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As light and efficient large-span space structures, beam string structures have

been widely used since the 1980s. Within them, cables are the main force-

bearing component; their level of tension determines the overall stiffness,

performance and structural safety of the beam string structures. Real-time

monitoring of the cable force during the construction and service periods is an

important and effective measure to ensure the safety of the cable structure. At

present, the vibration method is widely used in nearly all common engineering

practices for cable force identification/monitoring because of its simplicity and

efficiency. However, the vibration of the cable segment will be affected by the

whole structure, so the cable force-frequency relationship based on the simple

single cable model cannot meet the accuracy requirement of cable force

identification of the beam string structure. Therefore, in this paper, through

finite element simulation and theoretical analysis, a three-stage criterion is

proposed to develop a new method for obtaining the local modal information

of the tensioned cable segment where the influence of the overall structure is

considered. The new method’s performance was compared with the results

obtained by the vibration method according to the single-cable model

assumption, and the design values of the cable forces. The magnitude of the

error in the identification of the tension force of the beam string structure

according to the single-cable model was studied to provide a correction

method, so that the single-cable model assumption can be used to improve

the measuring efficiency and ensure the solution accuracy. The numerical

results show the effectiveness of the proposed method. The work of this paper

provides a new approach for improving the identification accuracy of the

vibration method of a complex cable system such as the beam string

structure and is a useful discussion on the vibration method of complex

cable systems.
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1 Introduction

As society develops, the demand for public space is increasing

rapidly. Such demand has driven the development of building

structure systems, especially spatial structures. As one of the

large-span spatial structure systems, the beam string structure

has superior mechanical performance. The cables and upper rigid

members work together to give full play to the tensile

performance of the cable, so that the overall rigidity of the

structure is significantly improved. Under loading, the

deflection of the structure is much smaller than that of

traditional structures; the cable provides the span support

point for the superstructure through the upper strut, which

reduces the bending moment value in the section of the

superstructure and reduces the amount of steel used. When

the upper part is an arched structure, the cable can balance

the horizontal thrust of the arched structure at the support so that

the structure has good self-balancing performance.

Due to these functional advantages, the beam string structure

is widely used in engineering. For example, the Japanese Green

Dome Maebashi Gymnasium built in 1990 and the Japanese

Urayasu Municipal Sports Center built in 1995, which consists of

seven two-span continuous beam string structures (Saitoh and

Okada, 1999). The Shanghai Pudong International Airport

Terminal 1, built in 1999 (Chen et al., 1999), is a prominent

example of a large-span stretched beam string structure

(Figure 1). The Pudong Airport T2 terminal (Wang et al.,

2007) built in 2006 also adopts the beam string structure,

which is a three-span continuous plane structure (Figure 2).

The vertical stress structure of the main exhibition hall of the

Guangzhou International Convention and Exhibition Center

(Sun et al., 2003) built in 2002 is a string truss structure with

a span of 126.6 m. The National Indoor Stadium of China (Qin

et al., 2007) was built for the 2008 Olympics and the roof covers

an area of 144 m × 144 m and is a two-way beam string structure.

In addition to the traditional beam string structure, new

variants are also emerging. For example, the Swiss Montreux

parking lot was built in 2004, and the British Lawn Tennis

Association tennis court was built in 2010 using a gas-

supported string structure. The upper part of the structure

uses rigid rods, the middle part uses low-pressure inflatable

airbags instead of traditional struts, and the lower chord uses

tension cables.

The tension degree of the cable, which is the main force-

bearing member of the structure, directly determines the overall

stiffness and structural safety of the string structure. Therefore,

real-time monitoring of the cable force during the construction

and service periods is essential to ensure the safety of the cable

structure. To avoid accidents, Structural Health Monitoring

(SHM) for monitoring and evaluation of completed cable

structures has emerged and has been implemented worldwide

(BrownjohnPines and Aktan, 2002; Yun et al., 2003;, 2007).

According to current research data, cable force detection

methods mainly include the magnetic flux method (Cappello

et al., 2018; Duan et al., 2015; Fabo et al., 2002), the strain gauge

method (Volokhov et al., 2016; Moradi and Sivoththaman, 2013)

and the vibration method (Furukawa et al., 2022; Ma et al., 2021;

Kangas et al., 2012; Fang and Wang, 2012; Mehrabi, 2006).

