
A Conceptual Language for Querying Object

Oriented Data

Peter J Barclay and Jessie B Kennedy

Computer Studies Dept., Napier University

219 Colinton Road, Edinburgh EH14 1DJ

Abstract. A variety of languages have been proposed for object oriented

database systems in order to provide facilities for ad hoc querying. How-

ever, in order to model at the conceptual level, an object oriented schema

de�nition language must itself provide facilities for describing the behaviour

of data. This paper demonstrates that with only modest extensions, such a

schema de�nition language may serve as a query notation. These extensions

are concerned solely with supporting the interactive nature of ad hoc query-

ing, providing facilities for naming and displaying query operations and their

results.

1 Overview

Section 2 reviews the background to this work; its objectives are outlined in section 3.

Section 4 describes NOODL constructs which are used to de�ne behaviour within

schemata, and section 5 examines how these may be extended for interactive use. The

resulting query notation is evaluated in section 6. Section 7 outlines some further

work and section 8 concludes.

2 Background

NOM (the Napier Object Model) is a simple data model intended to allow object

oriented modelling of data at a conceptual level; it was �rst presented in [BK91]

and is described fully in [Bar93]. NOM has been used to model [BK92a] and to

support the implementation [BFK92] of novel database applications, and also for

the investigation of speci�c modelling issues such as declarative integrity constraints

and activeness [BK92b] and the incorporation of views [BK93] in object oriented

data models.

The data de�nition and manipulation language NOODL (Napier Object Oriented

Data Language) may be used to specify enterprises modelled using NOM. A NOODL

schema contains a list of class de�nitions, which show the name and ancestors of each

class.

A class de�nition also includes the names, sorts, and de�nitions of the properties

of each class. Property de�nitions may contain simple expressions showing how the

value of the property is derived from those of other properties. The ability to specify

such derived properties allows the capture of data's behaviour within the enterprise

schema. A class de�nition may also contain operations, constraints, and triggers,

which are not discussed in detail here (see [BK91] or [Bar93] for more details).

NOM supports a principle of context substitutability, demanding that where an

instance of some class is required, an instance of one of its descendant classes may

always be substituted; this requires strict inheritance.

An example NOODL schema is shown in shown in �gure 1; the syntax of NOODL

is described in [Bar93].

The GNOME system (Generic Napier Object Model Environment) is an imple-

mentation of NOM in the persistent programming language Napier88 [DCBM89],

[MBCD89]. Although the query language described here has been successfully imple-

mented and may be used to interrogate objects managed by GNOME, this exposition

will not address implementation issues.

2.1 NOM's Query Model

The construction of schemata requires an implicit query model for the evaluation

of derived properties. Here, objects exchange messages, in response to which the

query expressions encoded in the de�nitions of their properties are evaluated; these

evaluations may result in the sending of further messages to further objects. This

approach maintains a strong correspondence between real world and model objects.

Speci�cally, and unlike many other models, NOM does not allow the creation of

new objects as the result of a query (although new collections of existing objects

may be formed). In addition to adherence to the conceptual model, this prevents

query results from being detached from the class lattice. This dispenses with the

need to classify result-objects in the preexistent hierarchy (eg, [DD91], [Kim89]).

This principle also provides closure in the query model; since queries may return

only collections of preexisting objects, these may certainly be the targets of fur-

ther, cascaded messages. Since no new objects are created, problems of comparing

identi�ers of objects returned by queries do not arise.

3 Objectives of This Work

A variety of object oriented database query languages exist; some are languages

supporting the logical model provided by a particular OODB (eg, [MSOP86]); others

are implementations of the query languages of semantic data models (eg, [KA87]);

some are attempts to add object oriented extensions to SQL (eg, [ont90], [RS87]).

These languages are intended to allow users to perform ad hoc queries on a database,

to embed these in application programs, or both. However, Kim has argued that

many of these languages are inadequate since they are not based on an underlying

object oriented model of querying [Kim89], which takes into account the di�erent

abstraction mechanisms used in the schema de�nition against which querying is

performed.

However, since an object oriented data model must capture the behaviour of the

objects described, a query notation is necessary simply to describe an enterprise.

The only alternatives are either to use natural language comments to describe the

behaviour of data objects (losing precision), or to describe this behaviour in a host

programming language (losing the conceptual level of the data description). As Zicari

et al have pointed out, in object oriented database systems, the query language and

the method de�nition language are seldom the same [Zic91]. E�orts are underway to

establish a standard object oriented data description language [Atw93], [Hol93]; such

a task would be facilitated by establishing a standard data manipulation language.

Since a data description language (DDL) must necessarily describe how objects

interact with each other, it must contain a data manipulation language (DML);

hence it is not possible to maintain two separate notations for these functions.

