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Abstract

Modelling constructs for specifying semantic integrity are reviewed,

and their implicit execution semantics discussed. An integrity mainte-

nance model based on these constructs is presented. An implementa-

tion of this model in a persistent programming language is described,

allowing 
exible automated dynamic integrity management for appli-

cations updating a persistent store; this implementation is based on

an event-driven architecture.
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1 Introduction

Napier88 [MBCD89], [DCBM89] is a high-level, strongly-typed, block struc-

tured programming language with orthogonal persistence [Coc82]; that is,

objects of any type created by programs can outlive the execution of the pro-

gram which created them. Persistent objects can be reused in a type-secure

way by subsequent executions of the same program, or by other programs.

Persistent languages are well-suited to the construction of data-intensive

applications [Coo90]; programs are written to manipulate data, and the in-

built (and transparent) persistence mechanism provides for its storage and

retrieval.

This article describes an integrity management system (IMS) written in

Napier88; this forms part of a larger system which supports the development

of persistent application systems [BK92]. This integrity management system

allows its user to specify constraints on data in a high level, declarative

notation, and then ensures that the data respects these constraints. The
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system infers what events could compromise the integrity of the data, and

then on these events checks those objects which could have been a�ected.

Further, the system provides activeness for the database1, by allowing the

speci�cation of Condition-Action rules, called triggers, which call procedures

automatically whenever speci�ed conditions are met. The operation of this

integrity management system is transparent to application programmers.

Section 2 overviews the type of integrity information which can be spec-

i�ed for this system, with comparisons to those o�ered by some recent

database systems; section 3 examines constructs, provided by the system,

to allow management of how integrity is maintained; section 4 overviews the

implementation of the system.

2 Specifying Integrity

Specifying integrity constraints is part of the process of information mod-

elling. Attaching a collection of constraints to some data re�nes the precision

with which that data is described, and may lead to a greater understanding

of the data. Specifying constraints is also part of the process of database

design; any integrity constraints which can be supported by the database re-

duce the task of the application programmer (since she need not code these

constraints), and increases con�dence in the integrity for the data (since this

is under centralised control). However, the level of support for integrity pro-

vided by many database systems is not high, although it has been estimated

that as much as 80% of a typical database de�nition may be concerned with

integrity speci�cation [Dat87, page 455].

In succeeding sections, some mechanisms available for expressing con-

straints on data will be considered. The notation used for examples is

NOODL (Napier Object Oriented Data Language), a conceptual-level object

oriented data description language based on the data description notation

used in [BK91]. This language is fairly representative of various recent ob-

ject oriented data description languages, but has the advantage of not being

tied to any particular database management system (DBMS); it will be used

to discuss integrity speci�cation in general, and will also serve as source code

to specify integrity information to the IMS.

The term `constraints' here is intended to mean explicit constraints that

capture some additional fact about the real world enterprise being mod-

1In this article, the term database is used, rather loosely, to mean a collection of data

in Napier88's persistent store which is described by some particular application schema.
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class Employee

ISA Person

property

wage: Money ;;

constraint

employable_age is

self.age >= 16 and self.age <= 65 ;;

Figure 1: Employee Schema (A)

class Circle

properties

radius: Number ;;

area: Number ;;

constraint

area_rule is

self.area = pi * self.radius * self.radius ;;

Figure 2: Circle Schema (A)

elled, rather than constraints implicit in the data model chosen [TL82]. Note

that NOODL incorporates integrity speci�cation with inheritance, since con-

straints (and, as described later, triggers) on any class are inherited by its

subclasses, where they may optionally be overridden (rede�ned).

2.1 Predicate Based Constraints

A predicate based constraint simply says that some fact is true of the data.

An example is shown in the NOODL schema in �gure 1 where it is asserted

that an employee must be between 16 and 65 years of age, or in �gure 2,

where it is asserted that the area of a circle must be � times its radius

squared.

