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ABSTRACT Wind turbines are one of the primary sources of renewable energy, which leads to a sustainable
and efficient energy solution. It does not release any carbon emissions to pollute our planet. The wind farms
monitoring and power generation prediction is a complex problem due to the unpredictability of wind speed.
Consequently, it limits the decision power of the management team to plan the energy consumption in an
effective way. Our proposed model solves this challenge by utilizing a 5G-Next Generation-Radio Access
Network (5G-NG-RAN) assisted cloud-based digital twins’ framework to virtually monitor wind turbines
and form a predictive model to forecast wind speed and predict the generated power. The developed model
is based on Microsoft Azure digital twins infrastructure as a 5-dimensional digital twins platform. The
predictive modeling is based on a deep learning approach, temporal convolution network (TCN) followed
by a non-parametric k-nearest neighbor (kNN) regression. Predictive modeling has two components. First,
it processes the univariate time series data of wind to predict its speed. Secondly, it estimates the power
generation for each quarter of the year ranges from one week to a whole month (i.e., medium-term
prediction) To evaluate the framework the experiments are performed on onshore wind turbines publicly
available datasets. The obtained results confirm the applicability of the proposed framework. Furthermore,
the comparative analysis with the existing classical prediction models shows that our designed approach
obtained better results. The model can assist the management team to monitor the wind farms remotely as

well as estimate the power generation in advance.

INDEX TERMS Digital twin, machine learning, predictive models, wind energy, 5G.

I. INTRODUCTION

Nowadays, wind farms are a common sight in the United
Kingdom to generate clean energy as well as contribute to
achieving the net-zero emission goal by 2050 [1]. One of
the primary sources of harmful emission is the generation of
electricity using fossil fuels (i.e., coal and gas). To keep the
environment clean, wind energy is a plentiful source to gener-
ate environment-friendly energy. The wind turbines allow us
to use the power of the wind to rotate generators and produce
energy. The wind turbine performance varies with the change
of season as well as geographic location [2], [3]. Therefore,
the same wind turbine has different performances in different
months and at various locations. It poses challenges for the
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FIGURE 1. An active power generation and theoretical power curves
concerning wind speed are presented. A theoretical power curve provides
information about the differences in generated power from the wind
turbine as well as with theoretical power.

energy management team to handle uncertainties. To monitor
the performance, the modern wind turbines are equipped with
supervisory control and data acquisition (SCADA) unit [4].
Itis a cost-effective and data-driven approach to store the data
streams for further analysis. The selected data dimensions
from the SCADA unit are presented in the following Fig. 1.
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FIGURE 2. An illustration of 5G network-assisted architecture for digital twin to forecast the

generated power by wind turbines.

In Fig. 1, the vertical axis presents the power generation
with its units kilowatt (kW), and the horizontal axis presents
wind speed with its unit meter per second (m/s). It provides
the theoretical power and active power curve with cut-in (V,),
rated output (V;), and cut-out (V) region. The (V) region
specifies where the wind has no power to generate the energy.
The region between (V,) and (V;) is a rapid growth power
generation that depends on wind speed. Similarly, (V;) is
obtained rated output of the wind turbine, and (V;) region
shows the power generation stop due to high winds. The
power curves present the non-linear relationship between
the generated power and the wind speed incidence at the
height of the rotor hub [5]. The dynamical behavior can be
expressed as:

1 3
Py(v) = EpAv (1

where P, is power associate with wind speed v of wind, p
refers to air density, and A is the surface area of the turbine
rotor.

