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Abstract

In the past, many persistent object-oriented architecture designs have been based

on traditional processor technologies. Such architectures invariantly attempt to insert

an object-level abstraction mechanism over the traditional processor’s virtual addressing

scheme; this results in an architecture which incurs a translation overhead on every object

access. Other architectures use objects at the instruction level, but then use a virtual-

based caching scheme. This may require bounds-checking, and even object-to-virtual

translation, to be performed on every object access.

A new architecture, DAIS, is proposed which utilizes objects in instructions and in

the caches. This paper presents a short history of persistence, analyses a number of

persistent architectures, and presents the DAIS design strategy. The object-based caching

mechanism of DAIS is described, involving topics such as object protection via tag bits,

object- and page-based locking, range checking, object to virtual mapping function, and

use of a secondary descriptor cache. The cache design results in a processor which is

no slower than conventional processors based on virtual memory. The design is then

extensively analysed for performance with differing cache sizes. This analysis indicates

that using a secondary descriptor cache can increase performance by 21% over a system

with instruction and data caches alone.
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1 Introduction

Research into persistent object-oriented architectures has been underway for three decades.

Work on persistence is ultimately derived from the development by Kilburnet al. of the

Manchester University Atlas machine [17], which introduced the idea ofvirtual memory.

Virtual memory was initially used as a mechanism for supporting disk caching. In an earlier

machine, Kilburn [18] combined the then new transistors with a magnetic drum for the

instruction store. Previous to this, most stores were constructed from William’s Tubes,mercury

delay lines, magnetic cores, and moving magnetic devices. The drum-based instruction store

resulted in a slow machine cycle time of 30 milliseconds, but with a store of significantly

lower cost than its competitors. The virtual memory of the Atlas was used to improve the

performance of drum-based systems; information was still held on the drum, but a small

number of pages could becached by re-mapping their virtual addresses onto magnetic cores.

At this point in history, computers were still used as processing machines utilizing off-line

storage. This differs from the modern view of computers, which can interact with on-line

storage and act as long-term data repositories. Even in the 1960s, with all main memory

technologies based on magnetic effects and thus non-volatile, long-term data was always

relegated to tapes.

The development of disk storage, which was viewed from the start as a long-term storage

medium, offered interactive access to a persistent store. Initial attempts to map disks and short-

term memory into a single-level store,e.g. Multics [20] and Emas [30], were not universally

accepted. Here, the desire was to map each data and instruction file of the type previously

stored on tape onto a range of virtual addresses. This was not without problems: disk storage

requirements exceeded address-space limits, and if a range of addresses were allocated to a

particular file, then file growth was difficult to perform without relocating the entire file.

As a solution to the problems introduced by the single-level store, the idea ofsegmentation

was advocated by Iliffe [2]. With a segmented architecture, memory is segmented into variable

length segments, each identified by a unique segment id. In many systems, segments are also

referred to asobjects.

In an object-oriented heap, no user-level virtually-addressed memory accesses are per-

mitted. Instead, all data and instructions needed by applications are partitioned into objects.

These objects are created with a specified length, and are identified using anobject identifier

(OID). An object can be referenced using the OID, and data elements within an object ac-

cessed using OID[index]. Using an index which is larger than the object length is illegal and

should be trapped. Allowing users to generate descriptors independently should be carefully
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controlled, since this could allow users to find objects which they should have no access to.

2 Object-Oriented Architectures

Many programming languages, such as C, use linear addressing schemes as their underlying

memory structure. Here, segmented architecture support would offer no significant advan-

tages. However, object-based languages can make extensive use of an object-oriented heap,

where the extra layer of indirection introduced between processor and memory allows for

powerful system-level (as opposed to compiler-level) management of objects.

When using object-based addressing, it is important to verify that certain conditions hold

when accessing objects via descriptors. Since it should not be possible for the user to fabricate

descriptors (either by accidentally corrupting a descriptor or by deliberately trying to find

objects created by other users), either descriptors must be immutable by user processes, or the

probability of finding a valid object identifier without first being given it should be prohibitally

small. If the user is able to modify descriptors, then the mapping process between descriptors

and actual object addresses must be able to detect when a descriptor is illegal. On many

systems, attempting to use a descriptor which does not correspond to an object in the heap

results in the death of the current process.

