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Professional athletes undertake a variety of training programs to enhance their

physical performance, technical-tactical skills, while protecting their health and

well-being. Regular exercise induces widespread changes in the whole body in

an extremely complex network of signaling, and evidence indicates that

phenotypical sex differences influence the physiological adaptations to

player load of professional athletes. Despite that there remains an

underrepresentation of women in clinical studies in sports, including

football. The objectives of this study were twofold: to study the association

between the external load (EPTS) and urinary metabolites as a surrogate of the

adaptation to training, and to assess the effect of sex on the physiological

adaptations to player load in professional football players. Targeted metabolic

analysis of aminoacids, and tryptophan and phenylalaninemetabolites detected

progressive changes in the urinary metabolome associated with the external

training load in men and women’s football teams. Overrepresentation analysis

andmultivariate analysis of metabolic data showed significant differences of the

effect of training on the metabolic profiles in the men and women teams

analyzed. Collectively, our results demonstrate that the development of

metabolic models of adaptation in professional football players can benefit

from the separate analysis of women and men teams, providing more accurate

insights into how adaptation to the external load is related to changes in the

metabolic phenotypes. Furthermore, results support the use of metabolomics

to understand changes in specific metabolic pathways provoked by the training

process.
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Introduction

Professional athletes, including football players, undertake a

variety of training programs with varying stimuli to achieve

desired physiological and psychological adaptations and

ultimately enhance their physical performance and technical

skills while protecting their health and well-being. A key

component of the training process is the daily management

and manipulation of the external training load (e.g., minutes/

hours, running distances, running speeds through GPS) typically

in response to internal loads experienced (e.g., heart rate, rating

of perceived exertion) and the subsequent internal responses

(e.g., subjective wellness, muscle force production, heart rate

recovery, blood lactate concentration, oxygen consumption, etc.).

While measuring external training load is common and highly

popular, in particular via electronic performance tracking

systems (Akenhead and Nassis, 2016) (EPTS), as alluded to

above, EPTS does not reflect the internal training loads or

responses experienced by players. Thus, internal measures are

a cornerstone to future exercise prescription, which in the

absence of, we cannot be certain how training sessions are

affecting players i.e., how they are adapting to, and recovering

from sessions and matches (Bourdon et al., 2017) (Arcos et al.,

2017). Different internal measures have been described including

the rating of perceived exertion (RPE), session RPE (sRPE)

(Foster et al., 2001), TRIMP and several modifications to the

TRIMP measure, each one of them with limited validity

(Passfield et al., 2022). Exercise induces widespread changes in

the whole body in a complex network of signaling caused by or as

a response to the increased metabolic activity of contracting

skeletal muscles (Hawley et al., 2014). Adaptation to these

changes leads to genomic, proteomic, and metabolic systemic

changes and their integrative analysis has been suggested to

provide a more comprehensive description of the effect of

exercise than the separate analysis of each level (Impellizzeri

et al., 2019) (Hawley et al., 2014). Metabolomics is an area of

systems biology that has been gaining traction in sports

physiology over the last years. It involves the downstream

products of gene regulation and expression, as well as the

interaction of a biological system with the environment,

providing a meaningful dynamic snapshot of its functional level.

Findings to date in metabolomics sports research have

shown short- and long-term exercise-induced changes in

metabolic pathways including the amino acids and ATP

metabolisms, glycolysis, beta-oxidation of free fatty acids and

ketone bodies, and the upregulation of different antioxidant

systems (Finaud et al., 2006), (Gorostiaga et al., 2012),

(Pechlivanis et al., 2015), (Duft et al., 2017), (Heaney et al.,

2017), (Manaf et al., 2018). Analysis of short-term changes after

intensive exercise has been also linked with muscle

bioenergetics related to the ATP-phosphocreatine (ATP-

PCr), and glycolytic systems, and the activation of purine

catabolism and lactic acid generation (Enea et al., 2010).

