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Finite element methods based on cut-cells are becoming increasingly popular because of their advantages over 
formulations based on body-fitted meshes for problems with moving interfaces. In such methods, the cells (or 
elements) which are cut by the interface between two different domains need to be integrated using special 
techniques in order to obtain optimal convergence rates and accurate fluxes across the interface. The adaptive 
integration technique in which the cells are recursively subdivided is one of the popular techniques for the 
numerical integration of cut-cells due to its advantages over tessellation, particularly for problems involving 
complex geometries in three dimensions. Although adaptive integration does not impose any limitations on the 
representation of the geometry of immersed solids as it requires only point location algorithms, it becomes 
computationally expensive for recovering optimal convergence rates. This paper presents a comprehensive 
assessment of the adaptive integration of cut-cells for applications in computational fluid dynamics and fluid-

structure interaction. We assess the effect of the accuracy of integration of cut cells on convergence rates in 
velocity and pressure fields, and then on forces and displacements for fluid-structure interaction problems by 
studying several examples in two and three dimensions. By taking the computational cost and the accuracy of 
forces and displacements into account, we demonstrate that numerical results of acceptable accuracy for FSI 
problems involving laminar flows can be obtained with only fewer levels of refinement. In particular, we show 
that three levels of adaptive refinement are sufficient for obtaining force and displacement values of acceptable 
accuracy for laminar fluid-structure interaction problems.
1. Introduction

Numerical methods for the solution of partial differential equations 
encountered in science and engineering can be broadly classified into 
two major groups: i) methods based on body-fitted meshes and ii) 
methods based on unfitted/immersed/embedded meshes. While the nu-

merical schemes based on body-fitted meshes are well established and 
available as commercial and open-source software for the simulation 
of problems in science and engineering, those based on immersed or 
embedded meshes are relatively recent. Despite their popularity and 
commercial success, the fundamental difficulty with body-fitted meth-

ods (BFMs) is that they require the generation of body-fitted meshes, 
which can be cumbersome for complex geometries usually encountered 
in industrial practice. In addition, numerical schemes based on BFMs 
have limited applicability for the simulation of fluid-structure interac-

tion (FSI) problems in which solids undergo extensive deformations. 
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This limitation stems from the fact that FSI schemes based on body-

fitted meshes require sophisticated mesh-updating and/or remeshing 
algorithms [15,33,42]. Due to these limitations, numerical methods 
based on immersed or embedded boundaries have become a viable 
alternative for computational FSI problems over the past couple of 
decades.

Among the embedded/unfitted methods, those based on cut cells

have received a considerable amount of attention during the past 
decade. eXtended Finite Element Method [1], Partition of unity finite 
element method [27], cut finite element method [4,5,19,21], Finite Cell 
Method [30], are a few examples of such methods. The basic idea be-

hind these cut-cell based methods is to enrich the finite element space 
in the vicinity of an interface between two physical domains. This is 
achieved by cutting the cell intersected by the interface (or immersed 
boundary) and using some sophisticated quadrature rules to integrate 
the active portion(s) of the cut-cell.
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The major difficulty associated with cut-cell based numerical 
schemes is the integration of the portion of a cut cell that belongs 
to a particular domain. This is due to the fact that accurate resolution 
of discontinuities along the interfaces/immersed boundaries translates 
directly into accurate integration of the cut cells, for which several tech-

niques have been proposed in the literature. Subtriangulation or tessel-

lation has been and still is the prominent technique for integrating cut 
cells in the XFEM community. However, this methodology is limited to 
geometries modelled with lower-order representations, e.g., first-order 
triangles. Due to the increase in the use of immersed/embedded meth-

ods, especially using higher-order representations of geometry, recent 
years have seen a considerable increase in research work on develop-

ing alternative quadrature methods that are efficient and geometrically 
accurate for the integration of cut cells, see [9,28,38,41,47] and refer-

ences therein. A widely-used alternative technique for the integration 
of cut cells is adaptive integration which is based on the recursive sub-

division of the cell of interest, see [5,25,26]. Each of these methods has 
its relative advantages and limitations.

The method of sub-triangulation, although it yields exact integration 
of cut cells when the boundary is approximated with linear segments, 
see [4,19], becomes quite complicated in three-dimensions (3D) when 
immersed surfaces/interfaces are discretised with triangular elements, 
usually obtained from standard mesh generation software or STL files. 
Such scenarios require sophisticated constrained Delaunay tetrahedral-

isation algorithms, which are not robust enough to be used as a reliable 
option for complex geometries that can change their position and shape 
dynamically during an FSI simulation. Moreover, a linear approxima-

tion of geometries represented with implicit surfaces or higher-order 
discretisations introduces numerical errors between the actual and dis-

cretised geometries.

Furthermore, the associated difficulties will be compounded when 
the immersed boundaries need to be represented with higher-order dis-

cretisations, for example, when using higher-order elements for the 
solid problem. With sub-triangulation, the particular algorithm to be 
used for quadrature depends upon the representation of the geometry 
of the immersed boundary. Höllig [14], and Rüberg and Cirak [32]

use level set presentation for the geometry and modify the basis func-

tions of cut cells using Lagrangian polynomials. Stavrev et al. [38] use 
trimmed NURBS surfaces as immersed geometries and reparameterise 
active cut cells using higher-order Lagrange polynomials. Kudela et al. 
[26] use recursive subdivision in combination with node-mapping to 
achieve accurate and efficient techniques for the integration of cut cells. 
However, these techniques require sophisticated algorithms for identi-

fying topologies of cut cells and then calculating the mappings, which 
can be quite expensive for industrially relevant geometries that involve 
intricate shapes. Therefore, in order to circumvent these issues, adap-

tive integration is the preferred choice.

