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Abstract: Large-span steel trusses are widely used in public buildings such as large-span factory
buildings, exhibition halls, gymnasiums, and bridges because of their fast construction speed and easy
industrial manufacturing. Due to construction errors and environmental factors, the material proper-
ties may change during their service life, and it is an important prerequisite for the structural safety
assessment to identify the true material parameters of the structure. Among the many parameters,
the elastic modulus is one that has the greatest impact on the accuracy of structural safety analysis.
In this paper, a mathematical analysis model of elastic modulus identification was constructed, based
on the strain test data and the improved gradient regularization method. The relationship between
the strain test data and elastic moduli was established. A common finite element program based on
the method was developed to identify the elastic modulus. A series of numerical simulations was
carried out on a 53-element steel truss model to study the availability and numerical stability of the
method. The effects of different initial values, numbers of strain tests, and locations of the strain test
as well as the number of unknown parameters on the identification results were studied. The results
showed that the proposed method had very high accuracy and computational efficiency. For the case
of 53 unknown parameters without considering the test error, the identification accuracy could reach
a 1 × 10−10 order of magnitude after only several iterations. This paper provides an effective solution
to obtain the actual values of the elastic modulus of steel truss structures in practical engineering.

Keywords: parameter identification; regularization; gradient matrix; elastic modulus; strain

1. Introduction

Large-span steel truss structures are widely used in public buildings such as large-
span factory buildings, exhibition halls, gymnasiums, and bridges because of their fast
construction speed and easy industrial manufacturing [1,2]. Due to construction errors and
environmental factors, the structural material properties may change during the service,
and it is an important prerequisite for structural safety assessment to fully understand the
real material parameters of the structure. Therefore, the parameter and damage identifica-
tion of steel truss structures have been of significant concern.

Chang [3] presented the preliminary results of modal-parameter identification and
vibration-based damage detection of a damaged steel truss bridge. Zhuo [4] studied
the damage identification of bolt connections in steel truss structures by using sound
signals. Luong [5] proposed a methodology to identify multiple axial forces in members
of a truss structure based on the modal parameters. Luong [6] investigated the inverse
identification of the stress state in axially loaded slender members of steel truss structures
using measured dynamic data. Liu [7] adopted inverse sensitivity analysis to estimate the
unknown system parameter perturbation from the difference between the observed output
data and the corresponding analytical output data calculated from the original system
model. Cho [8] performed system identification on the swing span of a steel truss bridge
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dating from 1896 using acceleration data collected from a wireless sensor network (WSN).
Terlaje [9] used displacement measurements resulting from applied static point loads as
constraints in an optimization algorithm that employed optimality criterion methods to
extract the cross-sectional properties of elements within a mathematical model of a structure.
Chakraborty [10] presented a methodology to diagnose and quantify the damage at the
element level in a truss structure with the measured static strain properties of the truss.

In the above works, we found that most of the parameter identification work for
steel truss structures was based on the dynamic response test, and mainly identified the
dynamic characteristics of the structure. Works based on the static test and identifying the
elastic parameters of the structure are limited. This is mainly because the dynamic test
method can achieve real-time monitoring without artificially applying loads and blocking
traffic. However, because it is related to modal identification, there are higher requirements
for the accuracy of the test instruments and identification methods. A disadvantage of
the static test method is the need to apply a load to excite static response, which blocks
traffic, but it has the advantage of a good identification effect and easy measurement of the
required data. Moreover, the static equilibrium equation is only related to the nature of
the structural stiffness, and it is easy to calculate the structural stiffness according to the
measured static data. Additionally, the static test equipment is cheaper, the test technology
is more advanced, and the deformation of the structure can be measured more accurately,
so it is beneficial to study the elastic parameter identification method based on the static test.
In fact, the damage detection method based on the static test has also received extensive
attention in the field of civil engineering. Song [11] studied the problem of the optimal
strain sensor placement in the damage detection of truss elements. Wang [12] identified
moving train load parameters including the train speed, axle spacing, gross train weight,
and axle weights based on the strain-monitoring data. Compared with other static response
tests, the strain test has unique advantages because of the strain gauges’ small mass, high
accuracy, easy installation and fixation, and low comprehensive cost, so it is widely used in
engineering [13–15].