Even if the descriptor is genuine, the index into the object must lie within the limits of the

object length. Attempts to access an object outside its length should at least be signalled to

the user. If the object heap uses multiple storage devices (e.g. RAM and disk), then the object

being accessed must be present on a memory-addressable device (e.g. in RAM). This can be

handled in a similar way to a virtual pager.

Supporting object addressing means that certain checks must be carried out at run time.

Considering the frequency of heap-based data accesses in typical programs, software support

for object accesses would dominate execution time. As such, object-access support can best

be done using hardware. Additionally, with a data heap completely accessed using a system-

wide object-based addressing scheme, system supported mechanisms for garbage collection

and networking can be implemented transparently from the application writer.

Over the following pages, the object-address translation mechanism and object data

caching of four object-based architectures are analysed; the IBM SYSTEM/38, MONADS,

MUTABOR, and Rekursiv. These cover most aspects of current object-oriented designs. A

more detailed analysis of object-oriented systems can be found in [24] and [25].
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2.1 SYSTEM/38

The IBM SYSTEM/38 family of small business computer systems [28, 27] was announced in

October 1978. The overall aim was to provide small-scale users with facilities previously

available only on large systems. The architecture was designed to promote a long life-span,

and cover a range of hardware implementations. Even today, elements of the SYSTEM/38 can

still be found in the newer IBM AS/400 machine.

The instructionset used is independent of data types and hardware data-flow characteristics

such as the number of physical registers [5]. The memory is constructed as a single-level

store, and all memory management is performed automatically by the machine. Memory is

accessed by objects using capabilities, which in turn identify objects using OIDs. A capability

is a data record, which contains the OID of the object in question, access rights to that object

(e.g. read only, read/write,etc.), and other system dependent information (e.g. object type)

[11] [6]. Memory is configured as 40 bits wide; 32 data bits, 7 ECC (Error Correcting Code)

bits, and a single tag bit.

Virtual-to-physical address translation is performed using an inverted page table. Hash

collisions are stored in a linked list, and thus must be scanned serially. The entire collision

chain for an object must be searched before an unmapped object can be detected as such, and

this may have a detrimental effect on performance. If parts of the page table has itself been

paged out to disk, then a failed search can also cause paging faults.

To further improve the translation performance, a hardware lookaside buffer is used (a

TLB). This is organized as a 64 entry 2-way set associative cache. This gives a significant per-

formance improvement [28]. A direct-mapped cache would have offered more opportunities

for optimistic cache accesses, at the expense of a lower hit-rate.

SYSTEM/38 exhibits a large address space (although unable to support networked virtual

addressing), well thought out operating system support, and an efficient paging strategy. It

was a considerable commercial success, with tens of thousands of units sold. Packaged with

its own operating system and relational database providing a high-level user interface, most

users were completely unaware of the underlying object-based heap.

The lack of automatic garbage collection was an interesting omission from the design.

The inclusion of collection techniques would have made the structure of the processor’s object

descriptor simpler to manage.

Unaligned memory transfers either complicates the off-chip memory subsystem and the

cache, or incurs two memory cycles. Unaligned memory references are a rare occurrence

in most programs [8][page E-12]. RISC philosophy suggests optimizing for the frequent

case. Forcing alignment of capabilities to 16 byte boundaries would have allowed improved



DAIS Russell and Shaw 5

performance if the processor was scaled up to wider bus widths.

The type information which is part of each segment and object capability would best have

been held within the objects themselves. Dynamic changes in types would be advantageous in

‘hot’ modification of executing applications, and this would need object relocation to another

segment and global descriptor modifications. In SYSTEM/38, the complexity of updating every

descriptor during dynamic re-typing could be high. The hierarchical segment/object structure

imposed in SYSTEM/38 is not as flexible as a single-level object store.

Subroutines within the same process may have differing object access rights, and there

are options to allow inheritance of access rights between subroutines (and also with child

processes). Subroutine calls and returns can therefore be CPU-intensive tasks [10].