The normal method of enforcing such a constraint is to forbid updates

which violate it; for example, the DBMS would refuse to allow an application

program to update an employee's age to 5. This is the principle behind the

de�ne integrity construct of Ingres [Dat87], the data restriction of Generis
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class Circle

properties

radius: Number ;;

area: Number is

pi * self.radius * self.radius ;;

Figure 3: Revised Circle Schema (B)

[gen90, pages 4/12 - 4/19], and ic command of FDL [Pou88].

However, other options are possible. Constraint-satisfaction techniques

[Lel88] allow relationships to be speci�ed among a number of objects, and

then, when provided with values for some of these objects, can �nd values

for the others which maintain the constraint. In particular application ar-

eas, constraint satisfaction has proved very e�ective [Bor77]. Using such

techniques one could envisage a database which would allow a user to re-

set either the radius or the area of a circle object, and would reset the

other value in accordance with the constraint labelled area_rule. However,

constraint-satisfaction systems are di�cult to implement, do not run fast,

and are application-speci�c, typically handling numeric constraints; there-

fore this approach has not generally been used for enforcing constraints in

conventional database systems. Further, the user must be prepared to have

unknown as a value for some properties.

2.2 Derived Properties

Many newer database systems also o�er derived properties, which provide

an alternative way of expressing some constraints implicitly. Examples of

these are the tuple functions of Postgres [pos90], or the derived functions of

Iris [LW91].

As an example, the circle schema in �gure 2 could be rewritten as in

�gure 3.

The �rst schema (A) has a symmetry of expression absent in the second.

It states that a circle will have a radius and an area, and that the relation-

ship between these two quantities is as expressed in the constraint labelled

area_rule. The second schema (B) removes this symmetry in expression

of the constraint by showing how the area may be derived from the radius.

The implicit execution semantics are, that in case (A) the user may update
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either property, but in (B) only the radius is updatable (which requires a

little extra e�ort if it is the new area that is known).

These implicit execution semantics suggest that representation (A) is

more conceptually accurate in this case. However, it may be required to

model situations where one property genuinely is conceptually derived from

others. For example, the pro�t of a company may be found by adding

together its various sources of income, and deducting taxes, payments to

employees and other outgoings. It is unlikely that a user would wish to assign

arbitrarily a new value to the pro�t rather than to one of the contributing

factors.

Note that the expression showing how the property is to be derived

is a `conceptual' speci�cation of its derivation; it is not an indication of

how values are actually stored or computed in some implementation, since

optimisations may be applied.

2.3 (Event)-Condition-Action Rules

Another mechanism provided to support integrity is the rule. Deductive

databases have extended this to support sophisticated inferencing, whereas

other systems support simple rules only. For example, HiPAC [Day88] sup-

ports Event-Condition-Action rules which represent asynchronous actions

associated with a change of state. These are similar to the self-triggering

rules of OZ+ [WL89]. Postgres supports rules [SJGP87] the basic format of

which is

ON event TO object

WHERE condition

DO action

NOODL provides Condition-Action rules, introduced by the NOODL

reserved word trigger, which specify the action to occur when some condition

is met. It is also possible to obtain the functionality of If-When rules2 and

Event-Action rules3 using this construct.

We may consider the constraints described earlier to be a special case of

these Condition-Action rules, where the action to be taken is the abortion

2`if A then B' is equivalent to `not A or B'.
3`on update to property do action' can be expressed as

`property = zerovalue or true : action', since the predicate will be evaluated on any update

to the property, and will always be true. A suitable syntactic sugaring for this may be

provided in the future.
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class Employee

ISA Person

property

wage: Money ;;

operation

retire is ... ;;

constraint

min_age is

self.age <= 16 ;;

trigger

retiral is

self.age >= 65 : self.retire ;;

Figure 4: Revised Employee Schema (B)

of an o�ending process. The word rule will therefore be used as a generic

term for constraints and triggers together. However, the two concepts are

distinguished for a number of reasons. Firstly, a trigger �res when the

predicate describing its condition-part is true, whereas a constraint aborts a

process when its predicate is false. It will be seen later that it is also useful

to be able to manage the enforcement of the two constructs separately; for

example, suspended triggers are permitted to persist un�red when a program

terminates, but suspended constraints may not remain unveri�ed.