Changes in training protocols had an impact on metabolites

related to ATP-PCr and lactate metabolisms, purine, fatty acid

and branched-chain amino acid (BCAA) degradation,

glutamate and Krebs cycle metabolisms, tryptophan and

phenylalanine catabolism, oxidative stress, and muscle

protein breakdown (Pechlivanis et al., 2010). The analysis of

the adaptation of trained cyclists with two endurance-training

periods differing in intensity distribution showed changes as

well in the metabolic profile specific to each training program,

which was attributed to different levels of cellular

metabolic–energetic stress experienced. Greater stress was

not associated with greater adaptation, suggesting the use of

metabolomics to identify novel biomarkers of training stress,

adaptation, and recovery (Neal et al., 2013). Focusing on

football, short-term changes in the metabolic profiles of

young male professional players’ responses revealed a

significant post-exercise increase in acylcarnitines involved in

fatty acid oxidation, and slight increases in purine metabolites,

especially hypoxanthine and xanthine (Alzharani et al., 2020).

Another study analyzing metabolic mechanisms in male

teenage football players during exercise-induced fatigue

reported changes in five metabolic pathways (glycine-serine-

threonine metabolism, citrate cycle, tyrosine metabolism,

nitrogen metabolism, and glycerophospholipid metabolism)

(Cao et al., 2020). The analysis of urine metabolic profiles

and EPTS data from 80 professional football male players

collected in an observational longitudinal study identified

changes in steroid hormone metabolites, hypoxanthine

metabolites, amino acids, intermediates in phenylalanine

metabolism, tyrosine, tryptophan metabolites, and riboflavin

associated with the external load indicating an alteration of

biochemical pathways linked to the long-term adaptation to

training (Quintas et al., 2020). A recent study assessed urinary

metabolomic changes by NMR in elite Brazilian U-20 players in

samples collected immediately and 20 h after two soccer

matches. Results obtained showed different metabolic profile

between athletes with higher and lower RPE values. Athletes

with higher RPE values showed a high metabolite profile related

to muscle damage (e.g., creatine, creatinine, and glycine) and

energy production (e.g., creatine, formate, pyruvate,

1,3 dihydroxyacetone) 20 h post-soccer match (Marinho

et al., 2022). Collectively, results indicate that metabolomics

can detect changes linked to the physiological adaptation to

external load, providing information about fatigue, physical

capacity, and performance potentially useful in competitive

sports.

The influence of phenotypical sex differences throughout

many physiological systems (e.g., respiratory, circulatory and

hormonal systems, skeletal muscle) in the integrative metabolic

thresholds during exercise has been multiply reviewed (Ansdell

et al., 2020), and it is also accepted that sex is among the most

relevant biological variables influencing metabolomic and

lipidomic profiles (Audano et al., 2018). Despite that, there
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is a clear underrepresentation of women in clinical studies in

sports metabolomics. In a recent systematic review on sports

metabolomic studies between 2000 and 2020 (Khoramipour

et al., 2021), including football, among the 89 human studies

reviewed, 55 (62%) lack of women representation, and only 6 of

them (7%) were exclusively targeted to women physiology. So,

clearly there is a compelling social need to conduct scientific

studies, including in metabolomics, leading to an

understanding of the physiological characteristics of female

football players and their acute and chronic physiological

responses to exercise.

In this context, the objectives of this study were two-fold: to

study the correlation between the external load (EPTS) and

urinary metabolites as a surrogate of the adaptation to

training using uni- and multivariate linear models, and to

assess the effect of sex on the physiological adaptations to

player load in professional football players by comparing

models build using data collected from a male and a female team.

Materials and methods

This was a prospective observational, longitudinal study

carried out by Futbol Club Barcelona (FCB, Barcelona, Spain)

following relevant guidelines and regulations. Institutional board

approval for the study was obtained from the Ethics Commission

of the Consell Català de l’Esport (Code 012/CEICEGC/2021,

Generalitat de Catalunya, Barcelona, Spain). Written informed

consent was collected and all data were anonymized to ensure

confidentiality. All procedures involving human participants

were in accordance with the ethical standards of the

institutional and/or national research committee and with the

1964 Helsinki declaration and its later amendments or

comparable ethical standards. This study involved the

collection of daily EPTS data and urine samples at five time

points throughout a season from professional football players of

two teams (male and female) (see Figure 1).