3.1 Integration of the Schema De�nition Language and the Query

Language

In the course of developing NOODL it became apparent that a schema de�nition

language required considerable behavioural capture in order to specify derived prop-

erties, as well as constraints and triggers. When desire to support ad hoc querying in

GNOME necessitated a query speci�cation language, it was decided to develop this

language by the minimal reasonable extension of NOODL. This approach seemed

to o�er the best integration of modelling and query notations, and would be easiest

to implement since a compiler already existed for NOODL as a schema de�nition

language.

Further, since NOM was designed as a `vanilla' model, supporting only those

features agreed upon by the majority of object oriented data models, it seemed that

this approach might give some insight into the ability of any object oriented data

model notation to support ad hoc querying, provided only that it allows speci�cation

of behavioural aspects of the model without resorting to use of a 3GL.

The facilities of NOODL as a schema de�nition language, and then its adaptation

to ad hoc querying, are discussed in subsequent sections.

4 NOODL as a Schema De�nition Language

This section shows how, in schema de�nitions, behavioural expressions may require

to be written. The names of properties de�ned in NOODL schemata can be used as

gettors and settors for those properties; this already provides a basis for a naviga-

tional query notation. In order to increase behavioural expressivity, it is necessary

also to have constructs to handle collections of objects, and to build up more complex

query expressions. These are described in the succeeding sections. The examples are

based on the schema shown in �gure 1.

4.1 Basic Query Expressions

Basic queries are of two types, here called navigational-style and search-style queries.

4.2 Navigational-Style Expressions

A navigational-style query �nds some information which is implicit in the enterprise

model. For example, consider the schema in �gure 1 describing people with spouses,

who own coloured cars (assuming one car per person). The property spousesCar-

Colour returns the colour of any Person's spouse's car. If LEIF is an object of class

schema Example

domain Colour is ("crimson", "aquamarine", "puce")

domain Money is { defined elsewhere }

class Person class Employee

properties ISA Person

{ stored properties } properties

name : Text ;; salary : Money ;;

city : Text ;; company : Company

age : Number ;;

spouse : Person ;;

car : Car ;;

children : #Person ;;

{ derived properties }

grandchildren : ##Person is

self.children.children ;;

spousesCarColour : Text is

self.spouse.car.colour ;;

likeMindedCarOwners : #Person is

Person where its.car.make = self.car.make

class Car class Company

properties properties

make : Text ;; name : Text ;;

colour : Colour city : Text { etc }

end_schema { Example }

Fig. 1. Example NOODL Schema

Person, then the expression LEIF.spouse.car.colour is a navigational-style query

returning the colour of Leif's wife's car.

The tokens spouse, car and colour are messages which elicit the value of the

property of the same name; the de�nition of the property, including whether the value

is settable or derived, is found in the enterprise schema (strong encapsulation). The

dot operator . sends the message on its right to the object returned by evaluating

the expression on its left1. The general form of such a navigational style expression

is:

<receiver>.<message_name>[.<message_name>]*

In a property de�nition appearing in an enterprise schema, <receiver> will usually

be the reserved word self, which denotes the instance receiving the message for the

1 Although statements involving expressions with one and more than one dot operator are

respectively called `simple' and `complex' predicates by Kim [Kim89], there is no essential

di�erence between these.

property being de�ned.

4.3 Search-Style Expressions

A search-style query �nds all the objects in some collection which match a given

selection criterion. This style of query is more usually associated with ad hoc querying

of a database, but may reasonably be required also to allow de�nition of derived

properties in an enterprise schema, where the value of that property is a set of

instances meeting some condition.

For example, a property likeMindedCarOwners of class Person, which returns all

Person instances owning the same kind of car as the instance in question, may be

de�ned as follows:

Person where its.car.make = self.car.make

The general form of a search-style query expression is:

<collection> where <predicate>

In an enterprise schema, <collection> will usually be the name of a class in the

schema, to whose full extent it is taken to refer. In <predicate> the reserved word

it or its is taken to stand for an element of the collection, to allow formulation of

the selection criterion, and the reserved word self refers to the instance of the class

de�ned whose property is being evaluated.

Kim points out that the collection to which a query is posed may be either the

direct extent of a class, or its full extent, including the instances of all descendant

classes [Kim89]; Chan calls this issue class quali�cation [Cha92]. On account of the

principle of context substitutability, the name of a class in a query expression in

NOODL is always taken to refer to its full extent; however, at the cost of complicating

the selection predicate, it is possible to de�ne precisely which descendant classes are

to be included in the search space, rather than just the two possibilities cited by Kim.