Rules permit the modeller to capture more semantics about data, par-

ticularly about its behaviour. For example, the schema in �gure 1 can be

revised to that in �gure 4. Here, the trigger retiral introduces a rule

which says that if an employee becomes 65 or older, the operation retire

(not de�ned here) should be applied to her. (Some suitable mechanism can

be used to prevent re-�ring of the trigger retiral on further updates of the

age, preferably by migrating the object to a new class Pensioner for which

no such trigger is de�ned).

However, rules introduce procedurality into the speci�cation; it can be

hard to foresee the consequences of a large number of (perhaps mutually

activating) rules being �red, and such a system is not necessarily determin-

istic. One possible solution is to introduce rule priorities, as described in

[ACL91]. (The system described in section 4 does not support priorities,

but is deterministic in the sense that the same transaction, run on the same
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database state, will always produce the same sequence of rule-�ring).

2.4 How a Constraint is Enforced is Part of its Meaning

The database designer has almost too much choice for how to specify her

understanding of the data; but the choice of expression carries some extra

information. For example, value propagation [BCG+87] may be represented

by any of the above mechanisms. If it is required to specify that the door of

a car must be the same colour as the body, then an explicit predicate based

constraint assumes that both colours should be updated together. With a

derived property, the colour of the door can be made subordinate to the

colour of the body. Using triggered updates, subtleties can be represented

such as saying that changing the colour of the car changes the colour of the

door, but not vice versa; a red car has a red door, but if the door is expressly

made blue, that is a customisation and nothing is to be assumed about the

colour of the body.

Ideally, there should be a larger number of integrity speci�cations, each

embodying one fact about the model, rather than fewer, each expressing

more information. This not only simpli�es reading the schema and enables

the database to report violations more meaningfully, but discourages over-

sights like failing to specify that the reason an employee is not aged over 65

is that she will have retired.

In the above example, the integrity speci�cation has progressed from the

assertion that an employee is aged between 16 and 65 to the assertions that

an employee is aged over 16, and that an employee becoming older than 65

retires. Consider two programs updating the database such that one sets

the age of an employee to be under 16, and the other sets the age of an

employee to be over 65. In the �rst case, it is known only that the updating

program is in error4; but in the second case it was known in advance that

the reason an employee could not be older than 65 is that she would have

already retired; hence, by simply forbidding this by a predicate, as in �gure

1, one fails to capture part of the meaning of the constraint.

Thus how a constraint is enforced is part of its meaning, and it is de-

sirable for a data model to provide a variety of methods of constraint en-

forcement. Ideally, the modeller may understand in advance what a violation

would signify, and install a rule to readjust the database accordingly. A con-

straint may be speci�ed implicitly by showing how the value of one property

4Treatment of exceptional values in data is outwith the scope of this article.
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is derived from others, so that a query on the derived property will produce

the correct value. Finally, a predicate may be speci�ed which data must

satisfy, precluding updates which violate it. Here the modeller is admitting

that she cannot foresee the circumstances of a violation (of course, this is

sometimes unavoidable). Unfortunately, it is not necessarily the case that it

is the update which violates the constraint, rather than some earlier update,

which is in error, especially where the constraint involves a large number of

objects; but this may be resolved since a failed update will usually entail

the intervention of a human.

A predicate-based constraint o�ers the greatest declarativeness of spec-

i�cation, but in a conventional DBMS the method of maintaining the con-

straint is typically simply to abort any transaction which violates it. Rules

allow more capture of behaviour of the data, at the cost of the introduc-

tion of some procedurality; Event-Condition-Action rules require the user

to state after what events activation of the rule is to be considered. Derived

properties provide a good mechanism to express the constraints implicit in

`emergent' and `immutable' properties (where respectively the expression to

be evaluated is or is not a function of the state of other database objects);

in some contexts however they may introduce an arti�cial asymmetry into

the speci�cation.