Integration of cut cells using adaptive integration relies on the re-

cursive subdivision of a cut cell and applying the quadrature rule for 
each relevant cell at finer levels. So far in the literature, adaptive in-

tegration has been widely used in the context of the generalised finite 
element method [39,40]; the Finite Cell Method (FCM) for solid me-

chanics [8,9,11–13,35,38,44,46], fluid flow [48] and wave propagation 
[10]; FEM for level set functions [29]; and fluid-structure interaction 
[5,21,49]. Because of the way the adaptive integration technique oper-

ates, it is expected that this technique requires a significant number of 
levels of refinement for accurately integrating the cut-cells. However, 
published literature on the exact number of levels of refinement re-

quired for achieving optimal convergence rates in velocity and pressure 
fields, the sensitivity of convergence of error norms for incompressible 
Navier-Stokes, and the associated computational cost is not existing. 
Furthermore, to the best of the authors’ knowledge, literature on the ef-

fect of inaccuracies in cut-cell integration on the force and displacement 
values for FSI problems is also lacking. Given the increasing interest in 
the use of cut-cell based methods for FSI simulations [2,19,21,43,49], 
it is important to assess the effect of inaccuracies in the integration of 
2

cut cells on the numerical results for FSI problems, and to the best of 
our knowledge, such a study is not yet available. Therefore, this pa-

per aims to address this gap by performing a comprehensive assessment 
of the adaptive integration of cut cells on the numerical results of FSI 
problems involving laminar flows. First, we study the sensitivity of con-

vergence rates of error norms using the example of Kovasznay flow. 
Later, we assess the effect of different levels of adaptive integration on 
FSI problems using fluid-flexible structure interaction problems in two 
and three dimensions.

The remaining part of this paper is organised as follows. The gov-

erning equations for the fluid-structure interaction problems and the 
respective finite element formulations are discussed briefly in Section 2. 
In Section 3, integration of cut cells using subtriangulation and adap-

tive integration techniques are discussed. The accuracy of integration 
of cut cells using adaptive integration and its effect on the numerical 
results of laminar FSI problems are evaluated in Section 4. This paper 
is concluded by summarising the observations and drawing conclusions 
in Section 5.

2. Formulation of the fluid-structure interaction problem

In this work, the coupled FSI problem is solved using a staggered 
scheme proposed in Dettmer and Perić [7] and Kadapa [16] in which 
the fluid and solid problems are solved separately, once per time step, 
using their respective solvers after obtaining the appropriate data from 
solid and fluid problems, respectively. The CutFEM framework based on 
hierarchical b-spline grids used in the present work is already published 
in Dettmer et al. [5] and Kadapa et al. [17,19,21,22]. Therefore, only 
the key details are discussed in the present work, and the reader is 
referred to [5,7,16,17,19,21,22] for the comprehensive details of the 
formulations and methods used.

Fig. 1 shows typical scenarios encountered in an embedded bound-

ary framework for fluid flow and FSI problems. A typical fluid flow 
problem (see Fig. 1a) consists of a fluid domain Ω𝑓 with its boundary 
Γ𝑓 embedded in a Cartesian grid Ω𝑔 . A typical FSI problem (see Fig. 1b) 
consists of a fluid domain, Ω𝑓 , and solid domain, Ω𝑠, with their corre-

sponding boundaries denoted as Γ𝑓 and Γ𝑠 respectively in the original 
configuration, as shown in Fig. 1a. The deformed configurations of the 
fluid and domains are denoted, respectively, as 𝜔𝑓 and 𝜔𝑠, along with 
their corresponding boundaries as 𝛾𝑓 and 𝛾𝑠. The interface between the 
two domains is denoted as Γ𝑓−𝑠 and 𝛾𝑓−𝑠, respectively, in the original 
and deformed configurations. For the configuration shown in Fig. 1b, Γ𝑠
and Γ𝑓−𝑠 are the same. The fluid problem is solved on a fixed Cartesian 
grid (Ω𝑔); therefore, Γ𝑓 = 𝛾𝑓 throughout the simulation.