2.2 MONADS

The MONADS project was established in 1976. Its main objective was to examine and improve

the methods used during the design and development phase of large-scale software systems.

MONADS is still running today, and has branched out into the creation of an object-oriented

environment based on hierarchical segmented virtual paged memory.

There have been four MONADS systems developed; MONADS-I, -II, -PC, and -MM.

MONADS-I and -II were both based on Hewlett-Packard 2100A minicomputers, but in recent

years the project team have been concentrating on MONADS-PC [15, 23] (a custom mi-

crocoded system) and -MM [19] (a custom co-processor and SPARC processor combination).

Both machines can be programmed in a number of languages, including a dialect of PASCAL

and (to a limited extent) LEIBNIZ [16]. MONADS was envisioned with three major design

philosophies; a module structure, an in-process model for service requests, and a uniform vir-

tual memory. A module may contain a number of objects and executable routines, but objects

within a module can not be accessed from routines external to that module. Thus, objects

contained within a module can only be accessed via routines within the object’s module, with

data being passed by value on a stack.

The module/object hierarchy of MONADS promotes low-overhead object management,

both in terms of locking and networking [9]. However, this hierarchical design makes imple-

menting orthogonality in object accesses difficult to achieve; given any OID, it is impossible

to access that object unless the access is performed from within the surrounding module.

While module-based objects efficiently support block-structured languages such as PASCAL

and ADA, future (and even current) object-oriented languages may be performance limited.

The module interfacing and process control adds extra complexity to the system, and this

complexity is made all to clear to the programmer [22].
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There is no garbage collection system for object, and when all objects within a module

are no longer needed the module is explicitly deleted by the user. Even if garbage collection

was introduced, objects cannot be deleted in isolation from its surrounding module. It may be

possible for each module to contain routines which allocate and deallocate objects within the

module’s scope, with garbage collection to protect objects from illegal access after deletion

and subsequent reuse. Collection would have to query every object within the transient closure

of the root objects. For this, collection routines would be needed within each module in the

heap.

2.3 MUTABOR

The Profemo project at Gesellschaft f¨ur Mathematik und Datenverarbeitung mbH1 (GMD),

while conducting research into the design of reliable distributed architectures, created the

MUTABOR design. MUTABOR [12, 13, 14] (Mapping Unit for The Access By Object

Reference) formed an object-oriented architecture supporting a secure and reliable computing

base. Custom hardware was used to support both object and transaction management, coupled

to a layered, generalized transaction-based operating system.

MUTABOR was constructed from a MC68020 processor, connected via its co-processor

interface to a custom microprogrammable device. This increased the processor’s instruction

set to include object management functions, and permitted access to an address translation

cache (ATC).

MUTABOR’s philosophy is based on fine-grained objects,where for example a database of

records would have every record mapped to a unique object. The same database implemented

on MONADS would undoubtably contain all records within a single module. The MONADS

module would possess interfaces to access a specified record, whereas each MUTABOR object

(i.e. a single record) would have an associated type class and method interface.

Fine-grain objects mean that object-based locking is sufficient for transaction, locking,

and network management. However, large objects are not well supported, since individual

segments of an object cannot be locked in isolation of the whole.

The use of short object descriptors for data contained within the active space is unusual,

but is a useful step in reducing the memory bandwidth and silicon overheads in handling

long object descriptors. However, MUTABOR is an exceedingly complex machine (perhaps

needlessly so), both in hardware terms and software interface.

1The German National Research Centre for Data Processing
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2.4 Rekursiv

The Rekursiv chip-set (described in [7]), developed by Linn (a Glasgow phonography com-

pany), and fabricated by LSI Logic, was designed for use in the construction of object-oriented

architectures. The original aim for the Rekursiv was to create a programming environment to

allow support of production lines, where a processing unit would be placed in close proximity

to each major component of the line. From this, the Rekursiv has been used in a variety of

small-scale commercial and academic ventures.