3 Managing Integrity

This section considers the model according to which semantic integrity is

maintained. The kinds of rules the programmer may wish to specify over her

data have been reviewed; without yet considering how to implement these

rules, it is necessary to provide mechanisms for the management of their

enforcement.

The traditional model of integrity enforcement in database systems is the

transaction model (see, for example, [EN89, chapter 19]); the transaction is

a construct which combines atomicity, serialisability, and recoverability. In

[Sut90], Sutton argues that many systems require a more 
exible approach

to the maintenance of consistency. Rather than have all-or-nothing consis-

tency, speci�c processes may require the enforcement or violation of speci�c

constraints, regardless of whether they are enforced generally; moreover, spe-

ci�c processes may wish to choose when and where integrity is guaranteed,

or may be violated.

It is desirable for the integrity maintenance model adopted to be as gen-
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eral as possible within certain restrictions. The principle restrictions are as

follows. Presently, Napier88 is a single-user system; there is no possibility

of concurrent processes attempting simultaneously to access the store, so

concurrency management constructs are not required. Another restriction

arises through the way the persistent store works. As objects are referenced

in a program, they are mapped from disk into memory, where they may

be updated. When a stabilise operation is performed, updated memory

objects are mapped back onto disk. Therefore, in order to prevent updates

from being committed when a transaction fails, the mapping back to disk of

memory objects must be prevented, which unfortunately requires the abor-

tion of the process to which the memory is allocated. This means that there

is no possibility of persistent transactions5, or of nested transactions [Mos81],

since uncommitted local copies of objects cannot survive a stabilise op-

eration (or, equivalently, program termination).

(This restriction depends on the fact that it is natural, but not ideal,

to build the commit operation, which controls the conceptual consistency

of the data, on the stabilise operation, which manages the persistence of

program objects. In a system where uncommitted local copies of objects

could persist, this restriction would be lifted. Discussion of such a system

is outwith the scope of this article).

3.1 Integrity Management Constructs

The constructs described below are provided by the IMS; the argument to

any of the �rst �ve constructs is a list of the constraints to which it applies,

or one of the shorthand tags TRIGGERS, which applies it to all triggers,

CONSTRAINTS, which applies it to all constraints, or ALL which applies it to

all of both. The commit construct requires no arguments.

enforce ensures that any subsequent operations respect the constraints

speci�ed; if a violation occurs, the violating process is aborted. Spec-

i�ed triggers are �red when the appropriate condition is met.

ignore allows subsequent operations to violate the speci�ed constraints

freely; speci�ed triggers are never �red when their activation condi-

tions are met.

5Persistent transactions would reintroduce concurrency management issues even in a

single-user system, since di�erent transactions, run in stages by sequences of programs,

could be interleaved.

9



suspend also allows subsequent operations to violate the speci�ed con-

straints; however, any updated objects which might be in violation of

some constraint are logged. Similarly, triggers whose activation con-

ditions are met are logged (but not �red).

status simply shows whether the constraint or trigger is enforced, ignored

or suspended.

clear clears the logs created by suspend. Any logged triggers are �red, and

any logged constraints checked; failure of a constraint check aborts the

process.

commit commits all updates since the last commit operation. Since per-

sistent transactions are forbidden, an attempt to commit while logged

objects are still unveri�ed will abort the process attempting to commit.

It should be noted that a constraint is enforced, suspended or ignored for the

entire class of objects on which it is de�ned. The di�culties of attempting

e�ciently to apply rules to individual objects is described in [SRH].

By including these constructs in her programs, a programmer may have

detailed control over how integrity is maintained. However, it is her own

responsibility to ensure that the constructs used interact as intended. For

example, the traditional transaction model can be extended to include pro-

cedure calls, rather than simple reads and writes, within a transaction. Now,

if the programmer intends to run an assertion-transaction, she might place

enforce(THIS_CONSTRAINT) at the beginning of the block which constitutes

the intended transaction; it must be ensured that no procedure called from

within this block contains an uncancelled suspend(ALL) construct, which

would destroy the semantics of the intended transaction.

