This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EDUCATION

Computational Thinking and User
Interfaces: A Systematic Review

Sara Rijo-Garcia™, Eduardo Segredo™, Member, IEEE, and Coromoto Ledn

Abstract—Contribution: This document presents a systematic
bibliographic review that demonstrates the need to conduct
research on how the user experience impacts the development
of computational thinking.

Background: In the field of computer science, computational
thinking is defined as a method that enhances problem-solving
skills, system design, and human behavior understanding. Over
the last few decades, several tools have been proposed for the
development of computational thinking skills; however, there is
no area of study that evaluates the implications or the impact
that these types of platforms have on users belonging to any
knowledge area.

Research Question: Do user interfaces influence the develop-
ment of computational thinking skills?

Methodology: To address this issue, a systematic review of the
literature was conducted using the preferred reporting items for
systematic reviews and meta-analyses (PRISMA) methodology
for analyzing and evaluating scientific publications.

Findings: The results show that despite the dearth of litera-
ture on the subject, the specific design of a user interface has a
significant impact on the development of computational thinking.
Bearing the above in mind, it is necessary to conduct research
that delves more deeply into the effects caused by the technolo-
gies that are used to develop computational thinking, this being
a line of research that is worthy of consideration.

Index Terms—Computational thinking, human-computer
interaction, preferred reporting items for systematic reviews and
meta-analyses (PRISMA), survey, systematic review, usability,
user experience, user interface, visual programming.

I. INTRODUCTION

HINKING is a cognitive process that relies on learning
T and previous experience, and is responsible for generating
ideas and concepts or understanding situations. This process
entails a set of skills that human beings develop throughout
their lives and that can be promoted by applying different
models of thought. In the context of computer science, there
are different ways of thinking—mathematical thinking, critical

Manuscript received April 20, 2021; revised December 5, 2021 and
February 28, 2022; accepted March 10, 2022. This work was supported in
part by the Cabildo de Tenerife. Fundaciéon General de la Universidad de
La Laguna through the “Piens@ Computacion@ULLmente” project (REF
21120050). Programa educativo para el fomento del pensamiento computa-
cional a través de la realizacén de actividades que permitan su desarrollo y
su inclusion en el curriculo” (Educational program to encourage computa-
tional thinking by engaging in activities that allow for its development and
its inclusion in the curriculum). (Corresponding author: Sara Rijo-Garcia.)

The authors are with the Departamento de Ingenieria Informatica y de
Sistemas, Universidad de La Laguna, 38200 San Cristébal de La Laguna,
Spain (e-mail: srijogar@ull.edu.es; esegredo@ull.edu.es; cleon@ull.edu.es).

Digital Object Identifier 10.1109/TE.2022.3159765

Decomposition Algorithms
r
.
4 .
Pattern Recognition P Abstraction
S
Coding Debugging

Fig. 1. Computational thinking skills.

thinking, algorithmic thinking, design thinking, computational
thinking and others [1]—each one with cognitive processes
that are not mutually exclusive and that can be used to solve
a given problem.

Specifically, computational thinking shares certain similari-
ties with other models of thinking, since it can be regarded as a
technique that includes the skills involved in problem solving,
systems design and understanding human behavior [2].

Based on these characteristics, Aho [3] proposed com-
putational thinking as a research method to generate new,
underlying computing models that are suitable for formulat-
ing problems. Elsewhere, Alan Perlis promoted the idea that
programming could serve as a mental tool to understand and
solve any problem at the university level [4]; while Papert, a
pioneer of constructionist learning, introduced the use of tech-
nology in teaching children, arguing that programming could
be taken as an active learning process based on understand-
ing a problem in a practical way, providing students with a
way of thinking based on their own learning [5]. But it was
really at the beginning of this century that computational think-
ing came into its own. Wing [2] stressed the importance of
developing computational thinking skills by focusing on the
abilities of students, and not only on mastering certain pro-
gramming languages. Later, Zapata-Ros [6], building on the
concepts of Papert and Wing, consolidated the idea that using
learning environments from the earliest educational stages fos-
ters the skills involved in computational thinking. It may thus
be said that computational thinking is divided into six skills
(see Fig. 1) as follows.

1) Decomposition:

problems.

2) Pattern Recognition: Find similarities inside or outside

the problem situation.

Divide the problem into smaller

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-1921-3132
https://orcid.org/0000-0002-4085-4356
https://orcid.org/0000-0002-9294-9234

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

3) Abstraction: Simplify a complex problem by focusing

only on the relevant details.

4) Algorithm: Define the steps in order needed to solve the

problem.

5) Coding: Develop a program in a language that the

computer understands based on the algorithm.

6) Debugging: Correct errors or improve the program.

Since then, multiple tools have been developed to promote
and enhance computational thinking skills and algorithmic
thinking. These tools offer a series of options that allow the
user to carry out a plethora of actions to solve a given problem;
as a result, this could at first lead to a steep learning curve
due to the complexity of the interface. Consequently, having an
adequately designed user interface allows the student to focus
on the information and the task to be completed in order to
satisfy their objectives [7], while a confusing and inefficient
design makes it difficult for people to do work and leads to
more mistakes, causing frustration and stress for the user [8].
Because of this, user interfaces should be user friendly, easy to
understand, and they should satisfy the needs of users while
making their tasks easier [7]. Usability [9], along with user
experience, is the key point when designing and developing
accessible interfaces.

The user interface is the means by which people can com-
municate and interact with a computer system. There are
different categories of user interfaces; however, depending
on how the user interacts with the system, a distinction can
be made between command line interface, graphical user
interface, natural user interface, voice user interface, tangible
user interface, and others [10].

The design of the user interface must make the interaction
between the user and system efficient and effective, which
is why the design should be developed using quality stan-
dards so as to optimize usability and the user experience. It
is thus highly recommended to follow user-centered design
perspectives when developing interfaces [11], [12].

For these reasons, it is important that environments for
learning programming exhibit a friendly interface that pro-
motes aspects of computational thinking in students in early
stages of education [13] since, as noted in the previous para-
graph, if the interface requires a high cognitive load [14], users
could have a negative experience with the activity, which could
affect student learning [15].

This article seeks to present a systematic study of the
literature in order to undertake research aimed at determin-
ing how the user experience, as it relates to the interfaces
used, impacts the development of the skills that computational
thinking provides.