For example, the following query will retrieve all persons called \Leif", but omitting

any who are instances of the class Manager. Instances of all classes descended from

Person, either above or below Manager in the class lattice, are to be included:

Person where its.name = "Leif"

and its.class <> Manager

4.4 Treatment of Set-Valued Properties

The value of a set-valued property is a set of objects or of primi-

tive values. The following operations are available on sets; their names

are NOODL reserved words: union, intersection, difference, add, remove,

member, cardinality, element (and contains, described below). The �rst three

perform the appropriate binary set operation and return a new set. The next three

add an element, remove an element, or test for its prior inclusion. The operation

element returns a random element of the set (but always the same element for a

given set instance); this allows access to the element of a singleton set, and also

permits computational recursion over sets.

Where any other message is sent to a set, this message is mapped over all the set's

elements (and, where appropriate, the set of responses returned). This allows a very

transparent treatment of sets, and also allows queries to return nested collections

which preserve the association structure of the enterprise model. So for example,

the expression LEIF.children returns the set of Leif's children, and the expression

LEIF.children.name returns the set of names of Leif's children. Given the family

tree shown in �gure 2, various expressions and the objects they return are shown in

table 1.

Leif

|

_______|________

| |

Erik Thor

___|___ |

| | |

Hrothgar Olaf Hagar

| | __|___

| | | |

Thjalfi Sigurd Njarl Rogvald

Fig. 2. Family Tree

expression value

LEIF.children fERIK, THORg
LEIF.children.children ffHROTHGAR, OLAFg, fHAGARgg

LEIF.children.children.children fffTHJALFIg, fSIGURDgg,ffNJARL, ROGVALDggg

Table 1. Set-Valued Expressions from Family Tree

The contains operator determines whether a value is present anywhere within a

nested collection. This allows the structure of the nested collections to be retained,

unlike the `
attening' operators provided in some object oriented query languages

(eg, the reunion operator of LIFOO [BM81], or the flatten operator in ENCORE

[SZ90]). If it is required to
atten a collection, this can still be done by using

contains to select from the top level collection everything present in any nested

subcollection. For example, ffHROTHGAR, OLAFg, fHAGARgg can be
attened

to fHROTHGAR, OLAF, HAGARg by evaluating

Person where LEIF.children.children contains it

This expression picks out and returns all instances of class Person which are present

(at any level) in the nested collection.

4.5 More Complex Expressions

More complex behavioural expressions may be built from sequences or composi-

tions of simple query expressions; these may also contain conditional or update

statements2.

The target for a query is an object or collection of objects. Since the result of a

query is also an object or collection of objects, the query model is closed ; hence it

is possible to compose, or nest, queries.

It has been proclaimed by Atkinson et al that the data model of an object oriented

database system should be computationally complete [ABD+89]; if computational

completeness is not to be relegated to a host programming language, it is necessary

that is should be provided by the data language. For this purpose, NOODL has a

conditional expression in the form of an if statement. Provision of a conditional

expression, together with implicit iteration over sets and recursive function calls,

allows the language to be considered computationally complete. Properties (and

operations and triggers) may thus be de�ned which in principle perform arbitrary

computations.

5 Adaptation to Ad Hoc Querying

Preceding sections have focused on the subset of NOODL dealing with what are

traditionally considered data manipulation tasks. NOODL allows the construction

of enterprise schemata where the behaviour of objects may be represented. In par-

ticular, it is possible to specify rules for the derivation of the values of properties.

NOODL allows the design of schemata for object oriented databases such as the

GNOME system. However, one feature normally provided by a database manage-

ment system is some form of ad hoc querying, allowing casual users to explore the

data stored without resorting to writing programs. Persistent applications have in-

cluded form-based [CMA87] or graphical [BFK92] interfaces, and also browsers for

the persistent store [KD90]. Here, some simple extensions to NOODL are presented

which allow it to be used as an ad hoc query language. Unlike forms and some

graphical interfaces, NOODL is not application speci�c when used as a querying

mechanism; it may be used for any enterprise describable within the object oriented

modelling approach adopted here. Further, the data store is interrogated at the

conceptual level of the enterprise model, rather than at the level of programming

language constructs.

The following sections investigate what extensions to NOODL would be necessary

in order for it to function as an ad hoc querying language.

5.1 Requirements for Ad Hoc Querying

Used as a tool for data description, NOODL provides facilities for retrieving and

updating values or sets of values, and for selecting objects satisfying some criterion.

Only modest extensions to these facilities are required for ad hoc querying.

2 The semantics of mixed query and update statements may be problematical as discussed

by Ghelli et al in [GOPT92].

Firstly, since there is no notion of `display' in data de�nition, some means of

showing what the user wants to know must be provided.