Whereas this problem can be avoided by ensuring that every procedure

leaves its integrity maintenance context unaltered, a better approach is per-

haps to use the integrity management constructs to build transaction con-

structs of the required type, and use these except where occasion demands

more detailed control. Within the above-mentioned restrictions of the per-

sistent programming approach, the constructs provided should be su�cient

to build any required transaction primitives such as those for conventional


at transactions, assertion-transactions and repair-enforce transactions (see

[Sut90] for more details). Flat transactions are considered below as an ex-

ample.

Figure 5 shows how a conventional 
at transaction, providing integrity,

recoverability and atomicity, might be constructed. The �gure de�nes a

10



procedure, transact, which runs another procedure, updates, in a context

where all constraints are suspended. If the updates are successful, they are

committed, otherwise the transaction is aborted; the transaction records

its progress in a transcript �le as it proceeds. For convenience, it is as-

sumed that the procedures save_status and restore_status (built from

the status construct) have already been de�ned, so that the transaction

can leave its its integrity maintenance context unaltered. If the user has a

procedure my_updates which alters the persistent store, she may run it as a

transaction by calling transact(my_updates()). Atomicity is provided by

running the updates inside a procedure call.

When used with constraints, the integrity management constructs can

provide a very 
exible form of transaction functionality. However, these

constructs are also useful in controlling the enforcement of triggers. For ex-

ample, triggers may be activated and deactivated using enforce and ignore;

in this way, once-only triggers (eg, [Hug91]) may be implemented.

Note that commit will succeed (with appropriate warning) while logged

triggers (but not constraints) remain un�red. In this way, trigger execution

may be:

immediate, using enforce(TRIGGERS);

delayed, using suspend(TRIGGERS) and clear(TRIGGERS); or

detached (run in a separate transaction), using suspend(TRIGGERS),

commit, and clear(TRIGGERS).

Clearly, the semantics of an updating program will depend on which coupling

mode is used. (Consider the e�ects of an annual-review transaction, which

triggers a 5% pay increase for all employees, followed by a transaction which

�res all employees earning over $20000).

4 Implementing Integrity

The kinds of statements one might like to make regarding the integrity of

data, and how control of this integrity might be managed in programs, have

been discussed; now it remains to describe how support for this integrity

maintenance is to be implemented. The ideal is to allow a programmer to

specify in a conceptual notation what constraints are required, and then al-

low her to write programs manipulating this data, secure in the knowledge

that the integrity speci�ed is being maintained. No code should appear in
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! construct to support conventional transaction

! ---------------------------------------------

let transact = proc(updates: proc())

begin ! transact

let t_id = id_giver() ! assign ID to transaction

transcript("transaction " ++ t_id ++ " initiated'n")

if transacting do {

transcript("nested execution of transaction " ++ t_id ++ " attempted'n")

abort() ! Napier88 predefined abort procedure

} ! if

commit()

transcript("transaction " ++ t_id ++ " precommitted'n")

save_status()

suspend(CONSTRAINTS)

transacting := true ! set global flag to prevent nesting

updates() ! run the user's update procedure

transacting := false ! unset flag

restore_status() ! restore integrity maintenance context

transcript("transaction " ++ t_id ++ " ran updates'n")

clear(CONSTRAINTS) ! check suspended constraints, fire suspended triggers

commit() ! everything is ok if it got this far, so commit changes

transcript("transaction " ++ t_id ++ " postcommitted and terminated'n")

end ! transact

Figure 5: Construct for Conventional Flat Transaction
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user programs to verify constraints or �re triggers; this would not only com-

plicate application programming, but also reduce con�dence in the integrity

of the database. Evolution of the application schema is also considerably

complicated when the code which maintains integrity is scattered among

user programs. Moreover, it is required that constraints are veri�ed and

triggers �red whenever necessary, but there should be minimal redundant

checking. Given that a constraint may be considered to be a special case

of a trigger, the mechanism will be described with respect to constraints

without loss of generality.