2.1. The fluid problem

For laminar, viscous and incompressible fluid flow problems, the 
governing equations are the incompressible Navier-Stokes equations, 
given as

𝜌𝑓
𝜕𝒗𝑓

𝜕𝑡
+ 𝜌𝑓 (𝒗𝑓 ⋅𝛁)𝒗𝑓 −∇ ⋅ 𝝈𝑓 = 𝒇𝑓 in Ω𝑓 , (1a)

𝛁 ⋅ 𝒗𝑓 = 0 in Ω𝑓 , (1b)

𝒗𝑓 = �̄�𝑓 on Γ𝑓
𝐷
, (1c)

𝝈𝑓 ⋅ 𝒏𝑓 = �̄�
𝑓 in Γ𝑓

𝑁
, (1d)

𝒗𝑓 (𝑡=0) = 𝒗
𝑓

0 in Ω𝑓 , (1e)

𝑝𝑓 (𝑡=0) = 𝑝𝑓0 in Ω𝑓 , (1f)

where, 𝜌𝑓 is the density of the fluid, 𝒗𝑓 is the velocity of the fluid, 𝑝𝑓
is the pressure field in the fluid domain, 𝑡 is the time variable, 𝛁 is 
the gradient operator, 𝒇𝑓 is the body force on the fluid domain, 𝝈𝑓 (=
𝜇𝑓𝛁𝒗𝑓 − 𝑝𝑓 𝑰) is the stress tensor, 𝜇𝑓 is the viscosity of the fluid, 𝑰 is 
the second-order identity tensor, 𝒏𝑓 is the unit outward normal on the 
boundary Γ𝑓 , 𝒗𝑓 is the initial velocity, 𝑝𝑓 is the initial pressure, �̄�𝑓
0 0
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Fig. 1. Domains and boundaries in typical CFD and FSI problems.
is the prescribed velocity on Dirichlet boundary Γ𝑓
𝐷

, and �̄�𝑓 is applied 
traction on the Neumann boundary Γ𝑓

𝑁
.

The fluid problem is solved for velocity and pressure fields using 
the stabilised finite element formulation on hierarchical b-spline grids. 
The interface constraint is enforced weakly using Nitsche’s method, 
and the ghost-penalty operators are used for circumventing matrix ill-
conditioning due to small cut cells. The reader is referred to Dettmer 
et al. [5] and Kadapa et al. [19,21,22] for the comprehensive details of 
the formulations used in the proposed work. Integration of cut cells is 
discussed in Section 3.

2.2. The solid problem

The flexible solid is modelled using the finite element formulation in 
the finite strain regime to accurately capture large structural deforma-

tions. The governing equations for the elastodynamics of flexible solids 
in the current configuration can be written as,

𝜌𝑠
𝜕2𝒅𝑠

𝜕𝑡2
− ∇𝒙 ⋅ 𝝈

𝑠 = 𝒇 𝑠 in 𝜔𝑠 (2a)

𝒅𝑠 = �̄�
𝑠 on 𝛾𝑠

D
(2b)

𝝈𝑠 ⋅ 𝒏𝑠 = �̄�
𝑠 on 𝛾𝑠

N
, (2c)

where, 𝜌𝑠 is the density of solid in the current configuration, 𝒅𝑠 is 
the displacement of the solid, ∇𝒙 is the gradient operator with respect 
to the current configuration, 𝒇 𝑠 is the body force, 𝒏𝑠 is the unit out-

ward normal on the boundary 𝛾𝑠, �̄�𝑠 is the specified displacement on 
the boundary 𝛾𝑠

D
, and �̄�𝑠 is specified traction on the boundary 𝛾𝑠

N
. The 

Cauchy stress tensor, 𝝈𝑠, depends upon the particular constitutive ma-

terial model employed for the solid. For a compressible hyperelastic 
material, it is given by

𝝈𝑠 = 1
𝐽

𝜕Ψ
𝜕𝑭

𝑭 T, (3)

where 𝑭 = 𝑰 + 𝜕𝒅𝑠

𝜕𝑿
is the deformation gradient and 𝐽 = det(𝑭 ). In the 

numerical examples considered in this work, Saint Venant-Kirchhoff 
and compressible Neo-Hookean models are used. The associated ini-

tial boundary value problem for the elastodynamics is solved using 
the first-order quadrilateral/hexahedral elements while the generalised-

alpha scheme [20] is used for integration in the time domain.

2.3. Interface conditions

The kinematic constraint and the traction equilibrium at the fluid-

solid interface 𝛾𝑓−𝑠 are given by,
3

𝒗𝑓 = 𝒗𝑠, (4)

𝝈𝑓 ⋅ 𝒏𝑓 + 𝝈𝑠 ⋅ 𝒏𝑠 = 𝟎. (5)

The coupling between the fluid and solid domains is resolved using 
a staggered scheme [7,16]. The pseudocode for the staggered scheme 
is shown in Algorithm 1. The parameter 𝛽 is a relaxation parameter set 
by the user. The staggered scheme is first-order accurate for 𝐅𝑠𝑃

𝑛+1 = 𝐅𝑛, 
and second-order accurate for 𝐅𝑠𝑃

𝑛+1 = 2 𝐅𝑛 −𝐅𝑛−1. For the example of 3D 
plates in cross-flow, which involves a significant amount of added-mass, 
the first-order version is used. The reader is referred to Dettmer and 
Perić [7], Kadapa [16,18] and Dettmer et al. [6] for the comprehensive 
details of the staggered schemes.

Algorithm 1 Staggered scheme used in the present work.