Sample and electronic performance
tracking systems data collection

Urine samples and available WIMU PRO™ EPTS data were

collected between July 2020 and May 2021. The study included

data from 28 professional football players from the women’s FCB

team [5 goalkeepers, 8 defenders, 6 midfielders and 9 forwards,

age: 25 ± 5 (range 17–36, median: 25) years], and from

23 professional football players from the men’s FCB team

[4 goalkeepers, 6 defenders, 3 midfielders and 10 forwards,

age: 25 ± 5 (range 18–33, median: 24) years]. Samples from

FIGURE 1
Scheme of the study.
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the female team were collected at pre-season following the post-

season rest period (tF1, n = 26), and after 5 (tF2, n = 23), 7 (tF3, n =

22), 9 (tF4, n = 22) and 10 (tF5, n = 23) months of competition.

Samples from the men’s team were collected after 2 (tM1, n = 20),

8 (tM2, n = 14), 9 (tM3, n = 17), 10 (tM4, n = 13), and 11 (tM5, n =

10) months of competition. A higher sample collection frequency

at the end of the season was included to analyze the effect of a

higher physical and psychological stress. Nineteen female players

provided samples at all five time points; 4 players at four time

points, and 5 players provided samples a single time. Five male

players provided samples at all 5 time points; six players at 4 time

points, five players at 3 time points, three players at 2 time points,

and four players provided a single sample. First morning urine

samples were collected to minimize potential confounding from

uncontrolled dietary intake, after a day off (rest day) and all the

players were advised to avoid strenuous physical activity during

the rest day. Urine samples were collected, aliquoted and stored

at −80°C until analysis which was carried out within 2 weeks to

avoid potential effects of long-term storage.

A description of the training routine using external training

load metrics can be found in (Guitart et al., 2022). EPTS daily

records included the following variables: absolute High Speed

Running (HSR) distance (m), absolute HSR/min (m/min),

number of accelerations (+3 m/s2)/min (count/min), number

of accelerations (+3 m/s2)Distance (m), number of

accelerations Acc(+3 m/s2) (count), number of decelerations

(+3 m/s2)/min (count/min), number of decelerations (+3 m/s2)

Distance (m), number of decelerations (+3 m/s2) (count),

distance (m), distance/min (m/min), duration (min), High

Metabolic Load Distance (HMLD) (m), HMLD/min (m/min),

Player Load (PL) (a.u.), PL/min (a.u./min), Relative HSR (m),

and Relative HSR/min (m/min). Total train time was estimated

as the total time (h) from the start to end, pauses included.

Distance was defined as the total distance covered (m) including

walking, jogging, HSR, and sprinting. HSR distance was the total

distance covered at a speed >21 km/h. The HMLDwas defined as

the distance covered by a player when his metabolic power was

abode 25.5 W/Kg. The PL was estimated as:

PLn � 0.1
�����������������������������������
(Xn −Xn−1)2 + (Yn − Yn−1)2 + (Zn − Zn−1)2

√

and

PL � ∑m
n�0

PLnz0.01

Where n is the order index over time, PLn is the player load

calculated at time n (i.e., instant player load), Xn, Yn, and Zn are

the values of bodyX, bodyY and bodyZ at time n. A detailed

description of the variables can be found elsewhere (Reche-Soto,

2019; Guitart et al., 2022). EPTS daily records were used to the

calculation of cumulative train loads throughout the season, and

the total train load since the beginning of the season up to the

training day before the sample collection was used for the study

of the associations between long-term adaptation and the

metabolic profile.

Metabolic analysis of urine samples

Targeted metabolic analysis focused on tryptophan and

phenylalanine pathways and amino acids, previously

associated to the physiological adaptation to training in

football male players (Quintas et al., 2020). Amino acid

analysis was carried out by UPLC-MS/MS following a

derivatization step (AccQTag Ultra Derivatization, Waters).

The method enabled the quantification of Arginine, Anserine,

Methylhistidine, Histidine, Asparagine, Carnosine,

Hydroxyproline, Phosphoethanolamine, Serine, Taurine,

Aspartic, Citrulline, Ethanolamine, Glutamic acid, Glycine,

Sarcosine, β-Alanine, Threonine, Hydroxylysine, Glutamine,

γ-Aminobutyric acid, Alanine, Lysine, Aminoadipic, β-
Aminoisobutyric acid, Proline, Cystine, Cystathionine,