The vibration method has become one of the most

commonly used cable force testing methods in engineering

because of advantages such as repeatable installation and use

at any time, monitoring cost, high measurement result accuracy,

simple instrument operation, and convenient practical

application. However, there are two factors that affect the

accuracy of the cable force test results during the

implementation of this method. One is the test accuracy of

the natural vibration frequency of the cable segment, and the

other is the accuracy of the conversion relationship between the

natural vibration frequency and the cable force (Geier et al.,

2006). The degree of accuracy is closely related to the degree of

model simplification. The more the calculation model conforms

FIGURE 2
T2 terminal for Shanghai Pudong International Airport.

FIGURE 1
T1 terminal for Shanghai Pudong International Airport.
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to the actual structure, the higher the degree of accuracy.

Therefore, research into the vibration method has been an

evolutionary process from simplified model to more and more

representative of the actual structure. However, for the problem

of cable force identification of cable segments, the single-cable

model is the most used in engineering and theoretical research,

and the research on cable force identification is also based on the

single-cable model.

In the 18th century, Brook Taylor, D′Alembert and Daniel

Bernoulli put forward the theory of string vibration, and

Bernoulli (1732) and Euler (1781) began to study the

lateral vibration of strings successively, determining the

solution of the vibration frequency. In 1974, Irvine and

Caughey began to consider the elasticity of the cable and

deeply studied the effect of sag on the in-plane vibration

characteristics of the cable but did not consider the

bending stiffness. In the subsequent research on bending

stiffness, Tadayuki (1994) proposed a method for

estimating the cable force by using high-order frequencies,

considering the effects of the bending stiffness, sag and

inclination of the cable at the same time. He deduced the

cable vibration equation considering the bending stiffness of

the cable, but the nonlinear equation needs to be solved by

computer, which is not convenient for engineering. Hiroshi

et al. (1980) proposed a practical formula for the vibration

method using the natural frequency of the low-order mode,

considering the influence of the bending stiffness and sag

effect of the steel cable. Byeong and Taehyo (2007) proposed a

new technique to estimate cable tension force from measured

natural frequencies. The proposed method is able to

simultaneously identify tension force, flexural rigidity, and

axial rigidity of a cable system. Furthermore, it is observed

that the flexural rigidity of a cable with high bending stiffness

is proportional to the applied tension force. Humar (2012)

regarded the cable as a beam subjected to axial force,

considering the bending stiffness and ignoring the sag

effect, and obtained the cable force expression of the cable

hinged at both ends by beam theory. Mehrabi and Tabatabai

(1998) used a new numerical algorithm to obtain the solution

value of the cable under the influence of bending stiffness, sag

effect and damping. Zarbaf et al. (2018) proposed a simple

novel framework to estimate the cable tension based on

Artificial Neural Networks (ANNs). The method takes into

account the cable axial stiffness and cable bending stiffness. It

was shown that, for the new Ironton-Russell Bridge, using

cable length, cable mass per unit length, cable axial stiffness,

and the first two cable natural frequencies as input features to

ANNs, the cable tensions can be accurately estimated. In a

study by Nam and Nghia (2011), the characteristic equation

for vibration of the most general case of a cable is analytically

derived, where both the sag and flexure in the cable are taken

into account. After that, by considering proper simplifying

assumptions of the small flexural rigidity parameter,

asymptotic forms of that equation were obtained. It renders

a practically applicable procedure to estimate cable tension

using measured natural frequencies.

As for the boundary conditions, Rebecchi et al. (2013)

presented an experimental procedure for the axial load

identification of slender prismatic beams with unknown

boundary conditions by making use of one vibration

frequency and five amplitudes of the corresponding mode

shape. Yan et al. (2014) proposed an innovative method for

cable force identification which converts constructing and

solving the cable motion equation into finding the zero-

amplitude point of its mode shape. The results showed that

when the modal order is less than 18, the method can

achieve a maximum relative error of less than 5%

regardless of the boundary conditions at both ends.