The data-driven approaches and curve fitting techniques
are developed to predict the performance [6], condition
monitoring [7], and fault diagnostics [8] of wind farms.
At the same time, the current challenges include accurate
forecasting of power generation and the limitation of real-
time data exploration of the whole wind farm. The devel-
oped forecasting approaches are based on statistical [9] and
machine learning models [10], [11]. Yang ef al. [12] intro-
duced a data preprocessing technique to estimate the data
distribution over the quantile of years. They proposed a
statistical approach based on bi-directional Markov chain
interpolation for theoretical power calculation. It helps to
obtain realistic results. Yun ef al. [2] developed a statistical
framework based on multiple spline regression model for the
power curve modeling of the wind turbine. Their approach
described the complex nonlinear relationship between wind
speed and wind power using different basis functions and

VOLUME 10, 2022

different numbers of knots inside multiple spline regression.
Khosravi et al. [11] applied machine learning algorithms to
predict the wind speed for Osorio wind farm in the south of
Brazil. They applied neural networks, support vector regres-
sion, and fuzzy inference systems optimized with computa-
tional intelligence-based algorithms. They reported a neural
network-based model outperforms as compared to the con-
sidered model in the study. Furthermore, they conclude wind
speed has a direct influence on the generated power. In our
previous work [6], we also conclude the relationship between
wind and generate power followed by deep learning model
prediction.

The recent advancement in machine learning approaches
especially deep learning models has a breakthrough to solve
complex problems. In case of temporal sequence modeling,
deep learning approaches has the ability to consider the long
history of the input data which leads to an accurate result
as compared to its classical approaches. Secondly, a huge
amount of data is available from SCADA units that make
such models more robust to learn and generalize the concept
of prediction. In the continuation of our research towards
wind energy, the developed model considers wind speed as
univariate time-series data to forecast the whole month and
each week. Later, this wind speed forecasting is further used
to predict power generation.

In terms of networked systems, digital twins have been
considered as an emerging technology to enable a wide
range of typical applications such as manufacturing, 5G
and beyond networks, intelligent transportation systems,
climate change, and smart cities [13]. In [14], a digi-
tal twin-based intelligent cooperation framework of UAV
swarm integrated with machine learning algorithm is inves-
tigated to tackle the problem of real-time control of the
behaviours of UAV swarm. Digital twins can additionally
evolve their context-awareness capabilities to identify cyber-
security issues in real-time, which can be effectively applied
to smart grid deployments [15]. More importantly, digital
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twins technology is a powerful tool to address problems
of joint communication and computation task offloading
in mobile edge computing (MEC) [16] to enable various
mission-critical applications in the industrial Internet of
things [17], [18]. Therefore, designing digital twins-based
solutions significantly contributes to the development of both
academia and industry in the digital era.

The real-time data exploration and a feedback loop to
the wind farms are possible through digital twins’ tech-
nology. It provides next-generation computer-oriented solu-
tions. It can create a digital copy of wind farms connected
with the physical wind turbines, where supervisory control
and data streams are accessible for analysis and prediction.
Olatunji et al. [19] briefly introduced the digital twin tech-
nology in wind turbine fault diagnosis and condition moni-
toring. They highlight the wind industry transformation to the
next level with enhanced accessibility and availability using
digital twins technology. Similarly, Kishnamoorthi et al. [20]
developed a digital twin based model to predict the remaining
life of offshore fixed and floating wind turbines as a predictive
maintenance strategy. The model is based on operational data
of SCADA units and a physics-based approach to predict the
remaining life of wind turbines.

Many researchers have designed various digital twin
models for predictive maintenance and have contributed
significantly to improvements in wind energy technology.
At present, none of the existing digital twins can predict
power generation and real-time monitoring. Therefore, this
study proposes a novel framework to process the temporal
data stream to forecast the wind speed and predict the gen-
erated energy. Consequently, it can provide virtual access to
the wind turbines 24 by 7 without visiting the physical wind
farms. While its feedback loop makes the communication
back and forth with wind turbines for monitoring purposes.
The contribution of our work is outlined as follows:

e Our framework is built over a 5G-Next Generation-
Radio Access Network (5G-NG-RAN) assisted cloud-
based digital twin model for understanding and
analyzing wind farms. It is a cost-effective solution;
hence, digital twins modeling is possible with the pay-
as-you-go cloud services.

o The designed machine learning pipeline has two novel
components—first, the forecasting of wind speed based
on an advanced temporal convolutional neural (TCN)
network. Second, the processing of wind forecast to
predict the power generation for a month, including each
quarter (i.e., medium-term analysis).