The chip-set was made from three devices; the sequencer (LOGIK), arithmetic unit (NU-

MERIK), and the memory manager (OBJECT). LOGIK was microcode based, and its mi-

crocode store could be written to by the operating system, allowing instruction-based support

to be implemented for whatever application (or language) was needed.

Rekursiv’s virtual memory size is physically too small for many modern applications,

and the heavily restricted network-address size made networking viable in only the smallest

of networks. The ability to write microcode for the processor, and the object management

functions which were also microcoded, did produce a performance improvement with respect

to certain system functions. However, the added complexity of supporting this was detrimental

to the performance of many other processor activities [4].

2.5 The Ideal Object Store

There is only one mistake that can be made in a computer design that is difficult

to recover from — not providing enough addressing bits� � �

— Bell and Strecker [1]

The ideal object store should support the abstraction of an infinite size. In practice, only

a finite object store is possible. However, a finite store can appear infinite provided that

the virtual address space is much larger than can be used during the lifetime of the system.

Consider a super-processor implementation of an object system. Give it 10ns main memory,

256 bit data bus, and a life-span of 100 years. In its lifetime, the processor could write and

read (with no stall cycles) every location of a 262�13 byte memory once. This would suggest

that 264 bytes of virtual memory for a single machine would be sufficient.

It is assumed that the average object size (including management overhead) for the object

system is 512 bytes. Average object sizes (ignoring management overheads) given for MU-

TABOR (300 bytes) [14], iAPX-432 (300 bytes) [21], and Hydra (326 bytes) [31] suggest

that this is a reasonable value. With a virtual memory size of 264 bytes, this would allow 255

objects to exist simultaneously upon a node.
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For a networked machine, node addresses based on internet gives only 232 possible

combinations. This is slightly less than the number of people currently alive in the world, and

is too restrictive if the addresses are geographically hierarchical. Instead, consider ethernet-

based addresses, which use 48 bits.

On the network, objects must be fully identified, and therefore require at least 103 bits

for identification. Networked object descriptors must be impossible (or at least prohibitively

difficult) to forge, and some researchers (e.g. in [3] and [29]) have suggested adding a random

number to networked descriptors, which acts as a descriptorcheckcode. With a networked

descriptor size of 128 bits, the probability of correctly forging a descriptor given a legallocal

descriptor is 34 million to one. If the local descriptors are randomly allocated, then forging

an networked descriptor without knowing the local descriptor will be even more difficult.

Since most objects used by the local machine were created locally, the use of network-

addresses and random-number bits is redundant for many descriptors. It is suggested that

local object descriptors should be implemented using 64 bits, which can be aliased to 128 bit

network object descriptors whenever a network object is being referenced. This has the benefit

of halving the processor bandwidth requirements in handling descriptors, reducing the amount

of space needed to hold a descriptor, and reducing the amount of processor transistors needed

in handling descriptors. It also implements a useful level of abstraction between world-wide

and local object naming conventions,allowing future modifications to the descriptor layouts.

The network descriptor (named PIDs orpersistent identifiers) to local descriptor (named OIDs

or object identifiers) aliasing function can be controlled by an object management system.

The DAIS architecture is an attempt to solve the object caching and mapping problems

identified during the systems’ analysis. It makes use of a cache structure based directly

on object descriptors and offsets, rather than the more common virtually or physically ad-

dressed cache. This cache structure has been designed to allow object bounds-checking to be

performed by simple bit-ANDing, rather than arithmetic comparison.

2.6 Object-Based Heap

Object-based addressing is implemented using a three-layered approach, as depicted in fig-

ure 2. The top layer is theobject space, where a 64 bit object identifier (OID) and a 32 bit

index (unsigned integer) is used to access object data. Increasing the index by 1 moves on

8 bits within an object. An OID in object space is directly equivalent to the virtual address of

an object descriptor invirtual space. The object descriptor contains the virtual address, object

status, and the overall length (in bytes) of the object body (see figure 1). Accessing an object

with an index greater than or equal to the object length causes a processor exception.
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Object Data (Virtual Address)

Object Length 

Object Status

W Bit

Figure 1: DAIS Object Descriptor

The physical space forms the third layer of DAIS’ object-based heap. The virtual to

physical mapping function can be controlled by an object management system to imple-

ment persistence and dynamic (i.e. run-time) object modifications which changes the internal

structure of objects [24].