An enterprise schema is a complete conceptual description of an enterprise, serv-

ing as a `de�nitive text' for applications serving the enterprise. Ad hoc querying,

on the other hand, is an iterative, explorative procedure; facilities are required to

incrementalise the construction of queries, and allow a feedback loop between formu-

lating a query and seeing the result (query-building). The syntax of a query language

should support these activities as naturally as possible.

Such support is provided by local names, which may be assigned to the (collec-

tions of) objects returned by a query, or to a query itself. Together with the display

operation, these provide a su�cient basis for ad hoc querying. Displaying data and

managing local names and de�nitions are facilities available during a query session;

the NOODL constructs supporting these activities are not used within an enterprise

schema.

Such locally de�ned query expressions may be viewed as `behaviour constructors'

([YO91]); they may also be used to express join-like queries, retrieving together

information not related through the relationships encoded in the enterprise schema

(`coincidences in the data').

The following sections describe extensions to NOODL which support the neces-

sary functionality; some examples of ad hoc queries executed using this system may

be found in the appendix.

5.2 Conceptual Ad Hoc Query Model

A query model is implicit in the speci�cation of derived properties. The concept of a

querier extends this model to ad hoc use.3 The querier is an object which straddles

the interface between the real world and the data space. Its user interface allows a

user to construct NOODL queries, which are syntax- and sort-checked, and could in

principle be optimised; the corresponding sequence of messages are then sent into

the data space, and a new collection of objects constructed in response to these. The

querier then represents these objects to its human user in some intelligible format.

5.3 Local De�nitions | Tags

The two approaches to querying supported are navigational-style and search-style

queries. In constructing complex queries (especially nested queries), it is often useful

to break the query down into distinct components. The user should be allowed to

construct queries incrementally, rather than being forced to resubmit an entire query

when only a component subquery requires modi�cation.

To support this approach, the querier allows local de�nitions. Here, a local name,

called a tag, is introduced to refer to an intermediate query result. This tag is known

only within the query session, not within the enterprise schema. As a convention,

such tags are written in upper case.

Earlier examples used the token LEIF to refer to the object representing the

person Leif; this name is de�ned to the querier as a tag as shown, and prevents the

need to embed the expression locating the object LEIF in queries which refer to it.

3 GNOME's query facility is an implementation of this querier.

Person where its.name = "Leif" ;;

tag LEIF result.element

Here, element removes the object LEIF from the singleton set which is returned by

the query; result is a NOODL reserved word providing a tag always bound to the

result of the most recently executed query.

Tags are more useful where entire collections are retrieved, examined interactively

to ensure that they do indeed contain the correct objects, and then used as building

blocks for the construction of other more complex queries. The general form of a tag

de�nition is:

tag <tag_name> <query_expression>

The concept of a local de�nition is further developed in a succeeding section on

query methods, which are locally de�ned query expressions.

5.4 Seeing the Result

So far, queries which return (collections of) objects have been discussed, with no

indication of how the result may be displayed. Here, the relational model has a

clear advantage, since relations correspond closely to the concept of a table; tuples

retrieved from relations may be displayed as tables, the relational project operator

(ie, the SQL command select) being used to customise the contents of these tables.

The objects returned by NOODL queries are collections of objects, possibly with

properties which are other objects, and possibly with properties which are collec-

tions. It is harder to display these as tables, since neither complex objects nor collec-

tions conveniently �t into a single slot. A further problem is that although a certain

collection of objects is returned as a query result, we may wish to display informa-

tion relating to several classes of object (eg, `show the name and salary of all IBM

employees, and the make and colour of the car they drive').

These di�culties constitute an under-estimated di�culty in arriving at a clear

conceptual query model for object oriented data. This section demonstrates how

the NOODL show command, (available in interactive mode only), can be used for

the tabular visualisation of query results (including nested tabulation); object-valued

properties and set-valued properties will be discussed, together with display of infor-

mation from di�erent but navigationally-linked classes; display of information from

classes unrelated in the application schema will be treated in the following section.

The show Command The show command displays the requested information for

each of a collection of objects, with the option of attaching textual headings to the

resultant table. Tabularisation is automatically provided. The information requested

may be the value of any property of the object, or of any other object to which it

is navigationally linked. The example below shows the name and salary of all IBM

employees, together with the make and colour of their car.