The rest of this paper is organized as follows. Section II
presents the proposed framework details with methods and
procedures. Section III, provide the results, discussion, and
performance of the framework. Finally, Section IV concludes
our findings.

Il. NETWORK MODEL, METHODS AND PROCEDURES
The network-assisted prediction allows support from edge
infrastructure to form a setup of a collaborative system
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FIGURE 3. A cloud-based framework to model the wind farm using digital
twins technology and predictive modeling to forecast the generated
power.

between the physical wind farm and the digital twin of it.
We specifically considered Next Generation Radio Access
Network (NG-RAN) as a core architecture shown in Fig. 2.
The NG-RAN divides gNB into a Control Unit (CU) and
a Distributed Unit (DU). gNB-CU forms the core of the
network handling 5G functions such as Access and Mobility
Management Function (AMF), User Plane Function (UPF)
and all the associated Security Functions (SF) [21]. The
gNB-DU forms the edge part of the network interacts with
the wind farm through gateways and relays information via
gNB-CU to the private cloud setup with a virtual (digital
twin) wind farm to perform predictions. The advantage of
using SG-NG-RAN is that it allows better integration of cloud
services as wind farms are geographically isolated regions
than the data centers and can also ensure better coverage
with lower latency offering more real-time services. It also
reduces the cost of deployment by reducing the number of
near-farm data centers. Moreover, better resource utilization
is attainable if a large amount of data from the wind turbines
must be shared between the physical and the digital systems.
Furthermore, a basic framework considering the interaction
between the wind farm and the virtual farm without the
network infrastructure, illustrated in Fig. 3, helps to under-
stand the actual workflow. It offers a real wind farm that is
connected to its digital twin ‘““virtual wind farm”. Each wind
turbine has supervisory control and data acquisition unit in a
wind farm to provide the data for monitoring. The captured
data logs are connected with virtual wind turbines with the
help of digital twins modeling. Our framework processed the
data logs to perform predictive modeling. It has the ability to
report the possible generation of electric power from the wind
farm in the coming days.

A. DIGITAL TWINS MODELING

The wind turbine supervisory control and data acquisi-
tion (SCADA) unit is modeled as digital twins using the
Microsoft Azure platform. It is based on platform as a
service (PaaS) to model digital twins and provides digital
monitoring as a next-generation computer-oriented solution.
Furthermore, a cloud-based infrastructure provides a cost-
effective solution. The 5D modeling approach [22] is fol-
lowed to model the wind farms. The Eq. 2 depicts the model.

Qpr = (PE, VR, DC, CS, Ss) )
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FIGURE 4. A knowledge graph of wind farms which are connected to
monitor the behavior of each wind turbine.

where Qpr is digital twins wind farm, PE is physical enti-
ties, VR is virtual representation, DC is data curation, CS is
communication scheme, and Ss for services. The details about
each dimension is presented as follows:

1) PHYSICAL ENTITIES (PE)

The wind turbines consist of various physical entities, includ-
ing mechanical devices, monitoring sensors, SCADA units,
and activities processes. The PE can be categorized into a
unit level, system level, and system of system-level [23]. The
SCADA unit is considered at PE level, which is an essential
tool to collect the data for monitoring the behavior of wind
turbines. It enables the analyst to access the historical and
real-time data of wind turbines for further analysis.

2) VIRTUAL REPRESENTATION (VR)

An entity in the virtual environment represents each SCADA
unit of a wind turbine to construct the wind farm. The VR
has the ability to build a connection with the wind turbines
and replicate the behavior virtually. The wind farms can be
connected even they are physically apart using a knowledge
graph as shown in Fig. 4.