In the �rst subsection an event-driven integrity management system is

described, providing automated support for speci�ed integrity; the second

subsection describes how the construction of such an integrity management

system itself can be automated.

4.1 An Event-Driven Semantic Integrity Management Sys-

tem

In order for data in the persistent store to respect the integrity constraints

de�ned on it, it is required that the necessary constraints be checked when-

ever an event occurs which might cause the constraint to be violated. These

checks are to be transparent to the user, providing an active interface to

the store for application programs. Adding such activeness to database sys-

tems is an area of current research; it is novel in a language with orthogonal

persistence.

Event-driven architectures are useful where systems must respond to

unpredictable conditions, or facilitate recon�guration (eg, [SC91]). In order

not to penalise data access unduly, the IMS requires an architecture where

there is no busy-waiting and no examination of irrelevant events.

The event-driven architecture which supports maintenance of integrity

was inspired by, but di�ers substantially from, the one described in [CK87]

which forms the basis of the windowing system WIN (Windows In Napier88)

[CDKM89]. Since architectures used to support windowing systems are more

familiar, the two architectures are contrasted in �gure 6.

In the �rst architecture (left), a procedure called an event monitor con-

tinually polls for (keyboard or mouse) events; these are passed to a noti�er.

Applications register with the noti�er, passing it a boolean-valued procedure

which determines whether they are interested in a particular event. The no-

ti�er passes the event down the list until it �nds an interested application,

to which it passes the event. This application may be another noti�er, so
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Figure 6: Event-Driven Architectures

a hierarchically nested architecture may be built up. An event in which no

application is interested is discarded. The noti�er hierarchy may be recon-

�gured dynamically, to represent changes in the layering of windows on the

screen and so on.

The second architecture uses a structure called a catchment; this is a

collection of procedures which monitors the set of all events which may lead

to violation of a given constraint. Each constraint or trigger is implemented

by a rule object. (A rule object is an object within the system, but not

within the database with which the user interacts; treating rules as objects

is discussed in [DPG91]).

Each rule has its own catchment, and receives any event which occurs

within it. Unlike in the �rst architecture, the receiver of an event is not

determined dynamically; it is determined statically which events may violate

a constraint, and an appropriate catchment installed to capture them; in this

way, the operation of the IMS does not unduly slow data access by processing

irrelevant events. In a windowing system, user input is usually intended

for some particular window; hence only one application receives an event.

However, in the IMS, an event may potentially violate several constraints,

and so fall into several catchments; hence it must be distributed to all the

appropriate constraints for checking. In the catchment is a procedure which

determines which object may have had its integrity violated by the event
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class Employee

ISA Person class Department

properties properties

wage: Money ;; staff: setof Employee

dept: Department \ dept ;;

\ staff ;; head: Manager

constraints \ manages ;;

min_age is

self.age >= 16 ;; class Manager

pay_policy is ISA Employee

self.wage < self.dept.head.wage ;; properties

manages: Department

\ head ;;

Figure 7: Example Schema

(not necessarily the object to which the event occurred!); this object is

passed to the handler.

A handler is an object which determines what is to be done with the

object passed down from the catchment, in the context of a particular rule;

it may for example check a condition, call a triggered procedure, log an

object, or abort the current process. Each constraint is registered with

one of several possible handlers. The integrity management constructs of

section 2 largely work by registering rules with di�erent handlers.

4.2 Example

It remains to be described what actually constitutes an event, and how it is

captured. For clarity, rather than examine the algorithms used by the IMS,

we shall consider as an example the maintenance of the constraints in the

schema shown in �gure 7. A particular instance of an employee object, and

its associated department and manager objects, is shown in �gure 8; the

database will contain many such instances.