Object Space Virtual Space Physical Space

Object ID

Object

Virtual Address

Object Descriptor

Length Status

Figure 2: Mapping of Objects onto Physical Space

Object locking is designed to operate on two types of granularity; per object and per virtual

page. The two different classes can be identified from the W bit, which is bit 0 of the object

descriptor’s status field. From this, and also from the current virtual protection which exists

on the object-page being accessed, specifies the type of object locking:
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Descriptor Page Protection W Bit Data Page Protection Access Right

Page Unmapped — — Object not accessible

Read or Read/Write Set Read or Read/Write Object is read only

Read or Read/Write Clear Page Unmapped Object page is not accessible

Read or Read/Write Clear Page Read Only Object page read only

Read or Read/Write Clear Page Read/Write Object page is read/write

Object space is accessed using a 65 bit data bus (which is also the size of a memory

word), of which 1 bit is assigned to hold tag information. This tag is either set, indicating that

the remaining 64 bits contains an object identifier, or clear, indicating that the remaining bits

contains non-descriptor data.

Even though the word size is 65 bits, the 64 bits of data can all be accessed in 8, 16,

32, or 64 bit amounts (provided that the tag bit is clear) via various processor instructions.

However, reading anything but the whole 64 bits of information causes a processor exception

if the memory word in question contains an object descriptor (i.e. the tag bit is set).

2.7 Processor Cache

In general, object-based processors store a great deal of information on individual objects

within the main object caches (e.g. object length, physical address, internal object layout

details,etc.). DAIS holds much of this information within a secondary cache (called theobject

cache or O-cache), which is accessed only when theprimary caches miss. DAIS uses two

primary caches, one for data and one for instructions (the D-cache and I-cache respectively).

The connections used between primary and secondary caches, and the stages involved in

converting from object-based addressing to physical addressing is shown in figure 3.

Although the figure shows the CPU only operating with object-based addressing, it can

also use physical addressing. Physical addressing is restricted to supervisor mode, and allows

the object management routines to bypass both the fault manager and virtual mapper.

The CPU has two bus connections to external memory, both routed through the virtual

memory manager. One bus is used during data and instruction cache misses, and the other

is dedicated to register management (labelledspill/refill path. This second bus permits a

register-file management system to perform register-memory transfers using virtual addresses

(e.g. the spill/refill transfers incurred during window overflow/underflow on a window-based

register implementation). Virtual addressing (as opposed to object addressing) is used to avoid

contention between register-file management and data/instruction cache accesses.
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Data Path Fault

Manager

Object Cache

Virtual Mapper

Memory Store

CPU

Instruction Path

Virtual Address Virtual Address

Data

Data

Data

OID

Data

Spill/Refill Path

Cache
Instruction

Data Cache

Access Right

Instructions

OID

Index

OID

Index

Index

OID

OID

Index

DescriptorData

Figure 3: Overview of DAIS’ CPU to Memory Pathways.

The primary data cache structure used in DAIS is shown in figure 4. The I-cache is similar

in design, except that the hardware involved with writing to the cache is removed. The cache

lines are direct mapped using a hash based on the desired OID and object index. A hit in the

cache produces four pieces of information on the object; the cache line (i.e. the data stored at

that point within the object), valid and dirty bits, and the S bit.

Each 8 bits of cache line is associated with a single valid bit. If set, then that portion of

the cache line is valid, and vice-versa. Attempting to either read or write invalid portions of

the cache produces an error (signalled on thevalidity line). These valid bits remove the need

for subtraction based range-checking. The D-cache operates using a write-back policy, and

thus the virtual address of an object is only needed on a cache-miss or cache-flush. Changing

any part of a 64 bit (the maximum amount of data which can be written in a single memory

cycle) segment of a cache line causes the corresponding dirty bit to become set. The S bit is

used to indicate the access rights for that cache line. If the bit is set, then only reading of the

line is permitted. With the bit clear, both reading and writing actions are permitted.