Methionine, Ornithine, Tyrosine, α-Aminobutyric acid,

Valine, Leucine, Phenylalanine, and Tryptophan. A second

analysis focusing on metabolites included in the tryptophan

and phenylalanine pathways was carried out by UPLC-MS/

MS, and involved the quantification of Aminophenol,

Anthranilic acid, 3-Hydroxyanthranilic acid, Tryptamine,

Indole-3-acetamide, Phenylalanine, Serotonin, Kynurenic acid,

Tryptophan, Xanthurenic acid, Kynurenine, 5-Hydroxy-

L-tryptophan, Hydroxykynurenine, N′-Formylkynurenine,

Indolelactic acid, p-Tyrosine, Phenylacetylglutamine (PAGN),

Guanine, Guanosine, 8-hydroxydeoxyguanosine (8-OHdG),

S-Adenosylhomocysteine (SAHC), S-Adenoylmethionine

(SAM), and Hypoxanthine. All metabolite concentrations were

expressed normalized by their corresponding creatinine urinary

concentration. Detailed descriptions of the analytical procedures

are included in the Supplementary Material.

Statistical analysis

To increase the robustness of the results, metabolites were

excluded from further analysis if the number of missing values

(i.e., concentrations below the lower limit of quantification)

was >20%. To avoid redundancy in the data, for those

metabolites analyzed by two methods (Tryptophan,

Phenylalanine, and Tyrosine) only the concentrations

obtained from the aminoacid analysis were used. The final

data set comprised concentrations of 56 metabolites. Two

samples from the female team and one from the male team

were excluded from further analysis based on an initial principal

component analysis (PCA) carried out for the identification of

outliers. Pairwise Pearson’s correlations and their corresponding

p-values were calculated for testing the null hypothesis of no

correlation between EPTS variables against the right-tailed
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alternative that the correlations are greater than zero. PCA and

partial least squares (PLS) regression were carried out using

autoscaled data to adjust for the differences in ranges among

metabolites. The selection of the number of latent variables in the

PLS models, and the estimation of its generalization performance

was based on the root mean square error of cross validation

(RMSECV) values obtained using a leave-one player-out cross-

validation (CV) approach. Accordingly, during CV, the data set

was split into k folds where each fold included all samples

collected from a single player. The statistical significance of

the RMSECV was assessed by permutation testing (n =

2000 permutations), as described elsewhere (Rubingh et al.,

2006). The importance of each variable in the PLS models

was estimated using the Variable Importance in the Projection

(VIP) score (Chong and Jun, 2005). Over Representation

Analysis (ORA) was carried out using a set of 84 metabolite

sets based on the Kyoto Encyclopaedia of Genes and Genomes

(KEGG) library of human metabolic pathways, a cut-off

p-value = 0.05, and a minimum of 3 hits/pathway.

Results

EPTS data and metabolic profiles were initially analyzed for

pattern recognition to identify associations among EPTS

variables, and main differences in the EPTS and metabolic

profiles between the two teams over the season. Then,

separate univariate (linear) and multivariate (PLS) regression

models were built for each team to describe the association

between the external load and the metabolic profiles. Over

Representation Analysis (ORA) was used to examine enriched

metabolic pathways associated with the external load to support

the biological interpretation of the regression models.

Data overview

Analysis of the EPTS variables collected throughout the

season demonstrated a significant cross-correlation in both

teams, as it can be seen in Supplementary Figures S1,S2,

where correlation plots among pairs of EPTS variables are

depicted for each team separately. The observed high and

statistically significant (p-value<0.05) correlations across EPTS
features in both teams enabled the selection of a single variable

(player load) as a surrogate of the external training load, which

showed correlations in the 0.90–0.99 (female team) and

0.83–0.98 (men’s team) ranges with the other EPTS variables

with the exceptions of Rel. HSR in the female team (see

Supplementary Figure S2), and Abs HSR and Rel HSR in the

male team (see Supplementary Figure S3). Player load is one of

the most frequently used load indicators and it shows the

combination of the accelerations produced in the three main

anatomical planes, leading to estimation of the total load (Reche-

Soto et al., 2019). Moreover, PL has been found strongly

correlated with variables like the heart rate and VO2max

(Barrett et al., 2016), subjective RPE (Casamichana et al.,

2013), as well as high test-retest and inter and intra-device

reliability in continuous (Barrett et al., 2016) and intermittent

efforts. Changes in the distributions of the urinary

concentrations of the metabolites over time in response to

training were then analysed. As it can be seen in

Supplementary Figure S3, the concentrations of the

metabolites across the season showed a high overlap in both

teams. Nonetheless, the gender differences were evaluated at each

time point using a univariate t-test, and a p-value < 9 10−4 was

considered statistically significant. Results found statistically

significant differences between the male and female teams in a

total of 52 of the 56 metabolites in at least one of the time points.