Syamsi et al. (2022) extended the two-mode frequency

approach by introducing equivalent effective length for

any mode pairs regardless of the type of end-restraints.

To verify the proposed formula, three cases of cable end-

restraints (hinged-hinged, fixed-fixed and hinged-fixed)

with the same tensioning force and cross-sectional

properties were studied.

The single-cable model is convenient and highly efficient in

engineering, so the single-cable model is irreplaceable in practical

engineering applications. After deriving theoretical formulas and

fitting experimental data, researchers proposed a series of

empirical formulas based on the single-cable model,

considering the simplicity of engineering applications. For

example, Hiroshi et al. (1980) gave a series of empirical

formulas for cables with different slenderness ratio ranges to

meet engineering needs under different conditions. Ricciardi and

Saitta (2008) considered the effects of bending stiffness and sag in

the formula and proposed a practical formula for continuous

cables.

In the above studies, theoretical research is carried out based

on the single-cable model for the problem of cable identification.

However, the identification accuracy of the single-cable vibration

method is very dependent on the accuracy of the basic model of

the cable and the assumption of boundary constraints. The string

structure is a hybrid structure of rigidity and flexibility, in which

the end restraint stiffness of the cable members is related to the

distribution of the cable force. Therefore, the constraints of the

cable are difficult to determine. Moreover, many cables exist in

actual engineering in the form of continuous and multi-strand

cables, so the cable model’s bending stiffness and boundary

constraints that are assumed to be in the form of single cables

may deviate greatly from the actual situation. In order to use the

assumption of the single-cable model to improve efficiency, we

believe that it is necessary to improve the accuracy of the cable

force identification results based on the single-cable model for

the tensioned string structure.

To make the cable force identification of the string structure

more accurate by using the single-cable model, this paper intends
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to conduct a modal analysis of the overall structure of the string

beam by means of finite element numerical simulation and

theoretical analysis. The three-stage criterion method is

proposed and used to obtain the local modal information of

the cable under the influence of the overall structure. After

mastering the real local vibration characteristics of the cable,

the difference between the cable force identification results based

on the vibration method are compared with the design cable

force based on the assumption of a single-cable model. This

method can be used to study themagnitude of the error caused by

the calculation of the cable force of the tension-string structure

based on the single-cable model assumed with different

boundary conditions. The three-stage criterion is beneficial to

put forward suggestions for improving the cable force

identification accuracy of the vibration method single-cable

model of the existing string structure. It will enable the single-

cable model assumption to be used to simultaneously improve

the efficiency and ensure the solution accuracy. The work of this

paper is a useful discussion on the identification of the vibration

method of complex cable systems, such as the beam string

structure.

2 Vibration method cable force
identification principle

The principle of the vibration method is to 1) use a vibration

converter to pick up the vibration signal of the cable that has

received artificial excitation or environmental excitation; 2)

analyze and process the vibration signal to obtain the natural

vibration frequency of the cable; 3) calculate the cable force

according to the relationship between the cable force and the

natural vibration frequency. The string model and beam model

are the main existing cable force identification models for a single

cable.

2.1 String model and formula

For slender cables with small cross-sectional areas and large

lengths, the influence of bending stiffness, sag and other factors

on the cable force can be ignored, so the tensioned string model

can be used to calculate the cable force (Irvine et al., 1974). The

more commonly used classical cable force theory formula for this

model is shown in Eq 1:

Tn � 4ml2(fn

n
)

2

(1)

In Eq 1, m is the mass per unit length [kg/m]; Tn is the cable

force [N]; fn is the nth order frequency of the free vibration of the

cable [Hz]; l is the cable length [m].

2.2 Beam model and formula

For short and thick cables with large cross-sections and small

lengths, in order to meet the requirements of cable force

identification accuracy, their bending stiffness must be

considered, so it is necessary to use the beam model to

calculate cable force (Humar, 2012).