With so little information held within each cache entry, cache access rates should be

similar to standard data caches. Additionally, since an object’s virtual address and overall

length changes infrequently (if ever), the primary caches are rarely flushed.

A primary cache miss is handled using a two-stage process, controlled by thefault
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Validity

ValidityCache Hit

OBJECT ID OFFSET CACHE LINE

OFFSET

=

OBJECT ID

Hash

Cache Access - Read

Cache Access - Write

Data Read

Data to Write

DIRTY BITSVALID BITSS

Figure 4: Structure of Data and Instruction Caches.

manager. Stage 1, performed only when the D-cache misses, examines the primary cache line

to be overwritten by the new data. If the line contains modified data (detected using the dirty

bits), then that data is written out to memory.

The fault manager calculates the address of the data which caused the cache miss, and

stage 2 transfers that data from memory to the primary cache. It also calculates the valid bits

for the cache line, setting a bit only when the corresponding 8 bits of data actually lies within

the specified object. If the manager calculates that no valid bits would be set then the memory

action is not performed, although the valid bits are still written back into the primary cache.

The S bit is set in the primary cache if either the W bit is set in the object cache (i.e. bit 0 of

the object status is set), or if during the data fetch for the primary cache the virtual manager

reports read-only.

The address and length of objects accessed by the fault manager are obtained from the

object cache. Should the object cache also miss, then the desired object information is first

fetched from memory. Since the OID is also the virtual address of the object descriptor, no

OID to virtual-address mapping function is required. The data paths between the object cache,

fault manager, main memory, and the primary caches are shown in figure 5. Note that if any of

the memory accesses cannot be performed (i.e. the virtual manager does not provide sufficient

access rights to perform the desired action), then the current process is suspended until the
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situation is resolved (e.g. the object details are requested over the network).

In the current design specification of DAIS, the data cache contains 256 lines with a line

length of 128 bits, and the instruction cache 256 lines of length 256 bits. This equates to a

data cache consisting of 7584 bytes of storage, and the instruction cache to 12032 bytes. The

object cache contains 128 entries, requiring 2464 bytes of storage. The total space for all three

caches is approximately 21�56 KBytes, which is similar in size to many modern processor

designs.

3 Benefits of the Object Cache

The layered approach to DAIS’ caching structure has been put forward as a benefit over other

object-oriented architectures. However, what exact benefit does the secondary (i.e. object)

cache give? Here, a theoretical analysis of secondary cache performance is presented. The

symbols used in this analysis are shown below:

MI �MI �MI � I-, D- and O-cache miss rates

PI � PD� PO � I-, D- and O-cache miss penalty

TI � Time to read one I-cache line

TD � Time to read/write one D-cache line

m � Fraction of instructions referencing D-cache

d � Probability that a particular memory word in D-cache is dirty

n � Number of memory words per D-cache line

To analyse the cycle-per-instruction (CPI) benefits of the O-cache, the analysis shall begin

in general terms. To allow fair comparison with other RISC-based architectures, DAIS is

considered to contain a pipeline which (ignoring pipeline stalls) allows single-cycle instruction

execution. The overhead per instruction for I-cache misses isMIPI cycles. Similarly, the

overhead per instruction owing to D-cache misses ismMDPD. The total CPI is thus:

CPI � 1�MIPI �mMDPD �1�

Here, both miss penalties include the time taken to fetch the object descriptor and then fetch the

cache line of object data. To discover performance with and without O-cache, it is necessary

to derive formulae forPI andPD under both conditions.