The elastic modulus is also one of the most important parameters that affect the struc-
tural safety assessment because it directly affects the composition of the structural stiffness
matrix. Although work on the elastic parameter identification of steel truss structures
is limited, this problem has been widely considered in the field of mechanical inverse
problems, and many research methods have been proposed. In these methods, the common
approach is to reflect the local parameter variation onto the actual response value based on
the relationship between the structural parameter variation and the actual measured data
of a certain response. Then, the problem is transformed into the minimization of the objec-
tive function with the unknown parameters as the unknown variables and the minimum
difference between the theoretical response value and the measured response value, which
is also a typical engineering inverse problem. According to different solution methods, the
problem can be subdivided into the neural network method [16,17], Levenberg–Marquardt
method [18,19], Tikhonov regularization method [20–22], Gauss–Newton method [23],
genetic algorithm [24], and so on.

The gradient regularization method (hereafter GRM) is a method for solving the
inverse problem. It was first proposed in [25] and its applicability to one-dimensional
hyperbolic equations (one-dimensional wave equations) was verified. The applicability of
the GRM in identifying the parameters of two-dimensional elliptic operators was demon-
strated in [26]. The nonlinear inverse problem is transformed into the problem of solving
linear equations by expanding the unknown parameters in series with the supplementary
conditions of the inverse problem. Then, the GRM is used to solve the ill-posed linear
equations. This method starts from the generality of the inverse problem, without any
special constraints, and is not limited by the space dimension when solving the inverse
problem, so it is a very general method for solving the inverse problem. The GRM solves
the difficulties of ill-posedness, strong nonlinearity, and large calculation requirement in the
process of solving inverse problems, and its advantages of a high accuracy of calculation
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results and short calculation time make it applicable in related fields. The elastic modulus
of concrete dam was identified by using the GRM and the displacement monitoring data in
Liu [27]. Zhang [28] realized the elastic modulus identification of bar structures based on
the displacement test data and the GRM.

The choice of the regularization parameter α during the solution process of the reg-
ularization method is very important. If α is too large, the stability of the solution is
guaranteed, but the accuracy is reduced; if α is too small, the stability of the solution is
difficult to guarantee. Based on the idea of homotopy mapping, Cui et al. [29] extended the
solution path, effectively expanded the convergence domain, and reduced the dependence
on the initial value of iteration. Reichel [30] et al. selected the appropriate regularization
parameter when the truncated singular value decomposition method and LSQR iterative
Krylov subspace could not accurately estimate the data error. Hua [31] et al. studied the
selection of regularization parameters in model updates and proposed that the selection of
adaptive regularization parameters was more effective than that of the fixed regularization
parameters. Hansen [32] proposed a more efficient regularization parameter selection
method based on the L curve. Bucataru et al. [33] studied the numerical reconstruction of
thermal boundary data on a part of the boundary occupied by an anisotropic solid, and
used gradient regularization to solve the inverse problem.

In this paper, the problem was transformed into identifying the elastic modulus of
the structure by measuring the strain data at several points of the structure, which is a
typical inverse problem of operator identification [34]. Based on the GRM, the diagonal
elements of the Jacobi matrix in the solution process were normalized through linear
transformation, which improved the solution speed and accuracy. A problem solution
model was derived and constructed based on the strain test data and the improved gradient
regularization–finite element method for the first time. A general finite element calculation
program was developed. A series of numerical simulation tests were carried out on a
53-element steel truss model to study the availability and numerical stability of the method.
The effects of different initial values, different numbers of strain test, different locations
of the strain test, and the number of unknown parameters on the identification results
were studied. The results showed that the proposed method had very high accuracy and
computational efficiency. Without considering the test error, only a few iterations were
needed, and the identification accuracy could reach the order of 1 × 10−10. For large-
scale calculation, the advantages of this work will be more prominent compared with the
traditional optimal solution method, and the identification accuracy does not depend on the
selection of the initial value, so it has strong practicability. The proposed method provides
an effective solution for obtaining accurate design values of the elastic parameters of steel
truss structures in practical engineering.