II. OBJECTIVE

Over the last few decades, a large amount of research has
been conducted aimed primarily at defining computational
thinking, developing different tools to promote these skills, and
describing methodologies to apply in curricula at various edu-
cational stages. However, there are still large empirical gaps
involving the usability and efficiency of the platforms used to
develop and promote computational thinking skills.

IEEE TRANSACTIONS ON EDUCATION

TABLE I
SELECTED KEYWORDS

Importance Keywords Abbrev.

Computational Thinking CT
User Interface Ul

First-order keywords User Experience UXx
Usability
Human-Computer Interaction HCI
Thinking
Models of Thinking
Critical Thinking
Algorithmic Thinking

Second-order keywords ~ Design Thinking
STEM Education
Visual Programming Languages VPL
Visual Programming Environment  VPE
Initial Learning Environments ILE

Thus, the main objective of this document is to con-
duct a systematic analysis of the literature to see if there
are articles that show how the different user interfaces
of these tools influence the development of computational
thinking skills. The authors’ intention is to identify the
results that exist in the field of study that combines com-
puter science, human—computer interaction and education, in
order to determine the advantages and shortcomings in the
design and development of platforms in the field of com-
putational thinking, and establish a line of research in this
field.

III. METHODOLOGY

To ascertain this state of the art, a systematic review was
conducted that relied on the “preferred reporting items for
systematic reviews and meta-analyses” (PRISMA) [16] method-
ology for analyzing and evaluating scientific publications. The
first step was to establish the research question in order to
frame the field of study. The goal is to study the impact of
user interfaces and how they affect the experience of users who
employ technology to develop the skills that are provided by
computational thinking. This allowed us to posit the following
question:

Do user interfaces influence the development of
computational thinking skills?

Table I defines the search terms, as well as their possible
synonyms and abbreviations. Once the set of keywords was
determined, the databases that were best suited to this study
were selected, which were as follows.
1) Association for Computing Machinery (ACM) Digital
Library (https://dl.acm.org/).

2) Digital Bibliography and Library Project (DBLP)
Computer Science Bibliography (https://dblp.org/).

3) Institute of Electrical and Electronics Engineers (IEEE)
Xplore (https://ieeexplore.ieee.org/Xplore/home.jsp).

4) ScienceDirect (https://www.sciencedirect.com/).

5) Scopus (https://www.scopus.com/home.uri).

6) Web of Science (https://www.webofscience.com/wos/

alldb/basic-search).

The next step was to define the query to carry out in the
different databases



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RIJO-GARCIA er al.: COMPUTATIONAL THINKING AND USER INTERFACES: A SYSTEMATIC REVIEW 3
ACM Digital Library DBLP IEEE Xplore ScienceDirect Scopus Web of Science
(n =727) (n =47) (n =23) (n =D23) (n =1B) (n =36)
&
'% Number of studies identied
K] using search of databases
€ (n =1069)
7]
s
Duplicate studies excluded

(n =450)
o
E Number of studies after
g)) eliminating duplicates
S (n =619)
]

Studies excluded

(n =526)

+ Papers that do not match
the search terms

* Papers written in a
language other than
English orSpanish.

> * Papers consisting solely of
= Studies carefully assessed to an abstract.
2 determine their eligibility
2 (n=93)
w
Studies excluded
(n=71)

* Papers whose subject
refers to other aspects
of design.

* Papers that focus purely on
aspects of robotics.

f=

o Systematic reviews
5 included in the study
2 (n =22)

Fig. 2. Flow diagram of the PRISMA methodology.

("Models_of,_thinking" OR "Computational,
Thinking") AND ("User _Interface" OR "UI"
OR "User Experience" OR "UX") AND ("Visual
_Programming, Languages" OR "VPL" OR "STEM"
OR "Education" OR "Human_Computer,
Interaction" OR "HCI" OR xThinking) .
Finally, exclusion and inclusion criteria were established to
determine the quality of the articles to be studied.
1) Exclusion Criteria:
a) Duplicate papers.
b) Papers that do not match the search terms.
c) Papers whose subject refers to other aspects of
design.
d) Papers that focus purely on aspects of robotics.
e) Papers written in a language other than English or
Spanish.
f) Papers consisting solely of an abstract.
2) Inclusion Criteria:
a) No time restriction is applied.
b) Papers written in Spanish or English.
c) Peer-reviewed papers.
d) Papers from journals.

Papers that may describe an experiment or study
with proven results.

Papers whose subject is related to computational
thinking and user interfaces.

e)

A. Search, Screening, and Selection Process Carried Out in
the Different Stages

After performing different searches in the databases men-
tioned above, a total of 1069 records were obtained, of which
450 were duplicate studies. This resulted in a total of 619 stud-
ies after eliminating duplicates. During the screening phase,
407 papers were excluded based on the title and keywords,
and 119 based on the abstract. In the eligibility phase, of the
remaining 93 studies, a total of 71 studies that did not satisfy
the inclusion criteria were excluded. In the end, 22 papers
were found that were relevant to this study (see Fig. 2).

IV. RESULTS

Once the screening phase was completed, 22 papers were
selected in order to conduct a more in-depth analysis. The



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Papers

0
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Y ears

Fig. 3. Graph showing the selected papers grouped by year of publication.

Usability
User Interface

Interface type

Design Monitoring systems

Visual Programming Environment

User Interface

Cognitive load Interface comparison

Fig. 4. Word cloud of the categories into which the papers analyzed have
been classified.

resulting study period ranged from 2010 to 2021, and can thus
be regarded as involving novel and current areas of research.
It should be noted that the number of papers on the subject
has been increasing over the years, and most of the articles
selected for the study are from recent years (see Fig. 3).

The papers selected are those that best adapt to the research
question that the authors are interested in solving, and they can
be classified into various categories, which are not mutually
exclusive, and where the same article could be included in
several categories (see Fig. 4).

The results of this analysis are presented in the sections that
follow.

Machines for Thinking [13]: The article focuses on how
learning environments for programming should be appealing
and interesting in order to promote aspects of computational
thinking in students in the early stages of education.

It lays out a background by taking a tour of the first learning
tools for programming, which later transformed into environ-
ments designed, especially, for young students. The precursor
was provided by Papert and the Logo language.