3.1 CPI without O-cache

If the I-cache misses, then the miss penaltyPI must be the timePO to load the object descriptor

plus the timeTI to load in the missing cache line. On a D-cache miss, each dirty memory
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Virtual Access Right

Virtual Memory

Object Descriptor

Cache Miss

Cache Hit

Object Data

Memory Read/Write
Memory Fetch

OFFSETOBJECT ID

Hash

= FAULT MANAGER

Read/Write

OBJECT ID VIRTUAL ADDRESS LENGTH W

VIRTUAL ADDRESS

LENGTHSTATUS

Cache LineValid Bits

S

Figure 5: Structure of Secondary Object Cache.
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word held in the cache line must first be written to memory. Given the probabilityd of a

cached memory word being dirty, thenPI andPD are defined as:

PI � PO � TI

PD � �2� �1� d�n�PO � �1� d�TD

3.2 CPI with the O-cache

When an object cache is included, the I- and D-cache miss penaltiesPI andPD must be

updated to reflect O-cache hits and misses. On an I- or D-cache miss, the object cache is

scanned. The object descriptor is returned in one cycle if contained within the object cache.

If not, the object descriptor must be fetched from memory. In addition to scanning the object

cache, the appropriate line of the cache must be read in.

PD is again similar toPI , except that is must also include the probability that the data line

to be replaced contains dirty data. Saving dirty data requires access to the O-cache, which

may in turn cause an O-cache miss. Thus:

PI � 1�MOPO � TI

PD � 2�MOPO
�
2� �1� d�n

�
� �1� d�n � �1� d�TD

3.3 Some Example Figures

Here, some figures will be substituted into both CPI equations to give the reader some idea of

the increase in efficiency the O-cache gives.

TEX, DeTEX, Zoo, and Fig2dev were simulated. The miss rates for direct mapped caches

of 4K and 8K bytes with line lengths of 16 and 32 bytes are shown in tables 1 and 2. These

were derived using SHADOW on a SPARC. For the case of the D-cache, the miss rates areper

instruction, and not per D-cache access. This means thatm can be omitted from equation 1

when estimating performance. The averages shown in these tables are both ‘straight’, and

weighted on the number of instructions executed by each of the simulations. Other results

from these simulations (pertaining to write-backs of cache lines) where used to estimated at

0�2.

Unfortunately, the miss rate of the O-cache cannot be predicted exactly from such a cache

trace. Analysis shows that over half the O-cache accesses are caused by I-cache misses. Since

temporal locality of instruction objects is high, it is anticipated that nearly all O-cache misses

will result from D-cache misses. For analysis purposes, the O-cache miss rate was assumed
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Table 1: Data Cache Miss Rates (Per Instruction)

4K cache 8K cache
Benchmark 16 byte lines 32 byte lines 16 byte lines 32 byte lines

TEX 1.79% 1.88% 1.24% 1.23%
DeTEX 1.15% 1.93% 0.56% 1.32%

Zoo 2.46% 2.26% 1.84% 1.53%
Fig2dev 1.04% 0.99% 0.53% 0.47%

Average 1.61% 1.76% 1.04% 1.14%
Weighted Av 1.76% 1.86% 1.21% 1.22%

Table 2: Instruction Cache Miss Rates

4K cache 8K cache
Benchmark 16 byte lines 32 byte lines 16 byte lines 32 byte lines

TEX 5.99% 3.74% 3.74% 2.35%
DeTEX 7.31% 5.08% 3.73% 2.72%

Zoo 1.12% 0.78% 0.35% 0.23%
Fig2dev 9.95% 6.70% 5.74% 3.98%

Average 6.09% 4.08% 3.39% 2.32%
Weighted Av 5.94% 3.81% 3.74% 2.37%
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to be 10%. Interestingly, doubling this value only has a small effect on the performance. In

a system without an external cache, the performance degradation is under 4%. With external

cache, the degradation is only 2%.

Four scenarios have been staged; all combinations of processors either with or without

O-cache and an external cache. When the processor has no O-cache, each object descriptor

must be fetched from main store. The assumption is made that without external cache each

main store access requires 5 processor cycles. For a system with this external cache, access is

assumed to require and average of 2 cycles. Together with the assumption of a 65 bit external

data bus, these times determinePO, TI , andTD. The miss rates used for the D- and I-caches

where theweighted averages shown in tables 1 and 2. For all four cases, the resultant CPI

(disregarding other processor stalls) is shown for different combinations of I- and D-cache

sizes (4 and 8 KBytes) and line lengths (16 and 32 bytes) in figures 3–6. The minimum CPI

from each cache size combination is highlighted.