Assuming that the mass, m, per unit length of the beam is

constant and the bending stiffness, EI, is also constant, the free

vibration equation is:

EI
z4y

zx4
+N

z2y

zx2
+m

z2y

zt2
� 0 (2)

Considering the hinged condition at both ends, the

theoretical formula for calculating the cable force is shown in

Eq 3:

Tn � 4
mf2

nl
2

n2
− n2π2EI

l2
(3)

The boundary conditions of the cable segment in the beam

string structure are closer to those of the articulated boundary

conditions at both ends. Therefore, the error comparison is made

on the basis of the hinged connection, so only the hinged

condition is introduced in this paper.

3 Basic principles of dynamic finite
element analysis of string structures

3.1 Basic assumptions

In order to calculate conveniently, basic assumptions should

be made for the beam string structure according to its mechanical

characteristics:

1. It is assumed that the connection point between the cable

segment and the strut is an ideal hinge, and the connection

nodes are completely coincident.

2. The cable has been kept in working condition, only under

tension, not loose.

3. The cable segment is a straight-line element.

4. Within a small time period, the cross-sectional area of the

strut and beam elements remains unchanged.

3.2 Basic principles of dynamic
characteristic analysis

The undamped free vibration equation of the string

structure is:

[M]{ €U} + ([KE] + [KG]){U} � 0 (4)
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Where [M] is the mass matrix; {U} is the total nodal

displacement vector of the structure; {€U} is the total nodal

acceleration vector of the structure; [KE] is the total elastic

stiffness matrix of the structure; [KG] is the total geometric

stiffness matrix of the structure.

After the static analysis of the structure is completed, the

static equilibrium position of the string structure is obtained. In

the dynamic analysis, the internal force and geometric

coordinates of the static equilibrium position of the system

are selected as the initial state of the dynamic analysis. That

is, the system is assumed to vibrate slightly at the static

equilibrium position.

For a linear system, the particular solution of Eq 4 is:

{U} � {Φ} sin(ωt) (5)

where ω is the circular frequency (1/s) and {Φ} is the mode shape

vector.

Substituting Eq 5 into Eq. 4, after derivation, we can get:

[K]{Φ} � ω2[M]{Φ} (6)

where [K] is the total stiffness matrix of the structure at static

equilibrium [K] � [KE] + [KG].
The dynamic analysis of the string structure system can be

reduced to the generalized eigenvalue problem of Eq 6. The

calculation methods mainly include the Block Lanczos method

and the Subspace method. Among them, the Block Lanczos

method eigenvalue solver is the default solver of ANSYS

modal analysis, which uses the Lanczos algorithm, which in

turn uses a set of vectors to realize the Lanczos recursive

calculation. This method has the same accuracy as Subspace

but is faster. The Block Lanczos method will be used in the

calculation in this paper.

4 Establishment of ANSYS dynamic
analysis model of the string structure

This paper uses ANSYS software, using APDL language to

write command flow, and establishes a beam string structure

model for numerical simulation analysis.

4.1 Element type selection

The steel beam part of the beam string structure model is

simulated by the 3-D linear finite-strain beam element Beam188.

It is a two-node three-dimensional linear beam element, which

can be defined by commands such as SECTYPE, SECDATA, and

SECOFFSET to meet the actual section shape, and has 6 or

7 degrees of freedom on a single node. The beam element is

calculated based on Timoshenko beam theory and is well suited

to linear analysis and nonlinear analysis of large stress.

The strut part of the beam string structure model is simulated

by the Link180 element. The Link180 is a 3-D element which is

useful in a variety of engineering applications, for trusses, sagging

cables, links, springs, and more. The element is a uniaxial

tension-compression element with three degrees of freedom at

each node: translation in the x, y, and z directions of the nodes,

with plasticity, creep, rotation, large deflection, and large strain

capabilities.

The cable part in the beam string structure model is

simulated by the Beam189 element; a 3-D quadratic three-

node beam element. With default settings, each node has

6 degrees of freedom. The element is based on Timoshenko

beam theory and is well suited for linear, large rotation, large

strain nonlinear applications. In this paper, it is considered that

the cable in the tensioned beam string structure is used as a short

cable, and its flexural rigidity cannot be ignored. Therefore,

compared with the Link10 element, the Beam189 beam

element can more accurately simulate the cable in the

tensioned beam string structure.