2. Elastic Parameter Identification Model Based on Strain Test Data
2.1. Mathematical Solution Model of the Problem

For any structural members, when we artificially add an external load, P, it will cause
additional displacement and stress–strain changes, and the strain is actually a function
of the displacement. The static equation of a steel truss structure solved by the structural
finite element is:

[K(E)]{U} = {P} (1)

{ε} = [B]{U} (2)

where {U} =
(
u1 u2 . . . . . . un

)T is a column vector composed of unknown node
displacements and {P} = (q1, q2, . . . . . . , qn)

T is a column vector of known nodal loads;

[K(E)] =

k11(E) . . . k1n(E)
...

. . .
...

kn1(E) · · · knn(E)

 is the global stiffness matrix of the structure; and E is

the elastic modulus of the structure.
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B is the transfer matrix between the strain and displacement, which is determined
according to the specific problem.

Formula (1) is the solution equation of the verse problem, that is, to solve the response
with the given load action and design parameter information. The correlation between
the elastic modulus and strain, ε, is established by Equation (1). However, if the design
parameters are unknown and the load and test data of the local response are known, can the
information of design parameters be obtained by reverse solving? This is a typical inverse
problem of operator identification. If the structure is regarded as a continuum in a certain
spatial domain, and E, ε, and P are functions about x, then the following mathematical
equations for solving the inverse problem can be established:

K(E(x))U(x) = P(x) x ∈ ∂Rr (3)

ε(x) = [B(x)]U(x) (4)

B1(ε(x)) = εc(x) x ∈ ∂R1r (5)

B2(ε(x))x=xs = εs(x) x ∈ ∂R2r (6)

where K is the operator of E(x); B1, B2 is the boundary condition operator and the additional
condition operator, respectively; s = 1, m, and m is the number of known strain test data.
R is the spatial domain of the problem, equal to 2 or 3 for the plane and spatial domain
problems, respectively; x is the coordinate defined on Rr; Rr

1 is the domain of given
boundary conditions; Rr

2 is the domain of the given supplementary conditions.

2.2. Establishing the Objective Function

Since only the strain data at the positions of the representative elements can be ob-
tained, the solution of the problem described in Equations (3)–(6) is not unique, and only a
set of optimal solutions satisfying the additional strain test data can be found. Considering
the existence of the test error and numerical error, this paper used the strain relative value
to establish the following constraint objective function.

Seeking E:
Let f (E) ≤ err (7)

f (E) =
s

∑
i=1
|ε̃i(E)| (8)

ε̃i(E) =
εsi − εi

εsi
(9)

where err is a very small given value; εsi is strain test data for the ith element; εi is the
calculated strain value for the ith element.

2.3. Solution of Gradient Regularization Method [25] Based on Strain Test Data

Assuming the strain test data, ε∗(x), is an exact solution satisfying Equations (3)–(6),
ε∗(x) and the supplementary condition B2(ε

∗(x)) are expanded by first-order Taylor ex-
pansion in the vicinity of E0(x), then there will be:

ε∗(x) = ε0(x) +
∫

R

∂ε(x)
∂E(x′)

∆E
(
x′
)
dx′ (10)

B2(ε
∗(x)) = B2(ε0(x)) +

∫
R

∂B2(ε(x))
∂E(x′)

∆E
(
x′
)
dx′ (11)

Since ε∗(x) is an exact solution, we have

B2(ε
∗(x)) = εs(x) (12)
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If we make:
D(x) = εs(x)− B2(ε0(x)) (13)

G
(
E
(
x′
)
, x
)
=

∂B2(ε(x))
∂E(x′)

(14)

then we substitute Equations (12)–(14) into Equation (11) to obtain:∫
R

G
(
E
(

x′
)
, x
)
·∆E

(
x′
)
dx′ = D(x) (15)

Here, G(E(x′), x) is the gradient operator of the supplementary condition ∂B2(ε(x))
to E(x′) at E(x′) = E0(x′).

This is an ill-posed problem, hence, we construct the regularization functional:

J(∆E(x), α) = ρ2
(∫

W
G
(
k
(

x′
)
, x
)
∆E
(
x′
)
dx′, D(x)

)
+ αΘ

(
∆E
(
x′
))

x′ ∈W, x ∈ ∂W2 (16)

ρ2
(∫

W
G
(
E
(

x′
)
, x
)
∆E
(

x′
)
dx′, D(x)

)
=
∫

∂W2

(∫
W

G
(
E
(
x′
)
, x
)
∆E
(
x′
)
dx′ − D(x)

)2
dx (17)