In Fig. 4, two wind farms are connected using a knowl-
edge graph with five and two wind turbines SCADA units,
respectively. Similarly, each wind farm has an interface that
connects the SCADA unit of wind turbines. A relationship
and association are defined using digital twins definition
language (DTDL) to join the SCADA unit. The DTDL is an
XML-based language, and its snapshot is present in appendix
Fig. 13. It also has the ability to provide a mechanism to
connect sensors and link the real-time readings for further
analysis.

3) DATA CURATION (DC)
The DC is the central part of digit twins. The temporal data
streams of SCADA units are curated to monitor the SCADA
units. It provides real-time access to the PE. The following
output presents the wind speed, direction, generated power,
and theoretical power of the wind turbines. Furthermore,
it also gives metadata information.

The connected SCADA unit presents the real-time values
in the digital twin explorer of Microsoft Azure. It shows the
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windSpeed : 5.3
windDirection : 259.9
generatedPower: 380.04
theoraticalPower : 416.32
Smetadata {5}

Smodel {1} : dtmi:windfarm:Windturbine;1l
windSpeed {1}

lastUpdateTime : 2021-09-02T14:22:11.45992112z
windDirection {1}
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FIGURE 5. The connected SCADA units data in Microsoft Azure digital
twin explorer.
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FIGURE 6. Causal convolution block with two layers with kernel size 2.

digital twin’s ID, etag, real-time values of the SCADA unit,
and metadata information about the last update of the specific
unit. It also has powerful structure query language support
to have deeper analysis inside the constructed knowledge
graph. A service model could be deployed over it to make
an informed decision.

4) COMMUNICATION SCHEME (CS)

Digital twins are dynamically connected with PE units using
a representational state transfer application programming
interface (REST-API). The CS also connects the DC for real-
time communication. Such CS enables the functionality of
the digital twins model to communicate in real-time. It is
also responsible for data flow from the PE-SCADA unit to
VR-SCADA units.

5) SERVICES (Ss)

The Ss is an essential part that provides an adapter to com-
municate with other PE, model services, data analysts, etc.
It provides support to customized services that can be built
outside of the model. The proposed framework is based on
cloud computing infrastructure, which already has a stan-
dards protocol for service delivery.

B. PREDICTIVE MODELING

The predictive modeling component process two sources of
information. First, a wind speed as a univariate time series
using a novel deep learning model based on a temporal
convolutional neural (TCN) network. The TCN is modern
deep neural architecture and has proved better results as
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compared to its sequence modeling counterparts as well as
more efficient in terms of computation time [24]. It combines
the power of dilated convolution and residual block. Second,
the forecasting results are further processed to predict the
power generation from wind turbines using k-nearest neigh-
bor regression. The input to the TCN is wind speed data
stream, and it is defined as:

WS = (ws (1) ,ws () ,ws(t3), ..., ws (t,,))T 3)

where WS is wind speed, fii = t + At and
WS = ()T represents the value of wind speed at
any time instance ¢. The basic assumption is made that
pws;y1|ws(ty), ws(t2), ws(t3), . . ., ws(t,)) does not depends
on the future timestamps. It is realistic assumption in case of
wind speed forecasting. A function f is defined as:

f(WS) = ws(tnim) “

where ws(t,+,,) denotes the forecasting of month or any quar-
ter inside it. The function f contains the dilated convolution
layers residual blocks. The dilated convolution is defined as:
k—1
COvs) =Y f(iWsn—a.i )
i=0
where C is dilated convolution operation, k is the filter size
being learned, and & — d..i consider the past sequence of wind
speed. It allows the network to operate on a coarser scale
rather than a normal convolution but more efficient as shown
in Fig. 6.
The following expression computes the layer of TCN:

(input length — 1)
kernel — 1

Nubmer of layers = ’7 (6)