4.2 Prestressing

In ANSYS, two methods, the initial strain method or the

cooling method, are usually used to simulate the prestress. The

former applies initial strain to the cable element and the prestress

is applied by pretensioning or precompressing the line element;

the latter applies temperature load to the cable element and the

prestress is applied by heating or cooling. In this paper, the

Beam189 element is used to simulate the prestressed cable, which

can easily apply prestressing through the INISTATE command.

FIGURE 3
Influence of different number of element divisions on
calculation error.
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Therefore, the initial strain method is selected to apply prestress

to the cable.

4.3 Number of cable element divisions

The number of element divisions of the finite element model

has a great influence on the accuracy of the calculation results. If

the number of cable element divisions is too small, the error of

the calculation results will be too large, which will not meet the

accuracy requirements. By establishing a single-cable model, we

divide a single cable into different numbers of elements. The

error between the frequency results of finite element simulation

and the theoretical solution under different element division

conditions were calculated, and then the number of elements that

can meet the accuracy requirements of the simulation were

obtained. The “error” here means the frequency difference

between the theoretical solution and the finite element

simulation analysis result of a same single cable.

The comparison data is shown in Figure 3.

Figure 3 shows that with the increase of the number of

element divisions, the error of the ANSYS frequency calculation

result gradually decreases; from the high-order frequency to the

low-order frequency, the error gradually decreases. When the

number of element divisions increases to 100, the error between

the model’s first 8-order modal frequency results and the

theoretical solution frequency tends to be stable. If the

number of element divisions continues to increase, the error

does not change much. At the same time, according to the

condition that the calculation errors of low-order and high-

order frequencies are both less than 0.3%, it can also be

considered that the number of unit divisions must be 100 to

meet the accuracy requirements of numerical calculation results.

The computational cost can be minimised compared to the

number of more unit divisions. Therefore, in the subsequent

calculation, we uniformly divide each cable segment by

100 elements.

5 Extraction of local vibration modes
of cables based on ANSYS

By performing modal analysis on the overall structure of the

beam string structure, all the mode shapes and frequency

information of the overall structure can be obtained. Among

these modes, there are some where the entire structure vibrates,

and some where only the cables vibrate locally. Among so many

modes, if the local mode of a cable can be found, the

corresponding frequency is the nth-order vibration frequency

of the cable considering the influence of the overall structure; the

corresponding mode shape is the nth-order mode shape of the

cable considering the influence of the overall structure.

Based on the local cable vibration modes identified in the

global modes, the cable force identification results can be

obtained from the single-cable model assumption based on

the vibration method. Hence, by comparing the difference

between the obtained cable force identification results and the

design cable force, the error size of the cable force identification

can be studied and corrections can be suggested. Then it is

possible to use the assumption of the single-cable model to

improve the efficiency while ensuring the accuracy of the

solution. Therefore, this paper proposes a three-stage criterion

for local modal extraction of beam string structure to identify

local modal information.

5.1 Criterion 1: Search criteria for main
vibration cable segment

To determine which cable segment is the main vibration of a

certain order vibration, we adopt the following criterion: find the

node corresponding to the maximum amplitude and the cable

segment where the node is located by means of APDL

command flow.

ANSYS software has powerful post-processing capabilities.

Using APDL language to write a program, the modal analysis

results of the beam string structure, including each order mode

shape diagram, vibration frequency, mode shape data, etc., can be

exported to image or text format. Furthermore, the maximum

amplitude of the node can be obtained from the command flow,

and the cable segment where the node is located can be found to

judge that the mode belongs to the main mode of a certain cable

segment.

5.2 Criterion 2: Criteria for discriminating
whether local vibration mode

While criterion 1 identifies whether a certain cable segment is

the order mode’s main vibration cable segment, criterion

2 determines whether this order mode must be the local

vibration of this cable segment. Thus, the second criterion is

used to make the following judgments:

1 When the length of the cable segment differs greatly, the

amplitude of the cable segment is the largest, and the

amplitude of each node of the other cable segments is 0 or

very small, which can be determined as a local mode of a

certain order of the cable segment.