Find ∆E(x′) from Formula (18):

minJ
(
∆E
(

x′
)
, α
)
= ρ2

(∫
R

G
(
E
(
x′
)
, x
)
∆E
(
x′
)
dx′, D(x)

)
+ αΘ

(
∆E
(
x′
))

(18)

where α is the regularization parameter and Θ(∆E(x′)) is the regularization functional.
Equation (18) is discretized to give:

minJ
(
∆Ẽ, α

)
=
(
G̃·∆Ẽ− D̃

)T(G̃∆Ẽ− D̃
)
+ α
(

D̃∆Ẽ
)T(R̃∆Ẽ

)
(19)

Let the first-order partial derivative of Equation (19) be equal to 0, and the extreme
value of Equation (19) can be obtained as follows:(

G̃TG̃ + αH̃
)

∆Ẽ = G̃T D̃ (20)

where H̃ is the derived matrix of Θ(E(x′)).
For a linear problem, ∆Ẽ can be solved from Equation (20). For a nonlinear problem, it

needs to be solved by many iterations, thus:

Ẽn+1 = Ẽn + ∆Ẽn (21)

When the convergence condition of Equation (21) is satisfied, the value En+1 is taken
as the real elastic modulus.

3. Improvement of Gradient Regularization Method [28]

The regularization parameter, α, plays a key role in the process of solving the inverse
problem, and it will affect the stability and accuracy of the solution. When it becomes large,
the stability of the solution is improved, but the accuracy is reduced, and vice versa when
it becomes small. Therefore, the choice of α is key to the balance between the accuracy
and stability.

In the original GRM, when looking for the parameters, the values are completely
different in each iteration, even by several orders of magnitude. The search for α is difficult.
Therefore, based on the original GRM, the following linear transformation was adopted to
normalize the diagonal elements of the Jacobi matrix.

After discretization, we have:

G =
(
G1 . . . Gj . . . Gn

)
(22)
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∆E =
(
∆E1 . . . ∆Ej . . . ∆En

)T (23)

Gj =
(
G1j . . . Gij . . . Gmj

)T
=

(
∂B1

∂Ej
. . .

∂Bi
∂Ej

. . .
∂Bm

∂Ej

)T

(24)

where n is the number of unknown elastic moduli and m is the number of supplementary
test data. Let:

G =

(
G1

‖G1‖2
. . .

Gj

‖Gj‖2
. . .

Gn

‖Gn‖2

)
(25)

∆E =
(
‖G1‖2∆E1 . . . ‖Gj‖2∆Ej . . . ‖Gn‖2∆En

)T (26)

Equation (15) is discretized as:
G̃∆Ẽ = D̃ (27)

Substituting G, ∆E into Equation (20):(
GTG + αR̃T R̃

)
∆E = GT D̃ (28)

where

GTG =

(
GT

i
‖Gi‖2

·
Gj

‖Gj‖2

)
n×n

(29)

When i = j,
GT

i
‖Gi‖2

·
Gj

‖Gj‖2
=

GT
i

‖Gi‖2
· Gi
‖Gi‖2

= 1 (30)

∆Ẽ =

{
∆Ẽ1

‖G1‖2
. . .

∆Ẽj

‖Gj‖2
. . .

∆Ẽn

‖Gn‖2

}T

(31)

So far, the Jacobi matrix is normalized, which will not only improve the search speed,
but also increase the accuracy of its solution.

4. Numerical Experiments and Analysis

To verify the method in this paper, a typical steel truss bridge model was selected,
and a series of numerical experiments were carried out with the common finite element
analysis program developed with Fortran Language based on the GRM method.

4.1. Prototype for Numerical Experiments

As shown in Figure 1, a plane steel truss model was selected for the numerical simula-
tion analysis [35]. In this structure, each bar had a pipe cross section with an outer diameter
of 1.71 cm, and a wall thickness of 0.2 cm. The total length of the truss was 5.6 m, with
0.4 m in each bay, and the height of the truss was 0.4 m. The model has 53 bar elements,
28 nodes, and 81 degrees of freedom. Among them, Nos. 1–14 elements were lower chord
bars; No. 15–26 elements were upper chord bars; Nos. 27–53 elements were vertical bars,
and the material parameters of each bar was the same (see Table 1 for specific parameter
information). The bars were connected at pinned joints. There were two supports in this
truss structure: a pin support at the left end and a roller support at the right end of the
lower chord. The roller support at the right end was constrained in the vertical direction.
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Table 1. Basic material parameters of the truss bridge.