Then, a multivariate pattern recognition analysis was carried

out to consider the interrelation of metabolites and their

complementary behavior with the effect of training and sex.

Accordingly, PCA was selected to identify the main sources of

variation in the metabolic profiles which could be associated with

consequences of physical training throughout a season. Scatter

plots of PCA scores are shown in Figure 2A for the first five

principal components representing 56% of the data variance.

Results showed the overlap of the metabolic profiles of men and

women in the first four PCs summarizing 52% of the data

variance, in agreement with results shown in Supplementary

Figure S2. However, results also showed a sex-related cluster

along the fifth PC (4.5% variance), indicating that sex was among

the main sources of variance in the data set, along with other

effects such as the collection time point that may have a larger

weight on the metabolic profiles. To further estimate the weight

of sex on the data variation, the separate analysis of samples of

each team collected at each time point was carried out. The scores

plot depicted in Figure 2B revealed a much larger clustering of

male and female samples in the first three PCs at every time

point.

Longitudinal analysis of metabolic
changes associated to the external load

Initially, a simple univariate linear model approach was used

to capture the quantitative associations of the metabolite

concentrations with the cumulative training over a season,

using the EPTS feature ‘player load’ as a surrogate of the total

external load. Results obtained for each metabolite in each team

are summarized in Supplementary Figures S4,S5. Results from

the analysis of thefemale sample set revealed that 17 metabolites

(30% of the total included in the study) showed statistically

significant linear regression fits (p-value<9 10−4 for the t-statistic
of the hypothesis test that the corresponding slope coefficient is

equal to zero or not): 16 with a positive slope (i.e., higher

concentrations at increasing external loads) and 1
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(hypoxanthine) with a negative slope (i.e., decreasing

concentrations at increasing external loads). Over

Representation Analysis (ORA) was used to determine

whether known metabolic pathways were over-represented

(i.e., enriched) in the experimentally-derived list of

metabolites associated with the training load. Using the list of

17 linearly associated metabolites, ORA detected the Tryptophan

metabolism (p-value = 9 10−3) as overrepresented.

Following the same strategy, the analysis of the male sample

set revealed that 12 metabolites (21% of the total included in the

study) showed statistically significant linear regression fits

(p-value<9 10−4): 3 of them (β-alanine, guanine, and

guanosine) with a positive slope (i.e., higher concentrations at

increasing external loads) and 9 (citrulline, hydroxy-lysine,

glutamine, 3-aminoisobutanoic acid, proline, cystathionine,

methionine, ornithine, and SAHC) with a negative slope

(i.e., decreasing concentrations at increasing external loads).

In this case, ORA detected the Arginine biosynthesis

(p-value = 10−4), the Cysteine and methionine (p-value =

2 10−3), and Purine (p-value = 0.01) metabolisms and the

aminoacyl-tRNA biosynthesis (p-value = 5 10−3) as

overrepresented.

Multivariate PLS models were built to further investigate the

relationship between the urinary metabolic profiles and the

external load, and the degree of dissimilarity between the

models built for the female and male data sets. Figure 3A

shows the cross-validated predicted external load values for

the female and male samples, based on their metabolic data.

On the one hand, these results provided statistically significant

(p-value<5 10−3) RMSECV values in both models, supporting the

hypothesis of quantitative shifts in the metabolome associated

with physiological adaptation. On the other hand, low

comparability between the male and female models was

observed, as shown by the low correlation between the PLS

regression vectors of the male and female models (see

Figure 3B), which might imply different adaptations to

training. Differences in the sign of coefficient in the regression

vectors agreed with the differences observed in the previous

linear models (see e.g., 5-hydroxy-tryptophan, that showed a

positive value in the PLS regression vector of the female model

FIGURE 2
Principal component analysis (PCA) of metabolomic data. (A) Scores plots of metabolomic data (male and female data sets). (B) Scores plots of
metabolic data at each sample collection point.
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and a negative one in the male model). Figure 3B shows the

calculated VIP scores for the two PLS models, that also displayed

a limited correlation between them.