The authors believe that this type of platform incorpo-
rates both an intellectual relationship with the learning that
takes place, and a social relationship with the users, where
each system is capable of presenting a theory for teaching
programming.

These types of tools offer great advantages due to the ubig-
uitousness of the computers present in many of the classrooms
at a large number of schools compared to other, higher cost
alternatives, as well as due to the communities that have been
created to share the educational experiences of students and
teachers alike.

With the above in mind, it could be said that environments
for learning programming should be appealing and interesting

IEEE TRANSACTIONS ON EDUCATION

S0 as to encourage aspects of computational thinking. In this
case, an environment is deemed to be appealing and interesting
based on its user interface. If said interface is not intuitive or
eye-catching, the environment may not be viewed in the same
light, which could detract from the positive aspects related to
the user experience on the platform.

App Inventor for Android (Report From a Summer
Camp [17]): This article details the experience of using App
Inventor in a summer camp with high school students. The
author provides a detailed description of the design of these
camps, including the process of selecting and configuring an
Android device. Furthermore, an evaluation process was con-
ducted with the students through surveys to determine the
effects of this type of tool compared to other, less intangi-
ble, tools. In addition to the experience with the platform,
the interesting thing about this article is that it presents the
advantages of this tool compared to others, as well as the
improvements that the platform would need to increase its
usability and improve the user experience.

Elsewhere, Roy highlighted as advantages of App Inventor
its fusion of the best tangible and intangible interfaces, it com-
plements the learning experience of users who have already
used Scratch or Alice, and for computer science students, it can
serve as a basis for the later study of programming languages
such as Java.

Improvements include social interaction and sharing
between users, developing an easily accessible media library
like Scratch, improving the design of the user interface with
a single window so that elements are always visible, and
improving the usability of the implementation.

Interfaces for Thinkers (Computer Input Capabilities That
Support Inferential Reasoning [14]): This article considers
the implications of designing effective computational think-
ing tools. One of the fundamental goals of this research is
to determine if inferential thinking deteriorates or improves
depending on the cognitive load of the interface used.

To achieve an optimal design of the interfaces of educa-
tional tools, one where learning prevails, it is essential for
said interface to have a low cognitive load. To this end,
Sharon Oviatt, the author of this research, did a comparative
study contrasting the inference that results from using different
interfaces.

This study showed that inferential precision is affected by
interfaces that facilitate greater distractions, since the user
cannot focus on solving the problem at hand.

Currently, the use of digital tools is widespread in all areas
of society. It is thus of great importance to understand how the
design of these tools impacts certain aspects of human cogni-
tion. The long-term goal of this research is to design computer
interfaces that act as thinking tools to improve learning.

To conclude, the authors note that user interfaces that are
not designed with the cognitive load they place on the student
in mind make the user unable to focus on the solution of
the problem at hand, thus potentially frustrating the learning
process.

TUI, GUI, HUI (Is a Bimodal Interface Truly Worth the
Sum of Its Parts? [18]): This article conducts a comparative
study of three types of interfaces dedicated to the development



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RIJO-GARCIA et al.: COMPUTATIONAL THINKING AND USER INTERFACES: A SYSTEMATIC REVIEW 5

of computational thinking: 1) tangible interfaces; 2) hybrid
interfaces; and 3) graphic interfaces. The study was carried
out on a sample of boys and girls between five and six years
old. It yielded promising results for tangible interfaces, as
they help to enhance computational thinking skills, although
graphic interfaces obtained higher scores in the evaluation of
repetition structures.

The statistics on the results show that the group of tan-
gible interfaces had a higher proportion of correct answers
in the majority of programming tasks, whereas the graphical
interfaces obtained the highest score when evaluating repeating
structures.

As a final finding, the strategies used by students to solve
problems are closely related to the learning interface used,
meaning it is essential to conduct research in this field in order
to determine how these technologies impact computational
thinking learning.

Students’ Experiences From the Use of MIT App Inventor
in Classroom [19]: In this article, Perdikuri described how
the App Inventor works and its use as a means of developing
computational skills among secondary school students.

In student evaluations of their experience with the tool,
more than 50% of the students said that App Inventor pro-
vides a fairly usable development environment. In noting the
significant aspects of this tool, students deemed it important
to develop mobile applications that are simple and accessible
to everyone, a Web-based platform and a user-friendly visual
environment for the development of user interfaces. The stu-
dents also noted the greater complexity of the block editor
view.

Despite having used a small study sample, and in the
absence of studies involving larger groups, the author was able
to state that App Inventor is a good tool for developing com-
putational thinking skills since, due to the visual nature of
the platform, it lets users focus more on solving the prob-
lems and less on the language syntax, which minimizes the
programming learning process.

As a line of future work, the author mentions conducting a
comparative study of the App Inventor and other programming
environments, which are used to introduce programming to
high school students.

In this article, the author addresses the need to use visual
programming environments with an interface that helps users
develop computer and computational thinking skills, by mak-
ing it possible for users to focus on solving the problem in
question, and not just on the code.

Entry (Visual Programming to Enhance Children’s
Computational Thinking [20]): This article introduces Entry,
a visual programming platform based on HTMLS5 that
encourages the development of computational thinking in
learners.

It features a simple and intuitive block-based interface.
Through this friendly environment, it allows the user to engage
in problem-based learning that spans the basic principles
of programming. Furthermore, since it is Web-based, it is
adaptive and can be easily used on mobile devices.

In future research, the authors propose conducting qual-
itative surveys to study the usability of the interface and

apply specific measures to adapt the improvements to the user
interface.

Measuring the Usability and Capability of App Inventor to
Create Mobile Applications [21]: The goal of this study is
to evaluate the usability of App Inventor to develop applica-
tions for mobile devices. To this end, the environment must be
intuitive, usable and functional so that basic users can create
simple applications, and higher level users can develop more
advanced applications.

In order to carry out this research, the applications from a
sample of 5228 resources were categorized and filtered. The
findings indicate that the interface is limited by the learning
resources, and that there is thus a relationship between the
usability of the interfaces and the tutorials proposed to carry
out the activity.