A mean squared error (MSE) loss function is used for
training to converge the temporal convolution neural network.
It is calculated as:

c=" Z (vi — 1)’ ™
- l l
e

The output is passed to machine learning model k nearest
neighbor (KNN) regression [25] to regress the value of energy.
It is a supervised nonparametric regression technique that cal-
culates the distance of the test point in the feature space. The
goal is to predict the power generation as a linear combination
of its k nearest neighbors using a distance metric. The & is a
hyper-parameter that indicates the number of neighbors to be
considered for the prediction of GP. We find out the optimal
number of neighbors (i.e., k = 9) using grid search. Its graph
with further discussion is presented in Section III. The input
to the model is predicted wind speed WS that needs to predict
the generated power GP. It can be defined as a function:

fWS) — GP ®)

It enables the prediction of generated power over the fore-
casting of wind speed. Consequently, it can assist the team
makes informed decisions over the predicted energy.
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TABLE 1. The wind turbine with data collection information.

Wind turbine

Manufacture

Dataset information

Sinovel wind group company
1.5 MW (Mega Watt)
January 1, 2018

Wind turbine capacity

Dataset start data

Dataset end date December 31, 2018
Data frequency 10 minutes
Data validation SCADA operator

C. DATASET

A publicly available onshore wind farm dataset [26] is used
for our experiment. The wind farm is located in Yalova, the
northwestern region of Turkey, and operation since 2016.
About the regional information, Yalova is located at the lat-
itude of 40.65502 N and the longitude of 29.27693 E in the
Marmara region. The deployed wind turbines are manufac-
tured by Sinovel wind group company. These wind turbines
are equipped with a SCADA unit, and four measurements
are reported at 10 minutes intervals. (1) Active power: it
reports the power generated by the wind turbine using the
stochastic nature of wind speed. (2) Wind speed: it measures
the speed at the height of the rotor hub of the wind turbine.
(3) Wind direction: it provided the direction of the blades that
turns automatically to the direction where the wind blows
(4) Theoretical power: it is the power value computed by
the manufacturing formula inside the control system of the
SCADA unit. Our experiments are based on the data recorded
during the period of January 1, 2018 — December 31, 2018.
The data was collected and stored by SCADA unit. The
SCADA units have the ability to store, retrieve, and exports
the data for a variety of stakeholders. The SCADA system
operator has a responsibility to validate the incoming data.
The wind turbine with data collection information is present
in Table. 1.

The active power generation of a wind turbine has a
strong correlation with wind speed. The active power is
widely employed for monitoring wind turbine performance
and power generation [27], [28]. We considered the wind
speed as a temporal data series to predict the intensity of the
wind in the coming days. Based on wind prediction we further
forecast the “‘active power” generation. The obtained results
are explained in the following section.

Ill. RESULTS
This section explains and presents the obtained result, fol-
lowed by a discussion.

A. WIND FORECASTING

To understand the data, the data is explored. We found that
the dataset contains missing values at a few time intervals
that indicate maintenance of wind turbines or other possible
reasons. We replace such value with previous time-stamp
observation. It is a necessary step to process the data in a

VOLUME 10, 2022



M. Fahim et al.: Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines

IEEE Access

component
—— Actual
—— Prediction

component
—— Actual
—— Prediction

10 -

18 19 20 21 22 23 24 25 26 27 28 29 30 31
Mar
2018
component
— Actual
20 - —— Prediction

component
— Actual
—— Prediction

FIGURE 7. First quarter wind prediction for 7, 14, 21 and full month.

time-series manner. We split the dataset into four quarters and
make predictions for a week, two weeks, three weeks, and the
entire month of each quarter Q1, 02, 03, and Q4. The training
model parameters are presented in Table 2

TABLE 2. The TCN model hyperparameters.

Hyperparameters | Value

Number of epocs | 50

Dialation 2
Kernel size 5
Number of filters
Dropout 0.1

The following two performance metrics are considered to
measure the performance of the model.

1 .
MAE = ~ le |yi = il ©)
1=
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FIGURE 8. Second quarter prediction for 7, 14, 21 and full month.