Discussion

Metabolic analysis of a list of endogenous compounds that

included aminoacids, tryptophan, and phenylalanine

metabolites, among other metabolites, enabled the detection of

changes in the urinary metabolome linked to the total external

load in men’s and women’s team players throughout a football

season. This result showing the association between the external

load and urinary metabolites could be used as a surrogate of the

adaptation to training. Besides, a significant effect of sex on the

physiological adaptations to player load could be observed.

The concentration ranges of the metabolites at the

5 collection points shown in Supplementary Figure S2 showed

a high overlap across the season in both teams. However,

statistically significant differences between men and women

were found in a total of 52 of the 56 metabolites in at least

one of the time points. Unsupervised PCA ofmetabolic profiles at

each sample collection point revealed the clustering of male and

female samples in the first three PCs (see Supplementary Figure

S2). Although gender-specific metabolic differences might

originate from either biological or socially influenced gender

effects (Krumsiek et al., 2015), these results confirmed that

gender has a significant impact in the baseline concentrations

in studies of association between external load and metabolic

profiles.

Univariate linear models to test the association between the

metabolite concentrations and the external loads showed a

significant impact of training on the metabolome, with 21%

and 30% of the metabolites showing statistically significant linear

regression fits in in the men and women’s team, respectively.

However, only two metabolites were linearly associated with the

cumulative external load in both men and women: beta-Alanine

(positive association in both teams) and SAHC (negative and

FIGURE 3
Partial Least Squares (PLS) analysis. (A) cross-validation (CV) predicted values in the female and male teams. (B) Plot of the PLS regression (left)
and VIP score (right) vectors in the PLS models built for the female and male teams.
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positive association in the female and male team, respectively)

(see Supplementary Figures S4,S5), suggesting significant

differences of the effect of training on the metabolic profiles.

Results from the set of univariate models were further used for

pathway analysis to support the identification of associations

between pathways linked to the adaptation to training. The basic

hypothesis of ORA in this context is that relevant pathways can

be detected if the proportion of differential expressed

metabolites, within a given pathway, exceeds the proportion

of metabolites that could be randomly expected (García-

Campos et al., 2015), using Fisher’s exact test to test the null

hypothesis of no association between the compounds in the

pathway and the outcome of interest (Xia and Wishart, 2010;

Wieder et al., 2021). ORA detected the Tryptophan metabolic

pathways as overrepresented in the female team. In the male

team, on the other hand, ORA detected the Arginine

biosynthesis, the Cysteine and methionine, and Purine

metabolisms as well as the aminoacyl-tRNA biosynthesis as

overrepresented. The difference in the overrepresented

pathways supports the hypothesis of characteristic adaptations

to chronic exercise in the men’s and women’s team players.

Furthermore, the statistical significance of the multivariate

PLS models confirmed the relationship between the urinary

metabolic profiles and the external load in both teams.

However, PLS regression coefficients from the two models

depicted in Figure 3B indicated low comparability between

them, which would imply different adaptations. Results

revealed also significant differences between the top ranked

metabolites in the two models using the Variable Importance

in the Projection (VIP) scores. In the female model, several

tryptophan metabolites including aminophenol, kynurenic acid,

xanthurenic acid, 5-hydroxy-tryptophan, N-formylkynurenine,

indolelactic acid, hydroxy-kynurenine, tryptamine, and hydroxy-

anthranilic were among the top-VIP ranked metabolites,

suggesting a progressive change in the tryptophan

metabolism. Exhaustive aerobic exercise has also been

associated with increased immune activation and alterations

in monoamine metabolism in trained athletes (Strasser et al.,

2016). Besides, β-Alanine, GABA, sarcosine and hypoxanthine

were among the top-ranked metabolites in the multivariate

model. β-Alanine, is a rate-limiting factor to the

intramuscular synthesis of carnosine and, although the results

reported are controversial, its supplementation has been

associated with improvements in exercise performance

(Lancha Junior et al., 2015). β-Alanine urinary concentrations

were associated to larger player loads over the season in both

teams. Increased urinary concentrations of β-alanine can be

linked to a higher breakdown of the pyrimidine bases cytosine

and uracil. Higher concentrations of β-Alanine could also

indicate altered carnosine homeostasis. β-Alanine is also

formed in vivo by the degradation of carnosine, a dipeptide

consisting of the amino acids β-Alanine and histidine, and

increases in muscle carnosine content have been hypothesized

to be an adaptation to long-term high-intensity training (Perim

et al., 2019). GABA has a role as an inhibitory neurotransmitter

in the central nervous system and participates in the physiologic

adjustment of pituitary gland function and control of the growth

hormone secretion from the pituitary gland (Godfrey et al., 2003;