1: Predict force on the solid: 𝐅𝑠𝑃
𝑛+1 = 𝐅𝑛 or 𝐅𝑠𝑃

𝑛+1 = 2 𝐅𝑛 − 𝐅𝑛−1
2: Solve the solid problem force 𝐅𝑠𝑃

𝑛+1
3: Reposition immersed solid(s) and update the fluid mesh

4: Solve the fluid problem to obtain force 𝐅𝑓
𝑛+1

5: Average the force: 𝐅𝑛+1 = −𝛽 𝐅𝑓
𝑛+1 + (1 − 𝛽) 𝐅𝑠𝑃

𝑛+1
6: proceed to next time step

3. Integration of cut-cells

The fundamental motivation behind numerical schemes for partial 
differential equations using cut-cell based methods is to minimise the 
cumbersome process of mesh generation for problems involving com-

plex geometries, particularly in 3D. In these methods, numerical solu-

tions are sought typically over a Cartesian grid that does not conform 
to the boundaries or interfaces, as illustrated in Fig. 2 for a simple sce-

nario consisting of a fluid domain and a solid domain. Some of the cells 
of the background grid are intersected/cut by the interface between the 
two domains. Since the focus of the present work is fluid flow and FSI 
problems, without the loss of generality, it is assumed that numerical 
solutions on the Cartesian grids are sought in the fluid domain only. 
Moreover, in the finite element methodology used for the fluid prob-

lem, volume (or domain) integrals are evaluated as the summation of 
integrals over individual cells.

The cells of the background grid that lie completely inside the fluid 
domain are integrated using the standard Gauss quadrature rules for 
quadrilaterals. However, special numerical quadrature techniques need 
to be employed for the integration of cut cells due to the fact that 
the integration needs to be performed only on the portion of the cut 
cell that corresponds to the fluid domain. Several factors influence the 
selection of such a special numerical integration technique, with accu-

racy and cost of computation being the most important ones. Ideally, 
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Fig. 2. Cut discretisation: a.) geometry consisting of fluid and solid domains, and b.) discretisation with 5 × 5 elements along with the colour coded for different 
elements.

Fig. 3. Integration of cut cells using subtriangulation for linear (𝑄1) and quadratic (𝑄2) elements. Uncut cells are shown in green colour, cut cells in blue colour and 
Gauss points as black dots.
the numerical technique for cut-cell integration should (i) yield optimal 
convergence rates, (ii) produce accurate fluxes across the interface, (iii) 
be applicable to 3D problems, and (iv) be computationally cheap.

In the literature, several techniques have been proposed for the in-

tegration of cut cells. These techniques can be broadly classified into 
the following groups: a.) tessellation or subtriangulation, b.) adap-

tive quadrature, c.) conformal mapping, d.) equivalent polynomial ap-

proach, e.) moment fitting method and f.) methods based on the di-

vergence theorem. Recently, [38] and [26] presented geometrically 
accurate techniques based on reparametrisation of cut cells. A detailed 
discussion of these techniques is beyond the scope of this article. The 
reader is referred to [50] and references therein for an elaborate dis-

cussion on different techniques used for the integration of cut cells. In 
this paper, we consider only sub-triangulation and adaptive integration 
methods because of their suitability in the context of the present work.

3.1. Integration of cut-cells using subtriangulation

In subtriangulation (ST), the active portion of a cut cell is integrated 
by splitting it into triangles and then applying the quadrature rules for 
individual triangles that correspond to the fluid domain. The concept 
of subtriangulation is illustrated schematically in Fig. 3 for linear (𝑄1) 
and quadratic (𝑄2) elements.

While subtriangulation provides accurate integration of cut cells for 
interfaces discretised with straight lines using fewer quadrature points, 
its extension to higher-order discretisations of interfaces and for prob-

lems in three dimensions is significantly more challenging. For such 
cases, adaptive integration proves to be a viable alternative.
4

3.2. Integration of cut-cells using adaptive integration

Integration of cut cells using adaptive integration relies on the recur-

sive subdivision of a cut cell and then applying the quadrature rule for 
each relevant cell at finer levels, as illustrated schematically in Fig. 4. 
This adaptive integration is usually performed using quadtree subdi-

vision in two dimensions and octree subdivision in three dimensions 
although other variants of adaptive integration are also available based 
on binary subdivision and non-uniform refinement [23,31]. According 
to the technique based on quadtree and octree, each cut cell is subdi-

vided into four and eight smaller cells in two- and three-dimensions, 
respectively. The idea behind this technique lies in the fact that the 
quadrature points become increasingly clustered near the interface as 
the number of levels of the recursive subdivision is increased, as shown 
in Fig. 4. Thus, the accuracy of integration of cut cells increases with an 
increasing number of levels.

The main advantages of the adaptive integration technique are:

• Unlike subtriangulation, adaptive integration does not pose any 
restrictions on the type of representation of the interface. This 
technique requires only a point-location algorithm for the corre-

sponding geometric representation.

• It can be implemented quite robustly for both 2D and 3D problems 
using templates in C++.