2 When the length of the cable segment is similar, except for the

similar cable segment, the amplitude of the cable segment is

the largest, and the amplitude of each node of the other cable

segment is 0 or very small, it can be determined as a local mode

of a certain order of the cable segment.
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5.3 Criterion 3: Judging the local modal
order based on the MAC value

When we use criterion 2 to determine that a certain overall

mode is a local mode of a certain cable segment, we still need to

determine which mode of the cable segment corresponds to this

mode. To this end, the third criterion is introduced: based on the

Modal Assurance Criterion (MAC) value, the modal order of the

cable segment where the maximum amplitude is located is

determined.

The mode shape vector data exported from ANSYS is

imported into MATLAB software, and the modal order of the

cable segment where the maximum amplitude is located is judged

based on the concept and function of the MAC.

The MAC is a common tool for evaluating structural

dynamic characteristics. It is used to evaluate the degree of

correlation between two sets of mode shape vectors.

The definition of MAC is shown in Eq 7:

MACij �
(ΦT

i Φj)2
(ΦT

i Φi)(ΦT
jΦj) (7)

Where MACij is the value of the modal confidence criterion of

the two mode shape vectors: Φi、Φj. Φi、Φj are two sets of

mode shape vectors, respectively. The value range of MACij is

[0, 1], when MACij < 0.05, Φi、Φj are independent; when

MACij > 0.9, Φi、Φj are related; if MACij is between

0.05 and 0.85, it indicates that the Φi、Φj are partially related.

In this paper, using the overall structure calculation of the

string beam, a finite element analysis model is established. The

mode shape vector of the cable segment where the maximum

amplitude is located is obtained through analysis. Then a single-

cable finite element model with hinged ends is established to

obtain the reference vector, Φj, of each mode shape. Calculating

the MAC value, when, it can be determined that the order of the

cable segment to be tested is the same as the order of the reference

single cable, thereby identifying the order of the cable segment to

be tested.

6 Numerical study

6.1 The calculation model of the beam
string structure

To show the effectiveness of the method in this paper and

show the regularity of the research more intuitively, a simple

beam string structure is selected as an example. The beam

element section is a circular pipe with an inner radius of

95.5 mm and an outer radius of 101.5 mm; the strut element

has a circular section with a sectional area of 234 mm2; the cable

element has an equivalent sectional area of 346 mm2. The

bending stiffness of the cable in this EI = 1810.072351 Nm2,

and the mass per unit length is 2.72 kg/m. The elastic

modulus of beam and strut steel is 2.06e5 MPa, and the

elastic modulus of cable steel is 1.9e5 MPa. The bending

stiffness value here is a design value. If it is applied in practice,

the cable factory will provide the actual value. The cables at

the bottom of the beam string structure are numbered in

sequence and the dimension of the beam string structure

model is shown in Figure 4.

6.2 The basic process of ANSYS calculation

1 Build the model—the beams, rods, and cables of the beam

string structure are selected as described in the previous

section and the data files of the finite element model of the

beam are written in APDL language, including element,

material, and section information, mesh division, etc. The

various information requested is defined using the LATT

command. The LESIZE command is used to specify that

the number of elements to divide the cable is 100, and the

LMESH command is used to divide the mesh.

2 Constraints—Set the left end of the beam string structure as a

fixed hinge and the right end as a sliding hinge. The

Z-direction displacement of all nodes is constrained to be

0 and only the in-plane vibration of the beam is considered, the

out-of-plane space vibration of the beam is not considered.

3 Static analysis—use the command flow “ANTYPE,0” to enter

the static analysis solution, apply prestress to the cable using

the initial strain method described in the previous section, turn

on the large deformation switch and the acceleration of

gravity, and calculate the initial state of the beam string

structure.

4 Modal analysis—use the command flow “ANTYPE,2” to enter

the modal analysis solution, turn on the prestress switch, and

solve the first 12 order modal information.

5 Post-processing—write APDL program, and derive the

mode shape diagram, mode shape vector and natural

FIGURE 4
The serial number of cables and diagram of the beam string
structure model [dimensions are in mm].
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frequency required in this paper according to the

requirements.

6.3 Finding the main vibration cable
segment

The modal analysis of the overall structure of the beam string

structure is used to obtain the first 12-order mode shapes, as

shown in Figure 5.