Employee where its.company.name = "IBM" ;;

show "name" result.name, "earns" result.salary,

"car" result.car.make, "car colour" result.car.colour

name earns car car colour

============= ===== ===== ==========

Leif Svensson | 20000 | Volvo | crimson

Erik Leifsson | 15000 | Volvo | aquamarine

Where the value of a property is a collection, each value of the collection is shown

nested in the table; nesting may in principle be to any depth. The query below shows

all people together with their children and grandchildren.

show "person" Person.name,

"children" Person.children.name,

"grandchildren" Person.children.children.name

person children grandchildren

============= ================= ====================

Leif Svensson | Erik Leifsson | Hrothgar Eriksson

| Olaf Eriksson

| Thor Leifsson | Hagar Thorsson

Erik Leifsson | Hrothgar Eriksson | Thjalfi Hrothgarsson

| Olaf Eriksson | Sigurd Olafsson

Thor Leifsson | Hagar Thorsson | Njarl Hagarsson

| Rogvald Hagarsson

- - - - - - - - - - - - etc - - - - - - - - - - - - -

An attempt to show the value of an object-valued (ie, non-lexical) property will

show its object identi�er as shown below.

Person where its.name = "Leif" ;;

tag LEIF result.element ;;

show "Leif's wife" LEIF.spouse

Leif's wife

===========

o# 26473

Object where its.oid = 26473 ;;

show "Leif's wife's name" result.name

Leif's wife's name

========================

Freyja Thorgrimssdottir

5.5 Local De�nitions | Query Methods

Query methods are behaviour constructors, which locally name some query in the

same way that tags locally name some object or collection of objects. Query methods

are introduced by the NOODL reserved word defun, and after de�nition may be used

within a query session as if they were properties de�ned for the relevant class in the

enterprise schema.

Query methods may be used to incrementalise the construction of complex queries,

and also to represent `join-like' queries.

The join operator is highly used in the relational model. Often, the need for a

join arises directly from the limitations of this model; since all attributes must be

primitive, a query such as the example above must be expressed as something like:

SELECT PERSON.NAME, PERSON.WAGE, CAR.MAKE, CAR.COLOUR

FROM PERSON, CAR, COMPANY

WHERE PERSON.CAR_REG = CAR.REG_NO

AND PERSON.COMPANY_NO = COMPANY.COMPANY_NO

AND COMPANY.NAME = 'IBM'

Here, the joins really encode the navigational link between person, car, and com-

pany, inherent in the conceptual schema; this kind of join is never necessary in NOM

since object-valued properties are permitted.

Sometimes, however, a join will be used in the relational model to search for a

`coincidence' in the data | some relationship not directly expressed in the enterprise

schema. The need to retain the ability to express such queries in object oriented

models has been pointed out by Shaw and Zdonik [SZ90], and by Yu and Osborn

[YO91].

Consider a query to show the name of all companies located in the same city as

each person, based on the schema in �gure 1; this requires a join-like search. The

query can be achieved by de�ning a query method4 same_city which returns the

colocated companies of its person argument as follows:

defun same_city (Person) : # Company is

Company where its.city = self.city

This de�nes a query method which traverses the extent of class Company and

returns all those instances whose city property matches that of its argument, an

instance of class Person; this method may be applied to an instance of class Person

as if it were a property de�ned in its schema. The class on which the query method

is de�ned is shown in parentheses after its name; it is to an instance of this class

(or its descendants) that the reserved variable self refers when it appears in the

following de�nition.

In order to show the colocated cities of each person, same_city is mapped over

the extent of class Person:

show "the person" Person.name,

"colocated companies" Person.same_city.name

Further, the example shows that this approach may also be used to express

queries which return properties of more than one object, without the need to create

new objects or classes at query time.

4 The syntax for the de�nition of query methods is similar to that for the de�nition of

operations in NOODL schemata.

5.6 Treatment of Null Values

Zicari et al have pointed out that few object oriented query models have attempted

a treatment of null values [Zic91]. Although problematical in the relational model,

it is possible that approaches to nulls based on the criterion of identity (eg, that of

Larner [Lar91]) may be well suited to an object oriented model where identity is a

central concept ([KC86]). This is a topic for further research.

The current version of NOM, however, takes a simple, pragmatic approach to the

treatment of null values. In the same way that a class Object is provided as the most

general class (used to hold those de�nitions common to all classes) the class Bottom

is provided as the most speci�c class. From the principle of context substitutability,

this means that an instance bottom of class Bottom can appear in the context of an

instance of any other class. bottom is a NOODL reserved word referring to such a

(newly-generated) instance of class Bottom.

All the properties inherited by class Bottom are overridden by de�nitions which

always return that same instance of class Bottom in response to any object-valued

message, or suitable fail-values in response to any primitive-valued message. In this

way, an instance bottom can cascade through a query expression of arbitrary depth.

For example, if evaluation of the expression LEIF.spouse.car.colour should

fail because Leif has no wife, the following evaluation sequence will occur:

LEIF.spouse.car.colour

-> bottom.car.colour

-> bottom.colour

-> ""

This pragmatic approach has desirable properties, described in [Bar93]. Particu-

larly, the use of bottom as a null value �ts into the conceptual framework of NOM,

and the presence of a bottom cannot cause a message expression to fail to be evalu-

ated; bottom may also be used to represent object deletion. Expressions which may

involve bottom may be statically sort-checked ensuring semantic consistency. The

approach has been implemented, and could also be extended to gather debugging

information automatically for cases where unexpected null values are encountered.