• The procedure can be parallelised efficiently for high-performance 
computing architectures.
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Fig. 4. Integration of cut cells: adaptive integration with quadtree technique with a) one, b) two, c) three and c) four level(s) of recursive subdivision. Uncut cells 
are shown in green colour, cut cells in blue colour and Gauss points as black dots.
Despite its simplicity and ease of implementation, the adaptive inte-

gration scheme proves to be computationally expensive when optimal 
convergence rates are to be recovered; inaccuracies in the integration 
of cut cells result in sub-optimal convergence rates. As demonstrated 
in Dettmer et al. [5] and also in Section 4.1, an excessive number 
of the recursive levels are required to recover optimal convergence 
rates, and this number increases for higher-order discretisations of the 
background grid. The higher computational cost associated with the 
adaptive integration technique is due to the overhead costs incurred 
in the computation of the quadrature points up to the given level and 
subsequent evaluation of the element stiffness matrices and vectors for 
all of the integration points. Towards reducing the computational cost 
of adaptive integration technique, the so-called method of merging is 
proposed in Dettmer et al. [5]. While the merging technique helps in 
bringing down the computational cost of element matrix and vector 
evaluations, it does not affect the order of accuracy. Note that, although 
other techniques such as binary subdivision, non-uniform subdivision 
and image compression [31] can be used for achieving a reduction in 
computational cost, such techniques require sophisticated computer im-

plementations.

4. Numerical example

We assess the performance of the adaptive integration technique 
using several numerical examples in two- and three- dimensions. We 
assess the accuracy using error norms, computational cost, force and 
displacement values. When using the sub-triangulation technique, three 
and seven quadrature points are used for each sub-triangle, respectively, 
with 𝑄1 and 𝑄2 b-splines. For each boundary edge, 5 Gauss points 
5

are used. Spectral radii for the generalised-alpha time integration used 
for the solid and fluid problems are zero. The unsymmetric version of 
Nitsche’s method is used in all the examples. Henceforth, adaptive inte-

gration and sub-triangulation are referred to as AI and ST, respectively.

Note that simulations of fluid-rigid solid interaction problems, for 
example, lock-in of a circular cylinder and galloping of a square body, 
showed a similar trend in the force and displacement observed with 
fluid-flexible solid interaction problems presented in this work. There-

fore, for the sake of clarity, FSI problems with rigid solids are omitted 
from the paper.

4.1. Kovasznay flow

In this example, we assess the effect of adaptive integration on the 
convergence rates in error norms in fluid velocity and pressure using 
the problem of Kovasznay flow [24]. The domain of the problem is 
Ω𝑓 = [−0.5,1.5] × [−0.5,1.5]. The analytical solution is given by the ex-

pressions,

𝑣𝑓
𝑥
(𝑥, 𝑦) = 1 − 𝑒𝜆𝑥 cos(2𝜋 𝑦), (6)

𝑣𝑓
𝑦
(𝑥, 𝑦) = 𝜆

2𝜋
𝑒𝜆𝑥 sin(2𝜋 𝑦), (7)

𝑝(𝑥, 𝑦) = 𝑝0 −
1
2
𝑒2𝜆𝑥, (8)

with

𝜆 = 𝑅𝑒

2
−
√
𝑅𝑒2

4
+ 4𝜋2, (9)

where 𝑝0 is the reference pressure and 𝑅𝑒 is the Reynolds number. The 
problem is modelled with 20, 40, 80 and 160 edges on each side of the 
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Fig. 5. Kovasznay flow: contour plots of X-velocity and pressure obtained with 𝑄1 elements.

Fig. 6. Kovasznay flow: error norms in velocity and pressure for 𝑄1 b-splines. 𝑁 is number of edges along one side.
domain, immersed on a background grid with 31 ×31, 61 ×61, 121 ×121
and 241 × 241 elements. The Reynolds number is assumed to be 40. The 
horizontal velocity and pressure obtained with a level-2 hierarchical 
mesh using 𝑄1 elements are shown in Fig. 5.
6

Error norms in velocity and pressure computed using subtriangula-

tion and adaptive integration are shown in Figs. 6 and 7, respectively, 
for 𝑄1 and 𝑄2 b-splines. As shown, subtriangulation yields optimal con-

vergence rates right away for both cases, while the optimal rates are 
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Fig. 7. Kovasznay flow: error norms in velocity and pressure for 𝑄2 b-splines.

Fig. 8. Kovasznay flow: number of quadrature points and wall clock time for computing the global stiffness matrix for 𝑄1 b-splines.
7
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Fig. 9. Kovasznay flow: number of quadrature points and wall clock time for computing the global stiffness matrix for 𝑄2 b-splines.

Fig. 10. Flow past a fixed square: a.) geometry and boundary conditions and b.) hierarchical b-spline mesh.
Fig. 11. Flow past a fixed square: variation of drag coefficient with different 
levels of adaptive integration with 𝑄1 , and 𝑄2 b-splines.

recovered by increasing the number of levels of refinement when us-

ing the adaptive integration technique. Moreover, it is apparent from 
the convergence graphs that the number of levels of adaptive integra-
8

tion required for recovering optimal convergence rates is higher for 𝑄2
elements than that for 𝑄1 elements.