According to the model information, cable segment

1 contains node numbers 45–243, cable segment 2 contains

node numbers 344–542, cable segment 3 contains node

numbers 942–1,140, and cable segment 4 contains node

numbers 643–841.

This article will take the No. 3 cable section as an

example to introduce the criterions. For example, the

maximum amplitude node number of the first mode is

1,037, which belongs to the No. 3 cable segment, and

other rigid members have almost no amplitude. Except

for the cable segments of similar length, the other cable

segments also have almost no amplitude. Thus the overall

mode of order 1 is considered to be the local mode of cable

segment 3. The cable segments corresponding to other

modal information are shown in Table 1. However, some

of the overall modes are not only the vibration of the cable

part, but also the vibration of beams or struts, such as the

FIGURE 5
1st to 12th mode shapes.
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third-order overall mode. Such modes need to be eliminated

and cannot be used as calculation samples. For the simple

beam string model, this step can be roughly judged by visual

inspection. For the complex string beam structure, it is

necessary to compile a common program for accurate

judgment.

6.4 Judging the modal order of the cable
segment to be tested

For example, for the overall first-order mode mentioned in

the previous section, the corresponding maximum amplitude

cable segment is the No. 3 cable, and then it needs to be

determined as the order of the local vibration of the No.

3 cable. A single-cable model was established based on APDL

language as a reference, and the boundary condition of the single-

cable was hinged at both ends. The ANSYS modal analysis

calculation was performed and the first 4-order mode shape

vector text data was exported as a reference. In this paper, the No.

3 cable is selected as the calculation object, and someMAC values

are given as shown in Table 2.

Table 2 shows that the first order of the overall modes

corresponds to the first order of the local vibration of the No.

3 cable; the fourth order of the overall modes corresponds to the

second order of the local vibration of the No. 3 cable; the eighth

order of the overall modes corresponds to the third order of the

local vibration of the No. 3 cable; the 12th order of the overall

mode corresponds to the fourth order of local vibration of No.

3 cable.

6.5 Comparison of local vibration
frequency results

After the comparison and analysis of the data in the previous

section, it can be found that under the influence of the overall

structure of the beam string structure of No. 3 cable segment, its

local first-order frequency is the first-order frequency of the

overall mode, which is 3.296793 Hz; its local second-order

frequency is the overall modal frequency. The frequency of

the 4th order is 7.224617 Hz; the frequency of the local 3rd

order is the frequency of the 8th order of the overall mode, which

is 11.7399 Hz; the frequency of the local 4th order is the

frequency of the 12th order of the overall mode, which is

18.5797 Hz.

The vibration frequency of the local cable segment extracted

from the overall structure is compared with the frequency of the

single-cable theoretical solution. The local frequency of the cable

segment extracted by the method in this paper is compared with

the frequency of the single-cable theoretical solution in Table 3;

the frequency errors for the 1st to 4th orders are also presented.

The extracted frequency is very close to the theoretical

solution frequency from the local modal information extracted

from the overall mode using the three-stage criterion proposed in

this paper, indicating that the method proposed in this paper is

TABLE 1 Overall modal information and corresponding cable segment number.

Overall mode Maximum
amplitude node number

The number of
the cable segment

Frequency/Hz Exclude?

1 1,037 No. 3 cable 3.29679 No

2 447 No. 2 cable 3.72026 No

3 1,017 No. 3 cable 4.77737 Yes

4 1,087 No. 3 cable 7.22461 No

5 401 No. 2 cable 7.77935 No

6 753 No. 4 cable 10.5963 No

7 153 No. 1 cable 11.0791 No

8 980 No. 3 cable 11.7399 No

9 748 No. 4 cable 12.0532 No

10 144 No. 1 cable 12.8216 No

11 1,042 No. 3 cable 13.9460 No

12 1,113 No. 3 cable 18.5797 No

TABLE 2 Calculation results of the MAC value of the No. 3 cable.

Overall modal order Reference mode shape order

1 2 3 4

1 0.9978 0.0018 0.0003 0.0001

4 0.0026 0.9913 0.0047 0.0009

8 0.0773 0.0096 0.8871 0.0179

12 0.0004 0.0017 0.0072 0.9800
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effective. The reason for the difference is that the cable segment

in the beam string structure is not a single-cable model with

hinged ends. The specific size and modification suggestions of

this part of the error will be given in our follow-up research work.