Table 3: CPI with no O- or E-cache

Instruction Cache
4K/16 4K/32 8K/16 8K/32

4K/16 2.64 2.59 2.20 2.16
Data 4K/32 2.93 2.89 2.49 2.45

Cache 8K/16 2.50 2.45 2.06 2.02
8K/32 2.67 2.63 2.23 2.20

Table 4: CPI with O- but no E-cache

Instruction Cache
4K/16 4K/32 8K/16 8K/32

4K/16 1.97 2.10 1.71 1.78
Data 4K/32 2.22 2.34 1.95 2.03

Cache 8K/16 1.89 2.02 1.63 1.70
8K/32 2.04 2.17 1.78 1.85

Table 5: CPI with E- but no O-cache

Instruction Cache
4K/16 4K/32 8K/16 8K/32

4K/16 1.66 1.64 1.48 1.46
Data 4K/32 1.75 1.74 1.58 1.56

Cache 8K/16 1.60 1.58 1.42 1.41
8K/32 1.66 1.64 1.48 1.47

Table 6: CPI with both O- and E-cache

Instruction Cache
4K/16 4K/32 8K/16 8K/32

4K/16 1.44 1.48 1.32 1.34
Data 4K/32 1.54 1.58 1.42 1.44

Cache 8K/16 1.40 1.44 1.28 1.30
8K/32 1.47 1.51 1.35 1.37

From these four tables, the trade-offs in choosing D- and I-cache sizes and line lengths

can be investigated. The benefits of including an object or external cache are also part of these

tables. In all cases adding an O-cache resulted in better performance than doubling the size

of a 4 KByte D-cache. For the cache setup detailed in section 2.7, the CPI are:

O-cache External CacheCPI

No No 2.16

No Yes 1.46

Yes No 1.78

Yes Yes 1.34
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Hence, the O-cache gives a 21% speed improvement when there is no external cache present,

and a 9% improvement if there is.

4 Conclusions

This paper has briefly reviewed current persistent architectures to ascertain inefficiencies

inherent in them. Many of these can be removed by including objects at the instruction level

and using object-based caching mechanisms.

DAIS operates on 64-bit object identifiers (plus one tag bit). These are then aliased to

larger identifiers when worldwide communication is required. This has the advantages of

halving the processor bandwidth requirements for descriptors, reducing space required to hold

descriptors, and reducing processor transistors required for handling descriptors (smaller cache

tags, registersetc.). An additional advantage is that world-wide and local object identification

methods are separated, allowing future modifications to descriptor layouts.

The caching structure of the DAIS architecture has been presented incorporating features

allowing the architecture to run at around the same speed as non object-based processors.

DAIS achieves efficiency by providing only the minimum of support for objects. This boils

down to one tag bit and an object descriptor including object size and status. On a RISC

architecture, only load and store instructions need be concerned with objects, which greatly

simplifies processor design.

A cache structure based on objects and offsets rather than on virtual addresses allows

object data to be accessed without the need for an address translation. Such a scheme also

allows bounds checking to be achieved simply by examination of validity bits, removing the

need for arithmetic comparison. A bit in the status word of an object allows for locking at the

object level. This is useful for small objects. For large objects, page-based locking is more

desirable, provided through the virtual memory manager. DAIS combines both these types

and holds the read/write information in the data cache, providing an efficient mechanism for

deciding on the validity of writes.

Analysis has been undertaken on the effects of choosing different cache sizes. This was

done by dynamically tracing binaries for four different benchmarks on a non object-oriented

architecture. Such an analysis is sufficient to provide performance evaluations for instruction

and data caches, but not for the secondary object cache. Therefore, the sole conservative

assumption was made that a 128 entry object cache have a 90% hit rate. However we believe

that the real figure will be higher that this. The results of the analysis showed that a non-

superscaler version of DAIS with external cache takes 1.34 cycles to execute each instruction.
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This result is for a system with 8K of instruction cache, 4K of data cache and 2K of object

cache. The object cache justifies its existence since a system with 8K of both instruction and

data cache but no object cache has poorer performance.
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