6 An Evaluation of Query Models

Yu and Osborn [YO91] have evaluated the query models proposed by Manola and

Dayal [MD86], Osborn [Osb88], Straube and �Oszu [SO91], and Shaw and Zdonik

[Sha87]. Table 2 is a summary of their results, together with an evaluation of NOODL

(as a query notation) in the same framework. A `Y' means that the criterion is met,

a `N' that it is not met, a dot that it is partially met, and a question mark that it

is not clear from any available documentation whether it is met.

The criteria of the evaluation are explained in detail in [YO91]. Yu and Osborn

state that the features checked in their evaluation, although at times somewhat mu-

tually incompatible, are generally desirable. It is interesting to notice, that although

not originally designed for ad hoc querying, NOODL compares favourably within

this framework.

Manola Osborn Straube Shaw NOODL

+ Dayal + Ozsu + Zdonik

OBJECT ORIENTEDNESS

object identities . . . Y .

encapsulation Y N Y Y Y

inheritance N N Y N Y

polymorphism N . N N Y

classes + collections N Y N Y Y

heterogeneous sets ? Y Y Y Y

EXPRESSIVENESS

extends rel. alg. Y Y N Y .

object constructors . Y N N N

invocable behaviours Y N Y Y Y

behaviour constructors N N . N Y

dynamic type creation Y Y N Y N

querying closures Y N N N Y

behaviours as objects N N N N N

FORMALNESS

formal semantics N N Y . N

closed N N Y Y Y

PERFORMANCE

strong typing Y N Y Y Y

optimisable Y Y Y Y Y

DATABASE ISSUES

object lifetimes N . N ? .

schema evolution N . N N Y

calculus N N . N N

Table 2. Summary of Yu and Osborn's Evaluation (NOODL added)

7 Further Work

The version of NOODL described here has been used for investigation of various

issues in object oriented data modelling. However, for practical use it requires some

extensions, whether used for data de�nition (incorporation of query expressions in

schemata), for embedding in programs, or for ad hoc querying. These extensions

include a wider range of primitive sorts (including graphics sorts), a wider range of

collection types, aggregate functions and collection literals. It is planned to pursue

some case studies in the use of NOODL, and to experiment with, and perhaps

automate, the mapping of NOODL onto the query languages provided by some

proprietary object oriented database systems.

It is planned to map the querying constructs of NOODL onto a formal model

such as list [Tri90] or object [CT94] comprehensions; this will enable the application

of appropriate logical optimisation techniques (eg, [TW90], [JG91]). Addition of

indexing structures also remains to be undertaken.

The tabular visualisation mechanism provided by the current version of NOODL

is intended as a basic, minimum facility for the presentation of data. Work is ongoing

to develop graphical tools which will integrate querying with schema management,

and provide more comprehensive forms of data visualisation.

8 Conclusion

The use of NOODL to express queries over object oriented data arose, not from the

intention to design a language for ad hoc querying, but from the recognition that

if a data description language is to capture the behavioural aspects of the data, it

must be capable of expressing data manipulation.

The notation presented has been based on a conceptual query model, which the

authors believe is simple and natural. Provision of such a `vanilla' query model,

based on the features essential to the object oriented paradigm, makes it possible to

construct enterprise schemata without losing the conceptual level by embedding in

a host programming language.

Addition of some modest features have extended the notation su�ciently to al-

low construction of a wide class of ad hoc queries, including some that the query

languages of many prototype OODBMSs are unable to express (see [BK93] and

[CHT93]). The show command allows a tabular visualisation of object oriented data.

Local de�nitions support the incremental construction of complex queries, and query

functions support the incremental construction of join-like subqueries without the

need to create new object identities. These added features do not extend the se-

mantics of the notation; rather, they simply make it more convenient for interactive

use.

NOODL provides simple but powerful constructs for querying. Although it has

distinctive aspects, such as the transparent treatment of set-valued properties, it is

proposed not so much as a novel query language, but rather as a demonstration of

the integration of schema de�nition and querying notations.

When an ad hoc query notation is supported, these queries should be expressed

in the same notation as the conceptual model. Failing to do this has two undesirable

consequences: �rstly, the number of notations the user must master may increase

to as many as three; and secondly, cognitive dissonance may arise if the conceptual

model, which is likely to be held up as a reference during the construction of queries,

is expressed di�erently.