Although the optimal convergence rates can be recovered by in-

creasing the number of levels of refinement in adaptive integration, 
this comes with added computational overheads due to an increase in 
the number of quadrature points with increasing levels of refinement. 
The number of quadrature points and the corresponding wall clock 
time (measured on a single Intel i7-8750H CPU) increases exponen-

tially as the level of refinement in the adaptive integration technique 
is increased, as shown in Figs. 8 and 9, respectively, for 𝑄1 and 𝑄2
elements. Note that the wall clock time for the matrix solver remains 
almost the same for all the levels of adaptive integration; therefore, it 
is not included in the discussion. The wall clock time required for com-

puting and assembling the global stiffness matrix per iteration increases 
by more than an order of magnitude for level 10 when compared with 
that of subtriangulation. This significant increase in the computational 
cost for recovering the optimal convergence rates is a drawback of the 
standard quadtree-based adaptive integration technique. However, as 
demonstrated in the examples that follow, it is not necessary to use 
such finer levels of adaptive integration for FSI problems. Global quan-

tities such as forces and displacements of acceptable accuracy for FSI 
problems can be obtained using fewer levels of adaptive integration; 
thus, making adaptive integration a computationally viable alternative 
for subtriangulation and one that can be readily extended to 3D prob-

lems.



C. Kadapa, X. Wang and Y. Mei Computers and Mathematics with Applications 122 (2022) 1–18

Fig. 12. Flow past a fixed square at 𝑅𝑒 = 100: evolution of lift coefficient with different levels of adaptive integration for 𝑄1 b-splines.
Table 1

Flow past a fixed square: comparison of drag coefficient (𝐶𝐷 ), lift coefficient 
(𝐶𝐿) and Strouhal number (𝑆𝑡).

Data 𝑅𝑒 = 20 𝑅𝑒 = 100

𝐶𝐷 𝐶𝐷𝑎𝑣𝑔 𝐶𝐿𝑟𝑚𝑠 𝑆𝑡

Sen et al. [36] 2.2140 1.5300 0.1850 0.1350

Sharma and Eswaran [3] 2.3500 1.5000 0.1900 0.1480

Breuer et al. [37] 2.4000 1.4000 - 0.1400

Zhao et al. [51] - 1.4520 0.1908 0.1447

Present - 𝑄1 b-splines 2.3817 1.4776 0.1897 0.1470

Present - 𝑄2 b-splines 2.3703 1.4302 0.1810 0.1520

4.2. Steady flow past a fixed square body at 𝑅𝑒 = 20

This example is concerned with the steady flow over a fixed rigid 
square body. This particular example is chosen because the geometry 
of the square is represented exactly irrespective of the description used. 
The geometry and boundary conditions of the problem are as shown 
in Fig. 10a. Properties of the fluid are: density, 𝜌𝑓 = 1.0 and viscosity, 
𝜇𝑓 = 0.05. An uniform velocity of 𝑣∞ = 1.0 is imposed at the inlet in 
X-direction so that the Reynolds number is, 𝑅𝑒 = 𝜌𝐷𝑣∞∕𝜇 = 20. Simula-

tions are carried out on a level-3 hierarchical mesh shown in Fig. 10b 
with 𝑄1 and 𝑄2 b-splines. The effect of adaptive integration on the nu-

merical results is assessed by computing the drag coefficient (𝐶𝐷) for 
each simulation and comparing it with that obtained using subtriangu-

lation. Computed values of drag coefficients are plotted in Fig. 11. As 
9

expected, as the number of levels of adaptive integration is increased, 
the values of 𝐶𝐷 obtained with adaptive integration converge towards 
those obtained with sub-triangulation. Comparison of 𝐶𝐷 values ob-

tained in the present work match well with the reference values from 
the literature, as presented in Table 1.

4.3. Unsteady flow past a fixed square body at 𝑅𝑒 = 100

We now study unsteady flow past a fixed square body for a Reynolds 
number of 100. The setup of the problem is the same as the one from 
the previous example. The viscosity of the fluid is adjusted to 𝜇𝑓 =
0.01 so that 𝑅𝑒 = 100. The same mesh used in the previous example is 
considered. Using a constant time step, Δ𝑡 = 0.1, simulations are carried 
out with 𝑄1 and 𝑄2 b-splines and with subtriangulation and different 
levels of adaptive integration for each order b-splines. The effect of 
adaptive integration on the numerical results is assessed by computing 
the drag coefficient, lift coefficient (𝐶𝐿) and Strouhal number (𝑆𝑡) for 
each simulation. The results obtained with the subtriangulation are used 
for comparison.

Fig. 12 shows the evolution of lift coefficient obtained with differ-

ent levels of adaptive integration for 𝑄1 b-splines, and Fig. 13 shows 
the corresponding graphs for 𝑄2 b-splines. As shown, the graphs of lift 
coefficient obtained with three and higher levels of adaptive integra-

tion match well with those obtained with subtriangulation. The mean 
value of 𝐶𝐷 , root mean square value of 𝐶𝐿 and 𝑆𝑡 are in good agree-

ment with the values from the literature. It is also worth pointing out 
that graphs of forces are free from spurious oscillations.
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Fig. 13. Flow past a fixed square at 𝑅𝑒 = 100: evolution of lift coefficient with different levels of adaptive integration for 𝑄2 b-splines.
The results obtained for this and previous examples show that it is 
not necessary to use excessive levels of adaptive integration in order to 
obtain force coefficients and vortex shedding frequency that match well 
with the ones obtained with exact integration using subtriangulation. 
For both the orders of b-spline discretisations considered, three levels 
of adaptive integration are sufficient to compute force coefficient and 
frequencies of acceptable accuracy.