Floors and Flexibility (Designing a Programming
Environment for 4th-6th Grade Classrooms [22]): Several
studies focused on Human—Computer Interaction show the
differences between how children interact compared to adults.
It is these differences that must therefore be kept in mind
when designing visual tools for programming, since the
development interface plays a fundamental role, as it aims to
promote change in the students’ roles as they transition from
being mere users to developers. As a result, this paper argues
for the need to have a tool that can be adapted to different
educational levels, making the user focus on the project to be
developed without becoming lost learning the interface.

To do this, the authors of this article developed an environ-
ment that can reveal sections of the interface as the student
progresses in their learning, so as not to cognitively saturate
the student. As an alternative, the environment can be made
completely visible so that users can develop their creativity by
engaging in unscripted projects.

In developing this platform, the authors established the
following design principles.

1) Support multiple task types.

2) Require age-appropriate content.

3) Include an age-appropriate interface.

4) Aid the project developers.

These design principles rely on existing visual programming
languages based on blocks, as well as on research during the
pilot implementation phase. Likewise, the authors identified
inconsistencies in the designs of programming environments,
such as Scratch, ScratchJr, and Blockly. This led them to
carry out a comparison applying the design principles outlined
above, and which they also used to develop their own environ-
ment based on the strengths of each of the interfaces studied.
With the above in mind, the design criteria established by the
authors yielded an improved user experience and encouraged
computational thinking, specifically in fourth- and sixth-grade
students.

In the future, the authors plan to conduct further stud-
ies, including the benefits provided by a visual development
environment and how learning in these environments affects
educators, since many teachers do not usually have previous
experience teaching computational thinking.

This article clearly shows the need to have programming
environments that are tailored to cognitive skills, since many



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

block-based tools have features in their user interfaces that
are too complex and not suited to the development of students
ranging in age from nine to eleven.

Using Computational Thinking Patterns to Scaffold
Program Design in Introductory Programming Course [23]:
Chang, the author of this research, has created a system that
monitors student development in a block-based programming
environment. This system covers the deficiencies present in
certain user interfaces by suggesting to the student a snippet
of code that can help them, such that the user can progress in
their learning without obsessing over the multitude of options
that these interfaces offer.

This could be one possible solution in terms of the devel-
opment of computational thinking by relying on block-based
programming environments, since it would optimize the user
interface while also reducing its cognitive load.

Can Students Design Software? The Answer Is More
Complex Than You Think [24]: The author of this article
defined the design as a series of software elements, as well as
the interaction between them. Hu argued that software design
should be an iterative process that improves the final design
of a product.

Therefore, a quality design must be able to adapt to changes
in the initial requirements, as well as to other possible mod-
ifications. This is why practitioners using agile software
development methodologies may believe that design is not
only highly iterative, but emergent. Then, only coding, test
execution and code refactoring reveal the correct functioning
of a good design.

In conclusion, the author points out that in order to obtain
stable, adaptable and durable designs over time, the teaching
of design must be improved, such that any student finishing
a computer science program should be able to design optimal
software.

Employing Retention of Flow to Improve Online
Tutorials [15]: It is imperative that designers and developers
create optimal platforms to promote learning in computer
science, since if users have a negative experience with the
activity, it could have effects that are counterproductive to
the specified objective. In order to identify those parts where
users normally leave the activity, methods are needed to
identify these points so they can be subsequently improved.

This article maintains that the development of platforms has
to adhere to design norms, such as, for example, the clarity
and simplicity of the interface, in order to allow for a proper
user—interface interaction in order to minimize user error. This
thus promotes the learning of computer science since, if users
have negative experiences with the activity in question, effects
contrary to the defined objective could result. It is because of
this that in this case, the researchers created a tool that can
be used to measure the flow retention of students. This allows
identifying the cognitive loads in order to improve the design
of the user interface. Keeping the above in mind, using this
type of tool could lead to qualitative improvements in both the
user interface and user experience, enhancing computational
thinking.

The Impact of User Interface on Young Children’s
Computational Thinking [25]: This article studies the impact

IEEE TRANSACTIONS ON EDUCATION

of tangible interfaces versus graphics on the performance of
computational thinking skills in boys and girls between the
ages of five and seven.

The researchers focused specifically on Scratch]Jr as a graph-
ical interface, and the KIBO Robot as the tangible interface.
The results showed significant differences between the two
types of interface; however, for this sample, the group that
worked with the KIBO robot obtained better scores than the
group that worked with Scratch]r, especially in the sequenc-
ing and debugging activities. This may be due to the nature of
the interfaces proposed. Since the KIBO Robot is a tangible
interface, it allows children to use their own hands to under-
stand how the actions associated with the blocks are translated
into the robot’s movements in a physical space. By contrast,
ScratchJr, which is a graphical interface shown on a screen,
could pose some additional complexities or increase the level
of distractions, especially when one is unfamiliar with the
development environment.

In conclusion, this study provides evidence on the impact
that both interface types have on student learning, which shows
that the type of interface presented to the student influences, in
one way or another, the experiences of the children and, thus,
on the development of skills associated with computational
thinking. Because of this, as the authors of the research assert,
it is important to implement technologies that are tailored to
the different educational stages so as to promote the proper
development of computational thinking skills.

Exploring Factors Influencing the Acceptance of Visual
Programming Environment Among Boys and Girls in Primary
Schools [26]: This study adapts the “Technology Acceptance
Model” (TAM), by Davis, Bagozzi and Warshaw, to study the
effect that visual programming environments have on primary
school students. The model is based on four principles: per-
ceived utility, perceived ease of use, attitude and behavioral
intention.

The results of the research show that students tended to
perceive the utility of the environment rather than the ease
of use. It also determined that outside assistance is necessary
for the perceived ease of use. These results thus indicate that
there is a link between external assistance and the ease of use
perceived by students.

The Computational Puzzle Design Framework (A Design
Guide for Games Teaching Computational Thinking [27]):
After a systematic investigation, the authors of this study con-
clude that there is nothing in the literature on how to design
and develop games to teach computational thinking.

This article tries to address the unknown that arises when
developing this type of platform in an efficient and effective
way, and presents a design framework for game development,
which the authors of this research put into practice by applying
said framework to redesign a game that focuses on learning
computational thinking.

As a result, a common framework should be established
for the design and development of games that teaches com-
putational thinking and that also allows the researcher to
measure the effect that these interface have on its develop-
ment, and determine the objective improvements that could be
made.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RIJO-GARCIA et al.: COMPUTATIONAL THINKING AND USER INTERFACES: A SYSTEMATIC REVIEW 7

As future work, the researchers propose testing this design
and development framework.