6.6 Comparison of cable force
identification results

Substituting the extracted first four-order local frequencies into

the classical formula for single-cable force identification, the errors

between the cable force and the finite element design cable force are

8.84%, 10.69%, 0.82%, and 16.03%, respectively, as shown in Table 4.

If the cable force identification of the tension beam string

structure is based on the single-cable test method commonly

used at present, it will inevitably cause identification errors. This

part of the error is caused by the influence of the overall structure

of the beam string structure. When we know the size of the error,

it can be corrected in the actual test to improve the calculation

efficiency and ensure the accuracy of the solution.

After analysis and comparison of examples, the method

proposed in this paper is used to extract the local vibration

modal information of the cable in the overall mode. The mode

shape and frequency are consistent with the theoretical solution

of the single cable, but there are certain differences due to the

influence of the overall structure. The numerical example proves

the effectiveness of the method for extracting the vibration modal

information of the local cable presented in this paper.

7 Conclusion

The main work of this paper is discussed as follows:

1 An ANSYS dynamic analysis model of the beam string

structure is established based on APDL language.

Comparing multiple sets of data, it is found that when the

number of element divisions in the cable modeling process is

100, it can better balance the common needs of calculation

accuracy and calculation time cost.

2 A three-stage criterion for automatic identification of the

local mode of the cable in the beam string structure is

proposed. Criterion 1: Find the main vibration cable

segment according to the maximum amplitude node.

Criterion 2: When the cable length and other parameters

of the cable segments differ greatly, the cable segment with

the largest amplitude is the main vibration cable segment.

In addition, if there is no other rigid member vibrating or

the amplitude is small, it can be determined that the overall

mode is the local mode of the cable segment. When the

parameters such as the cable length of the cable segment are

similar, except for the similar cable segment, the amplitude

of the cable segment is the largest, and the amplitude of each

node of the other member and cable segment is 0 or very

small, it can be determined as a local mode of a certain order

of the cable segment. Criterion 3: Use the Modal Assurance

Criterion (MAC) to evaluate the correlation between the

local mode shape and the reference mode shape and obtain

TABLE 3 Comparison of extraction frequency and theoretical frequency.

Overall mode
order

The local
vibration order
of the
cable segment

Finite element
cable force
(N)

Theoretical solution
frequency (Hz)

Extraction frequency
(Hz)

Frequency error
(%)

1 1 5,048.70 3.1687 3.2968 4.04

4 2 5,048.70 6.9418 7.2246 4.07

8 3 5,048.70 11.7695 11.7399 0.25

12 4 5,048.70 17.9212 18.5797 3.67

TABLE 4 Comparison of cable force results between extraction frequency and theoretical frequency.

Cable stage n Finite element
cable force
(N)

Theoretical solution
frequency (Hz)

Extraction frequency
(Hz)

Calculated cable
force (N)

Cable force
error (%)

1 5,048.70 3.1687 3.2968 5,494.76 8.84

2 5,048.70 6.9418 7.2246 5,588.22 10.69

3 5,048.70 11.7695 11.7399 5,007.06 0.82

4 5,048.70 17.9212 18.5797 5,857.98 16.03
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the local mode order corresponding to the main vibration

cable segment.

3 After obtaining the local modal information of the cable

of the beam string structure through the three-stage

criterion, there is a certain error between the cable

force identification result from on the vibration

method based on the single-cable model and the actual

cable force. The magnitude of the error reflects the

influence of the overall structure on the vibration

characteristics of the cable segment; the magnitude of

the influence depends on factors such as the structural

form, member stiffness, and cable force distribution. In

the follow-up work, we will further use the method

proposed in this paper to study the cable force

identification error of the vibration method using the

single-cable model of different types of string

structures and propose a systematic correction scheme.

4 In practical application, for the specific beam string structure

model, numerical analysis can be carried out by the method in

this paper, and the size of the influence of each cable segment

by the overall structure can be analyzed, so as to guide the

correction of actual results and improve the accuracy of cable

force identification.
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