4.4. Unsteady flow past a fixed cylinder in 3D

We now assess the performance of adaptive integration for comput-

ing the forces for 3D problems using the example of unsteady flow past 
a fixed circular cylinder proposed in Schafer et al. [34]. The setup of the 
problem is depicted in Fig. 14. The density and viscosity of the fluid, 
respectively, are 𝜌 = 1.0 and 𝜇 = 0.001. The velocity profile at the inlet 
is given as,

𝑣𝑓
𝑥
(0, 𝑦, 𝑧, 𝑡) = 16

𝐻4 𝑈𝑚 𝑦𝑧 (𝐻 − 𝑦) (𝐻 − 𝑧) sin(𝜋 𝑡∕8); 𝑣𝑓
𝑦
= 𝑣𝑓

𝑧
= 0, (10)

with 𝑈𝑚 = 2.25. The time internal of interest is 0 ≤ 𝑡 ≤ 8 during which 
0 ≤𝑅𝑒 ≤ 100.

A hierarchically refined mesh with three levels of local refinement in 
the vicinity of the cylinder as shown in Fig. 15 is used with 𝑄1 b-splines, 
in which case the total number of degrees of freedom is 2272908. 
The surface of the cylinder is discretised with 3072 linear quadrilat-

eral elements. The interface integrals are evaluated using 16 quadrature 
10
Fig. 14. Flow past a fixed cylinder in 3D: geometry and boundary conditions.

points per quadrilateral. Using a constant time step, Δ𝑡 = 0.08 s, simu-

lations are performed for different levels of adaptive refinement. Note 
that, due to the issues associated with the implementation of subte-

trahedralisation, only adaptive integration is used in 3D. It is deemed 
appropriate based on the numerical experiments conducted and the re-

sults obtained.

As shown in Fig. 16, there is no noticeable difference in the drag 
coefficient (𝐶𝐷) values obtained with different levels of adaptive inte-

gration. It is also worth noting that the drag coefficient is free from 
spurious oscillations. The maximum values of 𝐶𝐷 obtained in the 
present work agree well with the reference values, as shown in Ta-

ble 2.
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Fig. 15. Flow past a fixed cylinder in 3D: (a) fluid mesh with three levels of hierarchical refinement, (b) zoomed view of the fluid mesh in the vicinity of the cylinder 
and (c) discretisation used for the surface of the cylinder.
Fig. 16. Flow past a fixed cylinder in 3D: drag coefficient obtained with differ-

ent levels of adaptive integration.

4.5. Turek-Hron FSI benchmark problem in 2D

In this example, we assess the accuracy of adaptive integration for 
FSI problems using the benchmark problem for fluid-flexible solid inter-

action proposed by Turek and Hron [45]. The geometry and boundary 
conditions of the problem are as shown in Fig. 17. The density of the 
fluid is 𝜌𝑓 = 103 kg/m3 and its viscosity is 𝜇𝑓 = 1 Pa s. The material 
properties of the solid are: density, 𝜌𝑠 = 104 kg/m3, Young’s modu-
11
Table 2

Flow past a fixed cylinder in 3D: maximum values of 
drag coefficient obtained with different levels of adap-

tive integration.

Data 𝐶𝐷𝑚𝑎𝑥

Schäfer and Turek [34] 3.2 - 3.3

Present - AI, Level=2 3.2954

Present - AI, Level=3 3.2937

Present - AI, Level=4 3.2934

Present - AI, Level=5 3.2935

lus, 𝐸𝑠 = 1.4 × 106 N/m2, and Poisson’s ratio, and 𝜈 = 0.4. The Saint 
Venant-Kirchhoff constitutive model is used to model the finite strain 
deformation behaviour of the solid. The horizontal velocity at the inlet 
is of parabolic type, given as, 𝑣𝑖𝑛 =

6
0.1681 𝑦[0.41 − 𝑦]. The inlet velocity 

is increased sinusoidally to 𝑣𝑖𝑛 during the first second and then kept 
constant at 𝑣𝑖𝑛 for the rest of the simulation.

Starting with a mesh of 121 × 22 elements, the background mesh for 
the fluid domain is refined locally up to three levels in the vicinity of the 
solid body, as shown in Fig. 18. The beam part of the solid is discretised 
with 200 × 10 bilinear quadrilateral elements. The relaxation parameter 
for the staggered scheme is 𝛽 = 0.05, and the uniform time step size con-

sidered for all the simulations is Δ𝑡 = 0.002 s. Simulations are conducted 
for level-2 and level-3 meshes using 𝑄1 and 𝑄2 b-splines with subtrian-

gulation and different levels of adaptive integration. The accuracy of 
the results obtained with adaptive integration is assessed by comparing 
the displacement of point A (see Fig. 17) and total force on the solid in 
the Y-direction against the ones obtained with sub-triangulation as well 
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Fig. 17. FSI2 benchmark in 2D: geometry and boundary conditions of the problem.

Fig. 18. FSI2 benchmark in 2D: hierarchically refined mesh used for the fluid domain.

Fig. 19. FSI2 benchmark in 2D: evolution of vertical displacement of point A for different levels of adaptive integration obtained with 𝑄1 b-splines and level-2 mesh.

Fig. 20. FSI2 benchmark in 2D: evolution of total vertical force on the solid for different levels of adaptive integration obtained with 𝑄1 b-splines and level-2 mesh.
12
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Fig. 21. FSI2 benchmark in 2D: evolution of vertical displacement of point A for different levels of adaptive integration obtained with 𝑄1 b-splines and level-3 mesh.