Fostering Computational Thinking Through Collaborative
Game-Based Learning [28]: This study tries to determine if
the design of a game system can be used to help teach com-
putational thinking in a way that is fun and entertaining. To
argue this hypothesis, the researchers in this study developed
a tangible programming environment using mobile devices.

The most significant difference with other environments is
that the system developed had a greater degree of abstraction
compared to other environments, such as Scratch. The experi-
ment yielded positive results, suggesting future research where
certain improvements will be applied.

Computational Thinking With the Web Crowd Using
CodeMapper [29]: In this article, a new programming plat-
form, called CodeMapper, is presented. It can build com-
putational logic in separate modules and aggregate them to
create complex modules, so that students can focus first on
programming logic and then on code development.

CodeMapper offers a visual interface that allows students
to stay in a conceptual realm, similar to block-based program-
ming environments, and also to write software in a language,
such as Java, C++, or Python.

The platform is developed in ASP.NET Core 2.0 and React
due to their flexibility, as it allows for incremental design. The
result is a dynamic user experience and interaction.

In conclusion, the authors emphasize that CodeMapper is
part of an overall system called MindReader, but can stand
alone as a smart Web application with great potential for
teaching computational thinking.

A Natural User Interface Implementation for an Interactive
Learning Environment [30]: This article shows a develop-
ment environment called Create and Play based on natural
user interfaces. The TAM was used to study user impressions.
In addition, the Interface Style was included as an external
variable of the research because, according to previous stud-
ies, the use of a given system can be affected by the style of
the interface used, thus influencing the users’ attitude when
using the platform.

After conducting an empirical study, the authors show that
the type of interface influences the ease of use of the tech-
nology and is related to the usefulness and enjoyment of the
platform. Therefore, the authors claim that the use of natural
user interfaces in computational thinking provides additional
motivation for secondary school students.

BlocklyScript (Design and Pilot Evaluation of an RPG
Platform Game for Cultivating Computational Thinking Skills
to Young Students [31]): Karakasis and Xinogalos, the
authors of this article, present a new educational game called
BlocklyScript, which aims to teach basic programming con-
cepts, algorithm design and error correction, skills that are
intrinsic to computational thinking.

To provide an improved gaming experience for the
user, the authors relied on design norms focused on
usability, multimodality and entertainment. This translates
into an implementation of a gaming environment that is
easy to use and navigate and is compatible with various
browsers.

According to the surveys conducted during the study, the
game is usable, the design of the game is appealing, the col-
ors are representative and the game provides guided learning.
These are important characteristics in the design and develop-
ment of user interfaces. As for the user experience, parameters,
such as confidence, challenge, satisfaction, engagement, and
relevance were evaluated.

On the other hand, that students are expected to easily
grasp the basic concepts of computational thinking as they
play with the BlocklyScript platform. However, due to the
current COVID-19 pandemic, new teaching models have been
born and as future research, the authors propose improving the
design and features of BlocklyScript so that it can be used in
nonface-to-face education.

Finally, there is evidence that the user interface does affect
the outcome of these abilities, since this platform was designed
taking into consideration user-centered design norms. As a
result, the authors were able to develop a platform with
an appealing design that focuses on usability while also
promoting computational thinking skills.

Pixasso (A Development Stage-Based Learning Application
for Children [32]): In this article, Nandan er al. presented
a tool to teach programming by coloring the pixels of an
image. In terms of the user interface and user experience,
this application was developed employing the user-centered
design paradigm (in this case, child-centered design), which
aims to improve the proposed skills in computational thinking
and encourage computer science education at an early age.

The Pixasso application was designed to be adaptive and
to let students select the difficulty level for the various skills.
To validate the design of the application, the authors relied
on the Developmentally Situated Design (DSD) card, adding
cards applicable to the computational thinking use case, i.e.,
problem solving, attention and instruction. They also applied
the Touchscreen Interaction Design Recommendations for
Children framework to properly develop the application.

As is apparent, this article provides a clear example of
how the user interfaces of tools for learning programming can
affect the cognitive development of the user when attempting
to solve a problem. In this case, the researchers employed a
user-centered design that was validated using DSD cards. By
doing so, the authors were able to identify potential problems
in the tool and apply solutions to improve their design.

Enhancing Computational Thinking Capability of Preschool
Children by Game-based Smart Toys [33]: This study proposes
a system based on tangible user interfaces, using Arduino
as the basis for assembling robot cars and colored cards for
developing applications. The aim of the study is to investigate
different teaching approaches for learning computational logic
and programming concepts.

The article builds on previous research that showed that
there are no major differences in learning usage between
graphical and tangible interfaces; however, this study is based
on the hypothesis that users will engage more actively with a
tangible interface.

The learning difficulties were reduced and learner interest
was increased thanks to facilitated entertainment scenarios
and user-friendly interfaces, promoting the improvement of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

computational thinking skills. As a result, the cognitive load
associated with learning is lower, as students quickly become
accustomed to the interactive interface.

Comparing TUIs and GUIs for Primary School
Programming [34]: This study is part of broader research
that aims to analyze how different user interfaces can
support the development of computer skills in primary school
students, which is why the authors of this article focus on
comparing the use of graphical user interfaces and tangible
user interfaces.

The results suggest that graphical user interfaces can be
more effective for teaching the basic concepts of program-
ming, while tangible user interfaces can be more effective
for teaching computer science to younger students. Thus,
both interfaces can be beneficial depending on the educational
objective.

In this article, the authors consider the difference that
exists between tangible and graphical user interfaces when
assimilating programming concepts, with tangible interfaces
being more popular among younger children, and graphical
interfaces being easier for older children to use.

The results also show that the users of graphical interfaces
exhibited significantly greater improvements than the users of
tangible interfaces in terms of learning.

As a result, the type of interface used when teaching pro-
gramming can influence the development of computational
thinking skills.

EEG-Based Cognitive Load Assessment in MATLAB GUI
and Impact on Learning System [35]: This research focuses
on reducing the cognitive load for computational thinking-
based learning. The aim is to build a graphical user interface
for MATLAB software in order to instantly measure cogni-
tive load based on the electroencephalograms of individuals.
The user interface is easy to use, since it does not require
programming knowledge in order to use it, and its objective
is to determine the cognitive load experienced by the user
when solving a given problem. According to the authors, this
research could be applied in the field of education to determine
the learning status of students.

