Image, Histogram and Ciphertext Image: Shoe Image. (a) Original Shoe image. (b) The encoded variant. (c) Histogram
of the encoded variant. (d) The encrypted image. (e) The histogram of the encrypted image.

5.1 Histogram Analysis

The proposed image encryption scheme was tested on different colour images yielding a flat histogram for the cipher
image. For illustration, two different colour images are shown in Fig. 10 and 11. One can see from these figures that the
histogram of the encoded images is concentrated more toward the left side and hence it is evident that most of the
pixels have values between 0 and 50. Furthermore, the pixel values are randomly distributed in the encrypted images.
The histogram of the encrypted image shows that each pixel has approximately the same frequency of occurrence due
to which the cipher images have flat histograms.

5.2 Statistical Analysis

It can be observed from the results presented in Fig. 10 and Fig. 11 that the encryption scheme conceals plaintext
information. However, only visual inspection cannot guarantee the effectiveness of a good encryption technique. To
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 12. Correlation Plots of the Original and Cipertext Images; (a-c) Original Image 1, (d-f) Encrypted Image 1, (g-i) Original Image 2,
(j-l) Encrypted image 2.

obtain a quantitative assessment, Table 5 exhibits the results after performing different statistical analyses on the two
images shown in Fig. 10 and Fig. 11. The values of the encryption parameters [38] obtained in Table 5 demonstrate the
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Table 5. Security Analysis of the Encryption Results

Security Metric Plaintext-Image Encrypted-Image Plaintext-Image Encrypted-Image

Horizontal Correlation Coefficient 0.9612 0.0021 0.9751 0.0026

Vertical Correlation Coefficient 0.9833 -0.0043 0.9712 0.0035

Diagonal Correlation Coefficient 0.9798 0.0033 0.9712 0.0027

E (Entropy) 7.34 7.99 7.39 7.99

KS (Key Sensitivity) NA 99.33% NA 99.89%

NPCR NA 99.78 % NA 99.85%

UACI NA 34.25 NA 35.11

C (Contrast) 1.21 10.48 1.24 10.45

H (Homogeneity) 0.71 0.37 0.72 0.36

E (Energy) 0.11 0.02 0.12 0.03

effectiveness of the presented DNA encryption technique. Detail explanation of the encryption evaluation parameters
is given below:

Correlation Coefficient: Correlation is a statistical technique for assessing the significance of the correlation
between two variables. Correlation is a measure of how closely two variables are linked together. Any cryptosystem’s
correlation coefficient can be used to assess its level of encryption quality. An image cryptosystem will be considered
strong if the encrypted image it produces is random and substantially uncorrelated, and the attributes of the input
plaintext image are not present in the cipher image. The correlation coefficient between an encrypted image and the
corresponding plaintext image must be exceptionally low if not zero. This means that if two images have a correlation
coefficient equal to one, they would be considered identical. Correlation plots for the original and cipher images in
different directions are shown in Fig. 12. It is evident from Fig. 12 and Table 5 that the correlation values are close
to zero in all the directions. This implies that the pixels of the ciphertext images are uncorrelated. In contrast to the
ciphertext correlation values, the original images correlation values are close to 1.

Entropy: The entropy of a source provides insight into self-information or information that a random process
provides about itself. Entropy is a critical parameter to study when assessing an encryption method [40]. Assume that
we have a truly random source,𝑚 =𝑚1,𝑚2 ...𝑚8, which creates 28 symbols having the same probability. The entropy
value in this ideal scenario will be 8 bits. The entropy values calculated for the input and encrypted images are shown
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in Table 5. It is clear from Table 5 that the entropy values of the ciphertext images are close to the ideal desired values.

Key Sensitivity: The key sensitivity test measures how sensitive an encrypted image is to a change in the key. A
reliable cryptosystem should decrypt the ciphertext image incorrectly if the key differs by only one bit. For extremely
secure cryptosystems, large key sensitivity is necessary and changes in keys should generate a different ciphertext.
This is done by calculating the difference between two ciphertext images when the encryption key for the two images
is different by only one bit. Table 5 shows the pixel difference between the plaintext and cipher images due to key
sensitivity. It is evident from the results shown in Table 5 that the proposed scheme has high key sensitivity, and
therefore is sensitive to changes in the secret key.