Parameter Value

Modulus of elasticity, E 2.0 × 108 Pa
Moment of inertia, I 3.556 × 10−4 m4

Section area of each bar, A 1.38 × 10−4 m2

Density, r 5.69 × 107 kg/m3

It was assumed that the external load acts on node 21, F = −10 kN (vertically down-
ward), and the strain value of each element can be calculated through the verse problem
calculation with the known design values of material parameters, as shown in Table 2.

Table 2. The calculated strain value of each element.

Element Strain (×10−3) Element Strain (×10−3)

1 9.54 28 8.13
2 9.17 29 7.23
3 8.46 30 5.96
4 7.40 31 4.34
5 5.98 32 2.35
6 4.25 33 3.54
7 2.45 34 2.35
8 2.45 35 4.34
9 4.25 36 5.96
10 5.98 37 7.23
11 7.40 38 8.13
12 8.46 39 8.67
13 9.17 40 9.11
14 9.54 41 8.74
15 9.17 42 8.02
16 8.45 43 6.94
17 7.38 44 5.49
18 5.96 45 3.69
19 4.21 46 1.53
20 2.21 47 1.53
21 2.21 48 3.69
22 4.21 49 5.49
23 5.96 50 6.94
24 7.38 51 8.02
25 8.45 52 8.74
26 9.17 53 9.11
27 8.67

4.2. Study on the Availability of the Method

To verify the availability of the method, it was assumed that the material parameters
are unknown. To simplify the problem of the regularity study of the method, the initial
elastic modulus values of the bottom chord, the middle web member, and top chord were
assumed to be the same and set as E1, E2 and E3, respectively, according to the position
of the member; these values were estimated according to experience. The strain values of
elements 2, 21, 36, and 44 were obtained by the verse problem calculation as the simulated
strain test data. The termination criterion was set to 1 × 10−10. If the method is correct,
the design parameter values will be identified. The iteration process of the numerical
experiment is shown in Table 3.
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Table 3. Iteration process (unit: 108 N/m2).

Step E1 E2 E3 Objective Function

E0 1.00 1.50 1.80 /
1 1.49 1.85 2.02 7.55 × 10−1

2 1.87 1.97 2.00 1.51 × 10−1

3 1.99 2.00 2.00 9.01 × 10−3

4 2.00 2.00 2.00 2.68 × 10−5

5 2.00 2.00 2.00 6.68 × 10−9

6 2.00 2.00 2.00 2.16 × 10−13

True value 2.00 2.00 2.00

The data in Table 3 show that the calculated elastic modulus value finally converged
to the design value of the model and satisfied the requirement of the objective function
in the sixth iteration step, which proves the availability of the method and reflects its
high efficiency.

4.3. Elastic Parameter Identification under Different Initial Elastic Moduli Values

The strains of elements 2, 21, 36, and 44 were still selected as supplementary conditions
for the inversion calculation. Three groups of different elastic moduli values were taken
as the initial elastic moduli values, and the calculation results are shown in Table 4 (the
iteration convergence progress is shown in Figure 2). The identification results in Table 4
show that the selection of the initial value of the elastic moduli had little effect on the
identification results as long as the supplementary test information was accurate, but it
would have a certain impact on the identification speed. However, because of the high
efficiency of the GRM, the impact on the computational efficiency was almost negligible.
Still, for large-scale engineering calculations in practical application, the initial value should
be estimated according to the engineering information as far as possible to improve the
calculation efficiency as much as possible. The information can be the initial design value of
the elastic modulus in the design files, or some test data at the beginning of construction, etc.

4.4. Effect of Amounts of Strain Test Data on the Identification Results

The initial elastic moduli values (1.3, 1.6, 1.9) × 108 N/m2 were selected, along with
different amounts of strain data from Table 2 as supplementary conditions to conduct the
numerical simulation. The calculation results are shown in Table 5 (the convergence process
is shown in Figure 3).

Table 4. Iteration results with different initial values.