V. DISCUSSION

Most of the results studied have been presented at inter-
national conferences and congresses, and can be categorized
into three areas: 1) Computer Science; 2) Human—Computer
Interaction; and 3) Education. The field of study of this
research is a combination of these three areas.

In turn, this article presents a classification of the papers
based on their content and the area of study that is considered
herein, which were grouped into: visual programming envi-
ronment, user interface, user experience, usability, cognitive
load, comparison of interfaces, type of interface, design, and
monitoring systems. The classification is shown in Fig. 5.

Despite the long history of the study of computational think-
ing, in reality, the existing literature on the usability and
effectiveness of learning tools for programming is truly scarce.
Based on the studies analyzed, the authors of this article deter-
mined that there is a significant gap both when it comes to

IEEE TRANSACTIONS ON EDUCATION

4 Design
I nterface type
Interface comparison
Monitoring systems
Usability
4 User Experience

Cognitive load

@ User Interface

@ Visual Programming Environment

Fig. 5.
classified.

Graph showing the categories into which the papers analyzed are

designing and developing tools that encourage computational
thinking and are suited to different educational levels, and to
studying the impact that these platforms have in terms of the
cognitive load that students can tolerate.

This work shows that the type of interface used in platforms
that promote computational thinking affects student learning,
which makes it important to ascertain what types of interfaces
are best suited to each educational stage. This makes it pos-
sible to determine how these tools will be presented to the
user.

The authors’ review of the literature yielded several types
of interfaces: natural, tangible, graphic, and hybrid. All of
them, depending on the degree of use, enhance computational
thinking skills to some extent [14], [18], [25], [30], [34].

It is also important to consider the cognitive load imposed
by these tools, since the user learning process could be
frustrated, resulting in a negative experience and a counter-
productive outcome [14], [15], [23], [33], [35].

As noted by Jiang et al., since there is no design framework
for developing this type of tool, it is difficult to establish a
pattern that can be used to bridge or mitigate this gap [27].
Therefore, to provide a better user experience, it is neces-
sary to follow certain design guidelines focusing on usability
and multimodality [31], this being an iterative process that
improves the final design of the product [24]. A proper eval-
uation of a software prototype is a fundamental part of the
development process, as it provides useful information on
usability and identifies potential problems so that the software
can be improved later [36].

In terms of the design of graphical user interfaces, the
developers of computational thinking platforms should use
a user-centered approach in order to achieve tools that are
intuitive, usable and appealing [13], [22], [31], [32]. As
per the ISO 9241-210:2019 standard on the “Ergonomics of
human-system interaction—Part 210: Human-centered design
for interactive systems,” six design principles are defined as
follows.

1) The design is based upon an explicit understand-
ing of users, tasks, and environments. It is important
to know the target audience for which the tool is
intended, the context, the needs and goals of the user,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RIJO-GARCIA et al.: COMPUTATIONAL THINKING AND USER INTERFACES: A SYSTEMATIC REVIEW 9

as well as the tasks the user will carry out on the
interface.

2) Users are involved throughout the design and develop-
ment. This point suggests making the user a participant
in the interface design process and learning their point
of view, thus making it possible to design interfaces that
are better suited to the user’s needs.

3) The design is driven and refined by user-centered eval-
uation. The user’s viewpoint is taken into account such
that the user evaluates all the versions, from the start of
the development phase until the final version.

4) The process is iterative. It is not a linear process; rather,
the design is evaluated along the various phases.

5) The design addresses the whole user experience. Just as
usability is an implicit part of this process, so must the
user experience be.

6) The design team includes multidisciplinary skills and
perspectives. This is a process that should involve every
team member, not just designers or developers.

Various papers analyzed present a series of solutions that
can address some of the problems exhibited by the current
tools in terms of developing computational thinking.

These alternatives include the implementation of technology
adapted to the different educational stages [22], [25], systems
that measure the retention flow of students on the platform
and that allow measuring the cognitive loads that are imposed
on students [15], and assistive technologies that are activated
when the user cannot find a solution to the problem [23].

In conclusion, and in response to the hypothesis proposed
in this research, it may be deduced that user interfaces indeed
affect the development of computational thinking skills. A
more exhaustive research process would be beneficial in order
to ascertain the impact that these technologies have on the
development of intrinsic computational thinking skills. As ana-
lyzed in previous studies, there is a close relationship between
solving a given problem and the learning interface used for
this [13], [18], [21], [33], [37].

This work is the first step, and involved a study to sys-
tematically map the literature to see if there are any papers
that conclude that user interfaces influence the development of
computational thinking skills. As the results show, there are
few studies in this field, meaning more work is required in this
area of research to determine the extent to which each type of
user interface is best suited to learning in the various stages
of education, and to study the usability and user experience
of these interfaces, the goal being to develop programming
environments that are tailored to the user’s cognitive skills.

VI. CONCLUSION

Recent years have seen a great wave of research on com-
putational thinking and its effect in the field of education.
However, there are no mapping studies that consider the impli-
cations of the impact caused by the various tools that have been
developed to promote computational thinking skills. This arti-
cle presents a systematic review that relies on PRISMA as the
analytical methodology. Twenty-two documents out of a total
of 1069 were identified and filtered for further study. The result

is an analysis of the state of the art involving the intersection
between the areas of Computer Science, Human—Computer
Interaction, and Education, the goal of which is to identify
the scope of the research, trends and any existing gaps.

The results showed that despite the relative dearth of lit-
erature on the relationship between user interfaces and the
development of computational thinking skills, it is safe to say
that user interfaces do affect the development of these skills.
There is also the need to conduct research that further ana-
lyzes the effect caused by the technologies employed in the
development of these interfaces. This is thus a worthy area of
endeavor for future research.

Over the course of this study, a series of more specific
questions emerged as follows.

1) How do the interfaces of visual programming languages

affect the development of computational thinking skills?

2) How does the design of a user interface influence the
development of computational thinking skills?

3) How does the user experience involving visual pro-
gramming tools affect the development of computational
thinking?

4) What are the differences between the interfaces of visual
programming languages?

5) What improvements can be applied to visual program-
ming tools or platforms to make their designs more
inclusive and accessible?