Appendix | Query Examples

This section presents two more substantial queries expressed in NOODL. (A more

complete set of example queries, adapted from those used by Gray et al in [GKP92,

chapter 2], may be found in [Bar93]). These examples are adapted from queries used

in [CHT93], and refer to the following NOODL schema, adapted from Chan's paper:

schema Chans_Examples

class Company class Financier

properties

name : Text ;; class LoanGivingDealer

models : # CarModel ISA Dealer, Financier

class CarModel class Address

properties properties

facilities : # Text ;; street : Text ;;

dealers : # Dealer postcode : Text ;;

city : Text

class Dealer class Garage

properties properties

name : Text ;; name : Text ;;

address : Address address : Address

end_schema { Chans_Examples }

(Query 1) Find names and prices of all non-Ford models that have an

insurance group lower than 5; the answer should include only hatchbacks

and saloons with radio and cassette player:

defun non_ford (CarModel) : Boolean is { determine whether this }

Company where its.name <> 'Ford' ; { model is available }

result.models contains self ;; { from non Ford dealer }

Carmodel where its.carType = 'Saloon'

or its.carType = 'Hatchback'

and its.facilities contains 'tapeplayer'

and its.facilities contains 'radio'

and its.non_ford ;;

show result.name, result.price ;;

(Query 2) Show names of Ford models and Ford dealers that provide loan

as a �nancial option for car purchase; the answer should include only dealers

located in a city where there are at least two garages:

{ show number of garages in city where a dealer is located }

defun num_garages (Dealer) : Number is

Garage where its.address.city = self.address.city ;

result.cardinality ;;

defun ideal_dealer (CarModel) is

LoanGivingDealer where self.dealers contains it

and its.num_garages >= 2 ;

show result.name, result.address ;;

tag ford_companies Company where its.name = "Ford" ;;

CarModel where ford_companies.models contains it ;;

show result.name, result.ideal_dealer

References

[ABD+89] M Atkinson, F Bancilhon, D DeWitt, K Dittrich, D Maier, and S Zdonik. The

Object Oriented Database System Manifesto: (a Political Pamphlet). In Pro-

ceedings of DOOD, Kyoto, Dec 1989.

[Atw93] Thomas Atwood. The Object DBMS Standard. Object Magazine, pages 37 {

44, September-October 1993.

[Bar93] Peter J Barclay. Object Oriented Modelling of Complex Data with Automatic

Generation of a Persistent Representation. PhD thesis, Napier University, Ed-

inburgh, 1993.

[BFK92] Peter J Barclay, Colin M Fraser, and Jessie B Kennedy. Using a Persistent Sys-

tem to Construct a Customised Interface to an Ecological Database. In Richard

Cooper, editor, Proceedings of the 1st International Workshop on Interfaces to

Database Systems, pages 225 { 243, Glasgow, 1992. Springer Verlag.

[BK91] Peter J Barclay and Jessie B Kennedy. Regaining the Conceptual Level in Ob-

ject Oriented Data Modelling. In Aspects of Databases (Proceedings of BNCOD-

9), pages 269 { 305, Wolverhampton, Jun 1991. Butterworths.

[BK92a] Peter J Barclay and Jessie B Kennedy. Modelling Ecological Data. In Proceed-

ings of the 6th International Working Conference on Scienti�c and Statistical

Database Management, pages 77 { 93, Ascona, Switzerland, Jun 1992. Eid-

gen�ossische Technische Hochschule, Zurich.

[BK92b] Peter J Barclay and Jessie B Kennedy. Semantic Integrity for Persistent Ob-

jects. Information and Software Technology, 34(8):533 { 541, August 1992.

[BK93] Peter J Barclay and Jessie B Kennedy. Viewing Objects. In Advances in

Databases (Proceedings of BNCOD-11), pages 93 { 110. Springer Verlag (Lec-

ture Notes in Computer Science Series), 1993.

[BM81] O Boucelma and JL Maitre. Querying Complex-Object Databases. Internal

report, University of Marseilles, 1981.

[Cha92] Daniel Chan. A Survey of Object Oriented Database Query Languages. Internal

report, University of Glasgow, Feb 1992.

[CHT93] Daniel KC Chan, David J Harper, and Philip W Trinder. A Case Study of Ob-

ject Oriented Query Languages. In Proceedings of the International Conference

on Information Systems and the Management of Data, pages 63 { 86. Indian

National Scienti�c Documentation Centre (INSDOC), 1993.

[CMA87] RL Cooper, DK MacFarlane, and S Ahmed. User Interface Tools in PS-algol.

Technical report PPRR-56-87, Universities of Glasgow and St Andrews, Mar

1987.

[CT94] Daniel KC Chan and Philip W Trinder. Object Comprehensions: A Query No-

tation for Object-Oriented Databases. In Proceedings of BNCOD-12, Guildford,

Surrey, 1994. Springer Verlag.