Set No. Initial Value
(×108 N/m2) Total Iteration Steps Solution

(×108 N/m2) Error (%)

1
E1 = 1.0

6
2.0 2.10 × 10−11

E2 = 1.3 2.0 5.80 × 10−11

E2 = 1.5 2.0 7.85 × 10−11

2
E1 = 1.2

5
2.0 7.65 × 10−10

E2 = 1.5 2.0 6.20 × 10−10

E3 = 1.7 2.0 5.60 × 10−11

3
E1 = 1.3

5
2.0 5.14 × 10−10

E2 = 1.6 2.0 2.86 × 10−10

E3 = 1.9 2.0 3.00 × 10−12
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Figure 2. Results under different sets of initial values. (a) Results under the first set of initial values.
(b) Results under the second set of initial values. (c) Result under the third set of initial values.

Table 5. Results with different numbers of strain test data (×108 N/m2).

Number of Strain
Test Data Total Iteration Steps E1, E2, E3 Error (%)

2 5
1.69 −15.5%
1.71 −14.5%
3.57 157.0%

3 5
2.0 4.77 × 10−10

2.0 1.74 × 10−10

2.0 1.00 × 10−11

5 5
2.0 5.43 × 10−10

2.0 1.38 × 10−10

2.0 2.50 × 10−12

10 5
2.0 8.61 × 10−10

2.0 9.85 × 10−11

2.0 1.15 × 10−11

15 5
2.0 9.72 × 10−10

2.0 2.10 × 10−10

2.0 5.00 × 10−13

53 6
2.0 1.15 × 10−11

2.0 1.20 × 10−11

2.0 1.10 × 10−11
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Figure 3. Calculation results of different numbers of strain test data.

It can be seen from the above numerical experiment results that when the number
of supplementary conditions is less than the number of unknown elastic parameters,
the calculation cannot converge to the true elastic moduli value. Thus, the number of
supplementary conditions in practical projects is at least greater than or equal to the
number of unknown parameters. However, the calculated results are still convergent to
the elastic parameters of the model regardless of whether the least three elements or all
53 elements of the strain data are selected as the supplementary conditions. Therefore, in
an actual project, it is enough to select a certain number of measured values as additional
information, more is not necessarily better. The number of measuring points can be selected
according to the actual situation of the site, which not only reduces the construction cost,
but also reduces the time cost and improves the operation efficiency.

4.5. Identification of Elastic Parameters with Strain Test Data at Different Locations

We still took (1.3, 1.6, 1.9) × 108 N/m2 as the initial elastic moduli values. When the
locations were all scattered at the lower chord (the red part as shown in Figure 4a) and the
locations were all concentrated at the support position (the red part as shown in Figure 4b),
the iteration process is shown in Tables 6 and 7, respectively.
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Figure 4. (a) Selection of scattered measuring points of the lower chord. (b) Selection of centralized
measuring points at the support.

Table 6. Calculation results with centralized measuring points of the lower chord.

Number of Iterations E1 E2 E3 Objective Function

E0 1.30 1.60 1.90 /
0 1.52 2.78 2.43 3.86 × 10−1

1 1.81 2.32 2.09 1.26 × 10−1

2 1.96 2.03 2.02 2.71 × 10−2

3 2.00 2.00 2.00 1.20 × 10−3

4 2.00 2.00 2.00 5.66 × 10−8

5 2.00 2.00 2.00 1.52 × 10−12

Table 7. Calculation results with centralized measuring points at the support.

Number of Iterations E1 E2 E3 Objective Function

E0 1.30 1.60 1.90 /
0 1.64 1.96 2.32 3.23 × 10−1

1 1.91 2.01 2.01 1.15 × 10−1

2 2.00 2.00 2.00 5.20 × 10−3

3 2.00 2.00 2.00 8.13 × 10−6

4 2.00 2.00 2.00 1.11 × 10−9

5 2.00 2.00 2.00 1.09 × 10−12

The above numerical experimental results show that there was little difference in the
accuracy of the identification results across different locations of the selected measuring
points. The true elastic moduli values could be accurately identified. This is of great
significance for practical engineering applications. In practical engineering, according
to the actual construction conditions, the time-saving and labor-saving points can be
preferentially considered for strain measurement to improve the construction efficiency.
Of course, the measuring points with obvious strain change should be selected wherever
possible, which is conducive to ensuring the accuracy of the solution.