6) Is it possible to improve the design of a user interface
by applying other thought models?

The answer to these questions will provide a starting point

for future research.

REFERENCES

[1] C. Frauenberger and P. Purgathofer, “Ways of thinking in informatics,”
Commun. ACM, vol. 62, no. 7, pp. 58—64, Jun. 2019. [Online]. Available:
https://dl.acm.org/doi/10.1145/3329674

[2] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no. 3,
p- 33, Mar. 2006. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=1118178.1118215

[31 A. V. Aho, “Computation and computational thinking,”
Comput. J., vol. 55, mno. 7, pp.832-835, Jul. 2012.
[Online]. Available: https://academic.oup.com/comjnl/article-

lookup/doi/10.1093/comjnl/bxs074

[4] M. Tedre and P. J. Denning, “The long quest for computational think-
ing,” in Proc. 16th Koli Calling Int. Conf. Comput. Educ. Res. Koli
Calling 16, Koli, Finland, 2016, pp. 120-129. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2999541.2999542

[5] 1. Harel and S. Papert, “Software design as a learning environment,”
Interact. Learn. Environ., vol. 1, no. 1, pp. 1-32, 1990. [Online].
Available: https://doi.org/10.1080/1049482900010102

[6] M. Zapata-Ros, “Pensamiento computacional: Una nueva alfabetizacion
digital,” Revista de Educacion a Distancia, vol. 2015, no. 46, Oct. 2015.
[Online]. Available: https://revistas.um.es/red/article/view/240321

[7] M. Ritter and C. Winterbottom, UX for the Web: Build Websites for User
Experience and Usability. Birmingham, U.K.: Packt Publ., Sep. 2017.

[8] D. Stone, C. Jarrett, M. Woodroffe, and S. Minocha, User Interface
Design and Evaluation, 1st ed. Amsterdam, Netherlands: Elsevier,
2005. [Online].  Available: https://www.elsevier.com/books/user-
interface-design-and-evaluation/stone/978-0-12-088436-0

[9] NSAI ~ Stand, Dublin, Ireland, ISO  9241-11:2018(en).
“Ergonomics of Human-System Interaction—Part 11: Usability:
Definitions and Concepts.” 2018. [Online]. Available:

https://www.iso.org/obp/ui/#iso:std:is0:9241:-11:ed-2:v1:en
F. J. M. Lopez, Instalacion y Actualizacion De Sistemas Operativos
—UF0852. Madrid, Spain: Editorial Paraninfo, 2017.

[10]



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

S. Yadav and P. Chakraborty, “Human-computer interaction
as an important aspect of software: A tutorial,” in Proc.
IEEE Int. Conf. Comput. Power Commun. Technol. (GUCON),

2020, pp. 40-44, doi: 10.1109/GUCON48875.2020.9231155.

M. Rauterberg, “How to measure and to quantify usability attributes of
man-machine interfaces,” in Proc. 5th IEEE Int. Workshop Robot Human
Commun. RO-MAN, 1996, pp. 262-267.

S. Fincher and I. Utting, “Machines for Thinking,” ACM Trans.
Comput. Educ., vol. 10, no. 4, pp. 1-7, Nov. 2010. [Online]. Available:
https://dl.acm.org/doi/10.1145/1868358.1868360

S. L. Oviatt, “Interfaces for thinkers: Computer input capabilities that
support inferential reasoning,” in Proc. 15th ACM Int. Conf. Multimodal
Interact. ICMI, Sydney, NSW, Australia, 2013, pp. 221-228. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2522848.2522849

A. R. Basawapatna and A. Repenning, “Employing retention of flow
to improve Online tutorials,” in Proc. ACM SIGCSE Tech. Symp.
Comput. Sci. Educ., Seattle, WA, USA, Mar. 2017, pp. 63-68. [Online].
Available: https://dl.acm.org/doi/10.1145/3017680.3017799

D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and The
PRISMA  Group, “Preferred reporting items for systematic
reviews and meta-analyses: The PRISMA statement,” PLoS Med.,
vol. 6, no. 7, Jul. 2009, Art. no. el000097. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/19621072

K. Roy, “App inventor for android: Report from a summer
camp,” in Proc. 43rd ACM Tech. Symp. Comput. Sci. Educ.,
New York, NY, USA, 2012, pp. 283-288. [Online]. Available:
https://doi.org/10.1145/2157136.2157222

A. Strawhacker, A. Sullivan, and M. U. Bers, “TUI, GUI,
HUI: Is a bimodal interface truly worth the sum of its parts?”
in Proc. 12th Int. Conf. Interact. Design Children - IDC,
New York, NY, USA, 2013, pp. 309-312. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2485760.2485825

K. Perdikuri, “Students’ experiences from the use of MIT
app inventor in classroom,” in Proc. 18th Panhellenic Conf.
Informat., New York, NY, USA, 2014, p. 1-6. [Online]. Available:
https://doi.org/10.1145/2645791.2645835

A. Han, J. Kim, and K. Wohn, “Entry: visual programming to
enhance children’s computational thinking,” in Proc. ACM Int.
Joint Conf. Pervasive Ubiquitous Comput. Symp. Wearable Comput.
(UbiComp), Osaka, Japan, 2015, pp. 73-76. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2800835.2800871

B. Xie, I. Shabir, and H. Abelson, “Measuring the usabil-
ity and capability of app inventor to create mobile appli-
cations,” in Proc. 3rd Int. Workshop Program. Mobile Touch
(PROMOTO), Pittsburgh, PA, USA, 2015, pp. 1-8. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2824823.2824824

C. Hill, H. A. Dwyer, T. Martinez, D. Harlow, and D. Franklin,
“Floors and flexibility: Designing a programming environment for
4th-6th grade classrooms,” in Proc. 46th ACM Tech. Symp. Comput. Sci.
Educ. (SIGCSE), Kansas City, MO, USA, 2015, pp. 546-551. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2676723.2677275

C.-K. Chang, “Using computational thinking patterns to scaf-
fold program design in introductory programming course,” in
Proc. 5th IHAI Int. Congr. Adv. Appl. Informat. (IIAI-AAI),
Kumamoto, Japan, Jul. 2016, pp. 397-400. [Online]. Available:
http://ieeexplore.ieee.org/document/7557641/