[DCBM89] Alan Dearle, Richard Connor, Fred Brown, and Ron Morrison. Napier88 - A

Database Programming Language? In Proceedings of DBPL-2, pages 213 { 230,

1989.

[DD91] KC Davis and LML Delcambre. Foundations for Object Oriented Query Pro-

cessing. Computer Standards and Interfaces, 13:207 { 212, 1991.

[GKP92] Peter MD Gray, Krishnarao G Kulkarni, and Norman W Paton. Object Ori-

ented Databases: A Semantic Data Model Approach. Prentice Hall, 1992.

[GOPT92] Giorgio Ghelli, Renzo Orsini, Alvaro Pereira Paz, and Phil Trinder. Design of

an Integrated Query and Manipulation Notation for Database Languages. Tech-

nical report FIDE/92/41, Universities of Pisa, Salerno, Glasgow and Sviluppo

Research Laboratory, 1992.

[Hol93] Glenn Hollowell. Handbook of Object Oriented Standards: the Object Model.

Addison Wesley, 1993.

[JG91] Zhuoan Jiao and Peter MD Gray. Optimisation of Methods in a Navigational

Query Language. In Proceedings of DOOD-2, pages 22 { 41, 1991.

[KA87] KG Kulkarni and MP Atkinson. Implementing an Extended Functional Data

Model in PS-algol. Software Practice and Experience, 17(3):171 { 185, 1987.

[KC86] S Khosha�an and GC Copeland. Object Identity. In Norman Meyrowitz, ed-

itor, Proceedings of OOPSLA, pages 406 { 416, Portland, Oregon, September

1986.

[KD90] Graham Kirby and Alan Dearle. An Adaptive Graphical Browser for Napier88.

Technical report, University of St Andrews, 1990.

[Kim89] Won Kim. A Model of Queries for Object Oriented Databases. In Peter MG

Aspers and Gio Wiederhold, editors, Proceedings of VLDB, pages 423 { 431,

Amsterdam, 1989. Morgan Kaufmann.

[Lar91] Adrian Larner. On Nulls. Internal report, IBM, Warwick, 1991.

[MBCD89] R Morrison, F Brown, R Connor, and A Dearle. The Napier88 Reference Man-

ual. Technical report PPRR-77-89, Universities of Glasgow and St Andrews, Jul

1989.

[MD86] F Manola and U Dayal. PDM: an Object Oriented Data Model. In Proceedings

of the International Workshop on Object Oriented Database Systems, pages 18

{ 25, Sep 1986.

[MSOP86] D Maier, DJ Stein, A Otis, and A Purdy. Development of an Object Oriented

DBMS. In Proceedings of OOPLSA, pages 472 { 482, 1986.

[ont90] ONTOS SQL User's Guide. (ONTOS documentation), Dec 1990.

[Osb88] SL Osborn. Identity, Equality, and Query Optimisation. In KR Dittrich, editor,

Advances in Object Oriented Database Systems (Proceedings of the 2nd Inter-

national Workshop on Object Oriented Database Systems), pages 346 { 354.

Springer Verlag, Sep 1988.

[RS87] LA Rowe and MR Stonebraker. The POSTGRES Data Model. In Proceedings

of VLDB-13, pages 83 { 96, Brighton, Sep 1987.

[Sha87] GM Shaw. An Object Oriented Query Algebra. Bulletin of the IEEE Technical

Committee on Data Engineering, 12(3):29 { 36, Sep 1987.

[SO91] DD Straube and MT �Ozsu. Queries and Query Processing in Object Oriented

Database Systems. ACM Transactions on Information Systems, pages 387 {

430, 1991.

[SZ90] GM Shaw and SB Zdonik. A Query Algebra for Object Oriented Databases.

In Proceedings of the 6th International Conference on Data Engineering, pages

154 { 162. IEEE Computer Society Press, 1990.

[Tri90] Phil Trinder. Comprehensions, a Query Notation for DBPLs. Technical report

CSC90/R16, University of Glasgow, 1990.

[TW90] Phil Trinder and Philip Wadler. Improving List Comprehension Database

Queries. Technical report CSC90/R4, University of Glasgow, 1990.

[YO91] L Yu and SL Osborn. An Evaluation Framework for Algebraic Object Oriented

Query Models. In Proceedings of the 7th International Conference on Data

Engineering, pages 670 { 677. IEEE Computer Society Press, 1991.

[Zic91] Roberto Zicari. A Framework for Schema Updates in an Object Oriented

Database System. In Proceedings of the 7th International Conference on Data

Engineering, pages 2 { 13. IEEE Computer Society Press, 1991.