Sakashita et al., 2019), which plays a key role in skeletal muscle

growth and maintenance, in the amino acid transport and in the

insulin growth factor-1 production (GF1), which in turn

promotes muscle protein synthesis. It has been previously

reported that purine metabolism reflects the exercise-induced

muscle adaptations and training status of highly trained athletes

(Zieliński and Kusy, 2015). As hypoxanthine is related to purine

degradation, lower resting urinary hypoxanthine levels may

indicate a training-induced adaptation in purine nucleotide

metabolism (Kistner et al., 2019).

The VIP scores of the male model included SAHC,

guanosine, guanine, hypoxanthine, and 8-OHdG among the

top ranked metabolites. 8-OHdG is one of the predominant

forms of free radical-induced oxidative lesions, and it is widely

used as a biomarker for oxidative stress. The observed slight

increase in the urinary concentrations of this oxidatively

generated nucleic acid modification could suggest an

insufficient antioxidative adaptation following training

programs (Larsen et al., 2020). The minor increase in

hypoxanthine urinary concentrations as a function of the total

training load in the men’s team could indicate a higher purine

nucleotide degradation or less efficient hypoxanthine salvage

process, compared to the negative association of hypoxanthine

and training load observed in the female model. Previous results

have shown that intermittent sprint training reduces the total

urinary purine excretion (Stathis et al., 2006). The increase in the

concentrations of guanine, a derivative of purine, could also be

the consequence of an adaptation in the purine metabolism.

Developing objective strategies to monitor adaptation to

training and eventually, for the early detection of an impaired

recovery or adaptation, is critical to strength the interaction

between trainers and athletes to improve personalize training in

collective sports and prevent muscle injuries. Collectively, our

results demonstrate that the development of metabolic models of

adaptation in professional football players can benefit from the

separate analysis of female and male teams, providing more

accurate insights into how the external load is related to

changes in the metabolic phenotypes. However, to define clear

criteria to classify players into different adaptation profiles,

further analysis of longitudinal changes in the metabolomic

profiles of larger populations (e.g., different teams and clubs)

and the impact of experimental factors (e.g., sampling

frequency), as well as the comparison of different metrics for

the assessment of adaptative responses to training loads should

be carried out. Moreover, future research will need to assess the

impact of variables not considered in this study such as menstrual

cycle disturbances, use of contraceptives, additional recreational

lifestyle activities, and diet also linked to the energy availability
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and to the concept of RED-S (Relative Energy Deficiency in

Sports) (Mountjoy et al., 2018), which in women should be paid

special attention.

Conclusion

The development of new measures of internal load to

monitor the adaptation to exercise of elite players is an active

field that could pave the way to more effective personalized

training strategies and facilitate the study of the association of the

external and internal loads with outcomes such as the incidence

of muscle injuries or physical performance. In this context, sex is

a frequently overlooked critical factor to consider. Here, targeted

metabolic analysis of a set of endogenous compounds including

aminoacids, and tryptophan and phenylalanine metabolites

enabled the detection of changes in the urinary metabolome

associated with the external training load throughout a complete

season in professional male and female football teams. However,

univariate and multivariate regression analysis, as well as ORA,

showed significant differences in the changes observed in the

male and female teams, mainly linked to the Tryptophan,

Cysteine and methionine metabolisms, Purine metabolism,

and Arginine and aminoacyl-tRNA biosynthesis. Collectively,

our results demonstrate that the development of metabolic

models of adaptation in professional football players can

benefit from the separate analysis of women and men teams,

providing more accurate insights into how the external load is

related to changes in the metabolic phenotypes. Furthermore,

results support the use of metabolomics to understand changes in

specific metabolic pathways provoked by the training process.
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