NPCR and UACI: The impact of a single-pixel change on the total image can be assessed using two standard
methods: (i) NPCR and (ii) UACI. Generally speaking, the values of NPCR and UACI should be higher than 99% and 33,
respectively. It is evident from Table 5 that the proposed encryption technique achieves adequately high values of the
NPCR and UACI parameters.

Contrast: Contrast analysis is a technique that analyzes an image’s local intensity variation. An image’s texture may
be easily identified by a viewer using this statistical metric, which indicates texture uniformity. Varying gray levels can
be seen in an image with higher contrast metrics, while images with lower contrast metrics show a lack of variation in
gray levels. The contrast results shown in Table 5 demonstrate the fact that the contrast values of the encrypted images
are sufficiently higher than the original images.

Homogeneity and Energy: Homogeneity analysis is used to determine the closeness in the distribution of elements
in the gray level co-occurrence matrix (GLCM). A low GLCM value of the encrypted image indicates a higher level of
security. The energy parameter can be obtained by adding the squared values of the GLCM entries. A low energy value
is obtained when the GLCM entries are similar, whereas a high energy value is obtained when the magnitude of some
of the entries is greater than others. Secure images require low energy levels. From Table 5, it can be seen that both
parameters have lower values thus depicting the effectiveness of the proposed image encryption scheme.

5.3 Comparison of the Keyspace

The total possible combinations of keys that can be utilized in a cryptosystem’s encryption and decryption are known
as its keyspace size. The number of keyspace available can be used to estimate an encryption algorithm’s strength. It
has been observed that a minimum keyspace of 2100 is required to prevent a brute force attack. The computational
precision, according to the IEEE standards, is roughly 1015, due to which there are 10285 keys for the proposed encryption
technique, and these are significantly higher than 2100. Additionally, the approximate keyspace shown in Table 6 is
higher than state-of-the-art encryption schemes.
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Table 6. Keyspace analysis.

Ref [45] Ref [42] Ref [29] Ref [16] Proposed

Keyspace 1075 1096 10170 10168 10285

6 CONCLUSION

To address the latency issue of encryption/decryption processes for large-size coloured images, a novel deep learning-
based encryption scheme using DNA, chaos and multiple s-boxes is presented and evaluated in this paper. The proposed
scheme consists of two modules; 1) a deep learning-based convolutional autoencoder to compress the large size three-
dimensional coloured images into a significantly lower size two-dimensional gray-scale image, and 2) a novel DNA-based
image encryption and decryption module using multiple chaotic sequences and substitution boxes to make the cipher
image random as evident from the results reported in the paper. The convolutional autoencoder was trained on the
Kodak image dataset with an impressive training and validation accuracy of 97% and 95%, respectively. The results of
the autoencoder module demonstrated a high-quality reconstruction of the compressed images into the original colour
images with an average PSNR of 29dB. Furthermore, in the proposed image encryption and decryption modules, four
different chaotic maps; the TD-ERCS map, the Intertwining map, the Chirikov map, and the NCA map were utilized in
conjunction with DNA coding and multiple s-boxes to effectively encrypt digital images. The security of the proposed
encryption algorithm was evaluated using several parameters, such as histogram of the cipher image, entropy, NPCR,
UACI, key sensitivity, contrast, etc. The results obtained after extensive experimentation revealed the effectiveness of
the proposed convolutional autoencoder-based image encryption scheme in terms of; a) the successful compression
of large-sized coloured images into low dimension grayscale images, b) the effective encryption/decryption of the
compressed images and c) the high-quality reconstruction of compressed images into original three-dimensional colour
images. The proposed scheme can effectively be utilized for secure and fast transmission of large-size coloured images
over a low bandwidth transmission channel. A symmetric key technique is proposed in this paper for encrypting digital
images. Symmetric encryption requires the same key for encryption and decryption. In future, we plan to transform
the proposed scheme into an asymmetric image encryption scheme. Another interesting future direction could be to
modify this scheme to work for video encryption.
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