(10)

where MAE is mean absolute error, RMSE is the root mean
squared error, y is the actual value from the test set, and
y is the predicted value from the trained model. The MAE
measures the average magnitude of the errors by consider-
ing the absolute value, which presents the accuracy of the
prediction. The RMSE measures the forecasting error by
differencing the prediction and the actual value, which is
squared, average, and then followed by a square root. Both
MAE and RMSE can be used together to present the model
errors. The RMSE provides large error values as compared to
MAE because it gives relatively high weight to large errors.
If both performance measures have the same value then it
means the error of the model has the same magnitude. The
first quarter prediction is presented in Fig. 7.
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FIGURE 10. Fourth quarter prediction for 7, 14, 21 and full month.
FIGURE 9. Third quarter prediction for 7, 14, 21 and full month.

Q3 and Q4 results are presented in Fig. 9, 10 and perfor-
mance measure in Table 5, 6. The obtained results shows
the TCN model learn the wind speed correctly and obtained
performance measures results confirms it.

Fig. 7 presents the results of the TCN model. It shows
the predictions are close enough but have a difference with
actual wind speed. This difference is measured in terms of
performance metrics and reported in Table 3. The second
quarter includes the month of April, May, and June, while
it predicts the 7, 14, 21, and 30 days as shown in Fig. 8.

TABLE 4. Performance measure for second quarter to predict the wind
speed generation.

TABLE 3. Performance measure for first quarter to predict the wind ] One Week | Two Weeks | Three Weeks | Full Month
speed generation. Metrics Q2) Q2) Q2) Q2)
Metrics One Week | Two Weeks | Three Weeks | Full Month MAE 0.88 0.84 0.84 0.86
Qn @Qn QD QD RMSE 1.25 1.28 1.29 1.40
MAE 1.36 1.71 1.69 1.58
RMSE 1.76 2.17 2.13 2.05

B. POWER GENERATION PREDICTION

The power generation prediction is based on kNN regression
model. The optimal value of k is searched using the grid
search as shown in Fig. 12. The x-axis presents the value of k

Fig. 8 presents a close prediction to the actual wind
speed. The performance measure reported in Table 4 con-
firms the low error rate of our model prediction. Similarly,
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FIGURE 11. The power prediction and actual power generated for each
quarter Q1, Q2, Q3,and Q4 from left to right using kNN regression.

that means required neighbors and y-axis presents the mean
absolute error.

The forecasting of wind speed over the period of a month
is used to predict power generation. The results of kNN
regression are presented in Fig. 11.

The obtained results are close enough to the actual power
generation. The developed model not only predicts the wind
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TABLE 5. Performance measure for third quarter to predict the wind

speed generation.

Metrics One Week | Two Weeks | Three Weeks | Full Month
(Q3) (Q3) (Q3) (Q3)

MAE 0.67 0.65 0.69 0.69

RMSE 0.88 0.85 0.93 0.99

TABLE 6. Performance measure for fourth quarter to predict the wind

speed generation.

Metrics One Week | Two Weeks | Three Weeks | Full Month
Q%) Q4 Q4 Q4
MAE 0.63 0.69 0.68 0.71
RMSE 0.90 0.93 0.93 1.09
-— k
380 -
360 -
340
320 - Optimal paint (k=9)

300 -

280 -
0 ] 20 30 40 30

FIGURE 12. The optimal value of k using the grid search.

TABLE 7. Performance measures for power prediction.

Model Jan - Mar Apr - Jun Jul - Aug Sep - Dec
(QI-MAE) | (Q2-MAE) | (Q3-MAE) | (Q4-MAE)
Our Model 263.59 230.87 226.49 295.46
DT Regression 380.12 349.86 281.64 444.27
Random Forest 326.89 294.23 247.79 389.92
SV Regression 390.72 497.43 307.93 460.45

speed but also predicts power generation. It can help the
management team know in advance about the generated
power and plan the storage in smart grids. Our objective is to
design and develop an advanced pipeline to predict the power
generation that can be used for an energy management team
to make a timely decision.