The constraint min_age applies only to the employee instance itself; the

only property cited by the predicate which is the body of the constraint is

age; hence the only event which can violate the constraint is an update to

the employee's age. To maintain the constraint, it is necessary to trap all
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Figure 8: Example Database Subgraph

such updates, and check the integrity of the employee instance updated.

The constraint pay_policy is a constraint over the con�guration6 of the

employee, department, and manager instances, and the wage properties of

the �rst and last. Changes to the wage properties, or to the con�guration,

could violate the constraint. Hence, if the employee instance has its wage

property updated, the integrity of this instance must be checked; and, if

a manager instance has its wage updated, it is necessary to check the in-

tegrity, not of this manager instance, but of the employee instance to which

it is related through its department7. Integrity must also be checked if an

employee is assigned to a new department, or a department is assigned a

new head; in the �rst case, the employee instance itself must be checked,

in the second case, the employees which are the value of the sta� property

of the department. The obverse8 updates, of assigning new sta� to a de-

partment, or assigning a new department to be managed by a manager, also

require a check to be performed. These events, and the objects which must

be checked, are summarised in table 1; self in the second column refers to

the object updated.

Determination of which object(s) to check after a given update relies on

being able to track back along obverse links to the object(s) on which the

constraint is de�ned; hence it is assumed that these obverses are available.

However, this is not the case where a link is through a derived object-valued

property, the derivation of which involves the result of some query over

the database. The reason is, that in general it is not clear that the query

can be inverted in order to �nd the object whose integrity may have been

6Rules over the components of complex objects may be treated similarly.
7In fact, one must check the integrity of each instance of the set-valued property sta�

of the department instance attached to this manager instance. For clarity, the fact that

the integrity check must be mapped over this set is ignored here.
8By obverse, we mean the intuitive inverse of a potentially set-valued property (see

[BK91] for details); the obverse of a property follows a backslash in a NOODL schema.
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Event Object(s) to Check

update wage of employee self

update wage of manager self.manages.sta�

update department of employee self

update sta� of department self.sta�

update head of department self.sta�

update `manages' of manager self.manages.sta�

Table 1: Events and a�ected Objects

violated. This defeats the e�cient implementation of a check, since if it

is not known which objects may have been a�ected, the whole database

must be checked. For this reason, the prototype system does not allow the

de�nition of constraints over object-valued derived properties, the derivation

of which includes a database query.

It will be clear that the events of interest are pairs, consisting of a

property-update, and the class of the object updated. For example, updat-

ing the age of some object other than an employee or subclass of employee,

will not require the constraint min_age to be checked.

To update the state of any object, a set-method of that object must be

called; this method is speci�c to the update performed, and the class of ob-

ject on which it is performed. The events upon which integrity maintenance

must be performed then map exactly onto the calls of these set-methods.

The required catchment elements are therefore compiled into these methods.

Relevant events are caught, whether they originate from an application pro-

gram, a human interactively updating the database, or indeed from a trigger

�ring as the result of some other event elsewhere in the database.

It is important to note that the conceptual events which may activate

a rule are more than simply the invocations of methods; they are declara-

tively speci�ed changes in the state of the database; catchment elements are

planted wherever necessary among the methods to detect these changes of

state. The catchment elements are not the rules, which are separate objects,

but objects which send a message to the appropriate rule. This approach,

together with the automatic generation of the appropriate method code, cir-

cumvents problems associated with encoding a rule directly with a method,

(listed in [DPG91]): since the rule is not present in the method, it is not

necessary to touch these methods when, for example, examining the status
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of a rule, or altering its de�nition9; since this code is automatically gener-

ated, the programmer does not need to know about how rules interact with

methods.

4.2.1 Integrity Maintenance in General

A similar event-driven structure can be constructed for any of the constraints

and triggers expressible in NOODL (with the exception noted above); a few

details have been omitted for clarity. It may be necessary to include in a

catchment, updates to instances of the transitive closure of subclasses of

a class, rather than a single class. Further, the catchment may need to be

enlarged to accommodate overriding in subclasses either of a rule itself, or of

the properties it references. Further, since a rule may be de�ned di�erently

over di�erent classes, actual checking involves despatching on the class of

the object which the event may a�ect under that rule.