4.6. Studies on Numerical Stability

In practical engineering, test errors are often caused by other factors such as the
accuracy of the instrument or the non-standard test operation. Random errors of +5% and
+10% were artificially applied to the strain values of elements 2, 21, 36, and 44 in Table 2,
and the calculation results are shown in Table 8. It can be seen from the identification
results in Table 8 that after considering the model error, the iteration process is stable and
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the solution changes regularly and stably with the change in the error, which proves the
good numerical stability of the method in this paper.

Table 8. Calculation results under different error conditions.

Step 0% +5% +10%

E0
1.3
1.6
1.9

1.3
1.6
1.9

1.3
1.6
1.9

1
1.75
1.91
2.01

1.71
1.84
1.92

1.67
1.77
1.83

2
1.97
1.99
2.01

1.88
1.90
1.91

1.81
1.82
1.82

3
2.00
2.00
2.00

1.90
1.90
1.90

1.82
1.82
1.82

4
2.00
2.00
2.00

1.90
1.90
1.90

1.82
1.82
1.82

err(%)
0
0
0

4.76
4.76
4.76

9.09
9.09
9.09

4.7. Identification under Different Numbers of Unknown Parameters

In practical engineering, the elastic modulus of each region may not be equal, so it
should be assumed that the elastic parameters of each measured region are unknown and
must be identified. Since the initial value of the initial elastic modulus had no effect on the
parameter identification, it was assumed that the initial elastic modulus of all members
was 1.5e8 N/m2. The identification results under five unknowns (six simulated test strains
were randomly selected), 10 unknowns (11 simulated test strains were randomly selected),
15 unknowns (16 simulated test strains were randomly selected), and the elastic moduli of
53 elements were all unknown (53 test strains are all selected) were studied, respectively.
The calculation results of the objective function are shown in Table 9, and the convergence
process is shown in Figure 5.

Table 9. Convergence process of the objective function under different unknowns.

Number of Iterations
Number of Unknowns

5 10 15 53

0 4.00 × 10−1 7.335 × 10−1 1.071 3.536
1 2.35 × 10−2 4.249 × 10−2 6.250 × 10−1 2.048 × 10−1

2 7.34 × 10−5 1.194 × 10−4 2.968 × 10−3 1.245 × 10−3

3 3.07 × 10−8 6.589 × 10−8 2.278 × 10−3 3.475 × 10−4

4 4.79 × 10−13 6.917 × 10−13 2.078 × 10−5 1.969 × 10−6

5 2.482 × 10−9 1.347 × 10−10

6 2.090 × 10−12 1.277 × 10−12
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When the number of unknowns increased to 53, the calculation results still converged
to the true elastic moduli values, which proves the effectiveness of the method when applied
to large-scale operations. However, Table 8 shows that when the number of unknowns
increased to 15 and 53, more iterations were needed to reach the objective function value
than when the number of unknowns was 5 or 10. Thus, when the number increases to a
certain extent, the solution process will become longer. In practical engineering, according
to the position of the members and their properties in the structure, the members with the
same elastic modulus value should be assessed and set as the same unknown parameters
as much as possible in combination with prior experience to improve the efficiency of the
solution and reduce unnecessary test work.

5. Conclusions

In this paper, a mathematical analysis model of elastic modulus identification was
constructed, based on strain test data and the improved gradient regularization–finite
element method. The numerical analysis showed that the proposed method had very high
accuracy and computational efficiency. Finally, the related problems in this paper can be
explained and discussed as follows:

(1) The elastic parameter identification method based on the strain test and gradient
regularization–finite element method in this paper is available and efficient. However,
in practical application, the accuracy of the test data must be ensured. At present, the
strain measurement technology for civil structure health monitoring has been very well-
developed, the most commonly used being resistance type strain gauges [36], vibrating wire
type gauges [37], and fiber optic sensors [38]. At present, the accuracy of the commonly used
strain sensors can reach 0.1~0.5 µε. The rapid development of modern testing technology
provides a technical guarantee for the proposed method.

(2) In the elastic stage, the proposed method only needs to determine the additional
external load and the geometric dimensions of the structure at the moment of the test and
has nothing to do with the initial stress of the structure, so it needs less input information
and improves the identification accuracy.

(3) In fact, the identification method in this paper is also applicable to the identification
of elastic parameters of other structures, but the solution model used in the verse analysis
process is different according to the characteristics of various structures.
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