C. COMPARATIVE ANALYSIS

To validate the performance of our model, we compared the
results with three state-of-the-art machine learning models.
First, the decision tree is a successful approach in predic-
tive modeling as a supervised learning approach. It con-
structs the tree sequentially by calculating the entropy of
the attributes. The theoretical background is rooted in infor-
mation theory. During the learning phase of the decision
tree it split the nodes by adjusting the numerical parameter
of threshold function [29]. Second, the random forest is a
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1|

2 i “dtmi:ADT:Windfarm;1",
@type”: "Interface”,

4 “displayName": "Wind Farm”,

5 “@context™: "dtmi:dtdl:context;2",
“contents™: [

{

2 "name™: "contains”,

9 “@type”: "Relationship”,

1€ "displayName”: "contains"”,

11 "properties”: [

12 {

13 “name”: "ownerDataAnalyst"”,
14 "@type” :"Property”,

15 "schema”: "string”

16

17 {

18 "name”: "ownershipDepartment”,
9 "@type" :"Property”,

20 "schema": "string"

21 }

22 ]

23 }

24 |

25}

1 |

2 '@id": "dtmi:windfarm:Windturbine;1",
3 "@type”: "Interface”,

4 "displayName": "WT - SCADA Unit",
5 "@context”: "dtmi:dtdl:context;2",
6 “contents": [

7 {

8 "name": "windSpeed”,

a "@type™: "Property”,
1e "schema": "double”

}a

12 {

13 "name": “windDirection”,
14 “@type"”: "Property",
15 "schema”: "double”
17 {

18 "name”: “"generatedPower"”,
19 "@type”: "Property”,
26 "schema": "double"
21 ¥
22 {
23 "name”: “"theoraticalPower”,
24 "@type": "Property”,
25 "schema": "double"
26 }
27 ]
28}

FIGURE 13. A DTDL of wind farm and wind turbines to define the
relationship and attributes for real-time monitoring.

powerful machine learning algorithm that is based on ensem-
ble learning paradigm. Several trees are constructed over the
training dataset known as base learners. A simple voting
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mechanism is used to combine the individual results. This can
help to reduce the variance of the model which shows high
accuracy and robustness in many application domains [30].
Third, support vector regression (SVR) based on statistical
theory and successfully applied to finance, forecasting elec-
tricity prices, and power consumption [31]. The basic idea
of SVR is to transform the input data points to a higher
dimensional feature space through a function and separate
the feature space with maximum margin. The mean absolute
error as a performance measure is reported in Table 7.

Table 7 shows a significant improvement in each quar-
ter which confirms the applicability to predict the power
generation.

IV. CONCLUSION
Wind farms are contributing towards the generation of clean
and affordable energy to support sustainable solutions. The
wind-turbines condition monitoring and power generation
prediction play an essential role in supporting the manage-
ment team in making informed decisions and supporting
the domestic supply chain. We developed a 5G-NG-RAN
assisted cloud-based digital twins framework to monitor the
SCADA units of wind turbines. The digital twins enabled
real-time monitoring of wind farms without visiting them
physically. 5G-NG-RAN assisted cloud allows low latency
services to support digital twin in real-time for predictive
modeling in wind turbines. Furthermore, a machine learning
pipeline is designed over the temporal convolutional neural
network and kNN regression to forecast wind and power
generation. The empirical evaluation of the publicly avail-
able dataset confirms the applicability in real wind-farms
scenarios.

Our future plan is to extend this digital twins framework
for offshore wind farms monitoring and prediction to support
sustainable energy solutions.

APPENDIX
Fig. 13 presents the wind farm and wind turbine in digital
twins definition language. The properties of SCADA units
are defined as contents for real-time monitoring in the virtual
wind farm.
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