On the other hand, since property obverses are automatically maintained

by the system, half of the catchment elements can immediately be omitted

without loss of security.

4.3 Automatic Generation of an Integrity Management Sys-

tem

In [BK92] a schema compiler is described, which reads a schema written

in NOODL, and generates the data structures necessary to represent the

application model which the schema represents. The user is given a set

of procedures which query and manipulate the stored data, supporting the

functionality of the model on which NOODL is based [Bar92]. The user has

no need to know what exists behind this message interface, allowing physical

data independence. Figure 9 shows the user's applications interacting with

the persistent store through the automatically generated message interface.

This schema compiler is being modi�ed to examine the terms appearing

in rule speci�cations in a NOODL schema, and construct internal event-

check tables analogous to that in table 1. It can then install the necessary

9More exactly, a change in de�nition which requires a new action, or requires a new

predicate to be checked over the same con�guration of objects, does not require the method

to be touched. However, rede�ning the rule so that it applies to a di�erent con�guration

of objects will require the catchment elements to be relocated. This extra work is the cost

of allowing the greater generality of rules that may assert something about more than one

object. In any case, the new method code can be generated automatically and recompiled

independently of the rest of the system, so the overhead on rule evolution is not great.
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Figure 9: Semantically Secure Message Interface

catchments for the constraints and triggers de�ned in the schema. All the

necessary information is available in the symbol tables of the schema com-

piler.

5 Some Related Work

Support for constraints in a persistent environment is examined by Cooper

in [CQ91], where a general taxonomy of constraints is presented. This work

explores what constraints can be expressed within the framework of various

data models, but does not address active rules, nor strategies for manage-

ment of integrity enforcement.

Owoso has described a variant of PS-algol [Mor88] where assertions may

be made about language objects [Owo84]; a modi�ed compiler attempts to

check these assertions statically, and if this fails, compiles an appropriate

check into the user's program. This provides a useful language extension,

but the assertions provided are at a physical rather than conceptual level;

again, active rules are outwith the scope of this work.

Hull describes an imperative language Heraclitus with a relational cal-

culus sublanguage [HJ91], which includes deltas as �rst class values; a delta
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is an object representing the change a given transaction would produce on

the persistent store. Deltas can be combined, and their e�ects examined,

without actually updating the store. This mechanism supports some `ac-

tive database' functionality in the language. However, only relations may

persist, and deltas are explicitly manipulated in a procedural syntax by the

user.

The integrity management constructs of section 3 are inspired by those

of FCM [Sut90]. However, since concurrency is not an issue here, no con-

structs are required to manage it. Further, the idea of default enforcement

has not been supported, but this causes no loss of expressivity since the

enforcement status of any rule may persist within the IMS. We have ex-

tended Sutton's constructs from constraints also to Condition-Action rules,

providing di�erent coupling modes for rule execution, thereby integrating

constraints and triggers within the same execution model. This has lead

to a more orthogonal set of constructs than those of FCM, since the clear

and commit operations may occur at any time; this permits, for example,

trigger-�ring to be suspended from one program execution to another.

6 Summary

Constructs for specifying semantic integrity in database schemata have been

reviewed, and the realisation of these constructs in the modelling language

NOODL described. We claim that although these constructs are intended

as a tool for conceptual speci�cation, knowledge (or assumption) of the ex-

ecution model of their (possible) enforcement 
avours their semantics; some

guidelines for the use of these constructs are given. Further, another set

of constructs have been presented, which allow detailed control over the

management of integrity in a system of persistent applications. A system

has been described which infers which events may compromise the integrity

of which objects in the database serving these applications, and e�ciently

maintains integrity using a novel event-driven architecture. This system

brings some `active database' features to a persistent programming environ-

ment.
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