C. Hu, “Can students design software? The answer is more complex than
you think,” in Proc. Assoc. Comput. Mach., Feb. 2016, pp. 199-204.
A. Pugnali, A. Sullivan, and M. U. Bers, “The Impact of User Interface
on Young Children’s Computational Thinking,” J. Inf. Tech. Educ.
Innov. Pract., vol. 16, no. 1, pp. 171-193, 2017. [Online]. Available:
https://www.informingscience.org/Publications/3768

G. Cheng, “Exploring factors influencing the acceptance of
visual programming environment among boys and girls in pri-
mary schools,” Comput. Human Behav., vol. 92, pp.361-372,
Mar. 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S0747563218305788

X. Jiang, C. Harteveld, X. Huang, and A. Y. H. Fung, “The compu-
tational puzzle design framework: a design guide for games teaching
computational thinking,” in Proc. 14th Int. Conf. Found. Digit. Games,
San Luis Obispo, CA, USA, Aug. 2019, pp. 1-11. [Online]. Available:
https://dl.acm.org/doi/10.1145/3337722.3337768

T. Turchi, D. Fogli, and A. Malizia, “Fostering computational think-
ing through collaborative game-based learning,” Multimedia Tools Appl.,
vol. 78, no. 10, pp. 13649-13673, May 2019. [Online]. Available:
http://link.springer.com/10.1007/s11042-019-7229-9

IEEE TRANSACTIONS ON EDUCATION

[29] P. Vanvorce and H. M. Jamil, “Computational thinking with the
Web crowd using codemapper,” in Proc. 34th ACM/SIGAPP Symp.
Appl. Comput., New York, NY, USA, 2019, pp. 2532-2534. [Online].
Available: https://doi.org/10.1145/3297280.3298913

M. L. Barron-Estrada, R. Zatarain-Cabada, and B. A. Cardenas-Sainz,
“A natural user interface implementation for an interactive learning envi-
ronment,” in Proc. IEEE 20th Int. Conf. Adv. Learn. Technol. (ICALT),
2020, pp. 341-343.

C. Karakasis and S. Xinogalos, “Blocklyscript: Design and pilot evalu-
ation of an RPG platform game for cultivating computational thinking
skills to young students,” Informat. Educ., vol. 19, no. 4, pp. 641-668,
Dec. 2020.

V. Nandan, A. Spittlemeister, and F. Brubacher, “Pixasso: A develop-
ment stage-based learning application for children,” in Proc. 7th ACM
Conf. Learn. Scale, New York, NY, USA, 2020, pp. 361-364. [Online].
Available: https://doi.org/10.1145/3386527.3406747

S.-Y. Lin, S.-Y. Chien, C.-L. Hsiao, C.-H. Hsia, and K.-M. Chao,
“Enhancing computational thinking capability of preschool chil-
dren by game-based smart toys,” Electron. Commer. Res. Appl.,
vol. 44, Nov./Dec. 2020. Art. no. 101011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1567422320300880
A. Almjally, K. Howland, and J. Good, “Comparing TUIs and GUIs
for primary school programming,” in Proc. 51st ACM Tech. Symp.
Comput. Sci. Educ., New York, NY, USA, 2020, pp. 521-527. [Online].
Available: https://doi.org/10.1145/3328778.3366851

S. Ahmed, M. A. A. Walid, and M. Islam, “EEG-based cognitive load
assessment in matlab GUI and impact on learning system,” in Proc. 2nd
Int. Conf. Adv. Inf. Commun. Technol. (ICAICT), 2020, pp. 484-487.
A. Zitek, M. Poppe, M. Stelzhammer, S. Muhar, and B. Bredeweg,
“Evaluating the effects of a new qualitative simulation software
(Dynalearn) on learning behavior, factual and causal understanding,” in
Artificial Intelligence in Education (Lecture Notes in Computer Science),
G. Biswas, S. Bull, J. Kay, and A. Mitrovic, Eds. Berlin, Germany:
Springer, 2011, pp. 594-596, doi: 10.1007/978-3-642-21869-9_112

A. C. Calderon and T. Crick, “Using interface design to develop com-
putational thinking skills,” in Proc. Workshop Primary Sec. Comput.
Educ. (WiPSCE), New York, NY, USA, 2015, pp. 127-129. [Online].
Available: https://doi.org/10.1145/2818314.2818333

[30]

(31]

[32]

(33]

[34]

(35]

[36]

[37]

Sara Rijo-Garcia received the bachelor’s degree in computer science and
the master’s degree in teacher training for secondary education, baccalaureate,
vocational training, and foreign language teaching from the Universidad de La
Laguna, San Cristébal de La Laguna, Spain, in 2014 and 2015, respectively,
where she is currently pursuing the Ph.D. degree in industrial, computer and
environmental engineering.

She has worked with the Technology Transfer Office, Universidad de La
Laguna for three years.

Eduardo Segredo (Member, IEEE) received the B.S., M.S., and Ph.D. degrees
in computer science from the Universidad de La Laguna, San Crist6bal de La
Laguna, Spain, in 2006, 2008, and 2014, respectively.

He is currently a Lecturer with the Departamento de Ingenierfa Informatica
y de Sistemas, Universidad de La Laguna. He has authored or coau-
thored over 50 technical papers and book chapters, including more than
15 journal papers. His publications currently report over 400 citations in
Google Scholar with an H-index of 13. His current research interests
include single/multi/many-objective optimization, evolutionary algorithms,
metaheuristics, machine learning, and computational thinking.

Dr. Segredo currently serves for the editorial board of multiple international
conferences.

Coromoto Leén received the M.S. degree in mathematics and the Ph.D.
degree in computer science from the Universidad de La Laguna, San Cristébal
de La Laguna, Spain, in 1990 and 1996, respectively.

She currently teaches programming languages and paradigms in graduate
and master’s programs, with the Departamento de Ingenierfa Informatica y de
Sistemas, Universidad de La Laguna. She has led dozens of doctoral courses
and multiple seminars and has directed several research projects and contracts
for innovation and industry transfer. She has published more than 30 journal
papers and refereed conferences. Her research interests include programming
languages, algorithmic techniques, optimization, parallel programming, and
computational thinking.


http://dx.doi.org/10.1109/GUCON48875.2020.9231155
http://dx.doi.org/10.1007/978-3-642-21869-9_112