Fig. 22. FSI2 benchmark in 2D: evolution of total vertical force on the solid for different levels of adaptive integration obtained with 𝑄1 b-splines and level-3 mesh.

Fig. 23. FSI2 benchmark in 2D: evolution of vertical displacement of point A for different levels of adaptive integration obtained with 𝑄2 b-splines and level-2 mesh.
13
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Fig. 24. FSI2 benchmark in 2D: evolution of total vertical force on the solid for different levels of adaptive integration obtained with 𝑄2 b-splines and level-2 mesh.

Fig. 25. FSI2 benchmark in 2D: contour plots of velocity magnitude at 𝑡 = 8 s (top), 𝑡 = 8.14 s (middle) and 𝑡 = 8.4 s (bottom) obtained with 𝑄1 b-splines and level-3 
mesh using level-3 adaptive integration.

Table 3

FSI2 benchmark in 2D: summary of vertical displacement of point A (𝑑𝑠
𝑦
), total lift force (𝐹 𝑠

𝑦
) and frequency 

of oscillations (𝑓𝑜).
Data max(𝑑𝑠

𝑦
× 103) 𝑓𝑜 𝐹 𝑠

𝑦

Turek and Hron [45] - Level-4, Δ𝑡 = 0.002 1.25 ± 80.70 2.00 0.97 ± 233.2

Present - Level-2, 𝑄1, ST 1.26 ± 80.19 1.95 1.12 ± 234.4
Present - Level-2, 𝑄1, AI, Level=2 1.25 ± 80.21 1.95 1.18 ± 252.0
Present - Level-2, 𝑄1, AI, Level=3 1.26 ± 80.24 1.95 1.34 ± 233.8
Present - Level-2, 𝑄1, AI, Level=4 1.28 ± 80.19 1.95 1.34 ± 234.4
Present - Level-2, 𝑄1, AI, Level=5 1.26 ± 80.19 1.95 1.21 ± 234.2

Present - Level-3, 𝑄1, ST 1.26 ± 80.71 1.95 1.48 ± 229.6
Present - Level-3, 𝑄1, AI, Level=2 1.27 ± 80.74 1.95 0.95 ± 238.9
Present - Level-3, 𝑄1, AI, Level=3 1.27 ± 80.71 1.95 2.07 ± 228.3
Present - Level-3, 𝑄1, AI, Level=4 1.25 ± 80.78 1.95 1.89 ± 228.6
Present - Level-3, 𝑄1, AI, Level=5 1.25 ± 80.73 1.95 1.83 ± 228.9

Present - Level-2, 𝑄2, ST 1.24 ± 81.54 1.96 1.75 ± 234.8
Present - Level-2, 𝑄2, AI, Level=2 1.24 ± 81.77 1.97 3.33 ± 245.2
Present - Level-2, 𝑄2, AI, Level=3 1.23 ± 81.52 1.95 1.81 ± 235.3
Present - Level-2, 𝑄2, AI, Level=4 1.24 ± 81.49 1.95 2.19 ± 235.1
Present - Level-2, 𝑄2, AI, Level=5 1.22 ± 81.52 1.95 1.38 ± 235.0
14
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Fig. 26. FSI2 benchmark in 2D: contour plots of pressure at 𝑡 = 8 s (top), 𝑡 = 8.14 s (middle) and 𝑡 = 8.4 s (bottom) obtained with 𝑄1 b-splines and level-3 mesh using 
level-3 adaptive integration.
Fig. 27. Flexible plate in cross-flow: evolution of horizontal displacement at 
point XX for different levels adaptive integrations obtained with 𝑄1 b-splines.

as the results from the literature. The force response is smoothed using 
a three-point moving average.

The evolution of the Y-displacement of point A and Y-component 
of force is shown, respectively, in Figs. 19 and 20 for the level-2 mesh 
with 𝑄1 b-splines for four different levels of adaptive integration. The 
corresponding graphs for the level-3 mesh with 𝑄1 b-splines are shown 
in Figs. 21 and 22, and the ones for level-2 mesh and 𝑄2 b-splines are 
shown in Figs. 23 and 24. The amplitude and frequency are also com-

pared in Table 3. As shown, the results obtained with three and higher 
levels of adaptive integration match well with those of subtriangulation. 
From the graphs for forces, we can observe the disappearance of spu-

rious oscillations in the forces with three and higher levels of adaptive 
integration. Contour plots of velocity magnitude and pressure at three 
different time instants obtained with the level-3 mesh and 𝑄1 b-splines 
using three levels of adaptive integration are presented in Figs. 25 and 
26. The results obtained for this example indicate that three levels of 
adaptive integration are sufficient for computing accurate numerical 
results for laminar fluid-flexible structure interaction problems. As ob-

served in the example of Kovasznay flow, the computational cost of 
using three levels of adaptive integration is comparable to that of sub-

triangulation.
15
Fig. 28. Flexible plate in cross-flow: meshes used for the fluid and solid do-

mains.

4.6. Flow past flexible plates in 3D

In the last example, we study the dynamic fluid-structure interac-

tion of thin, flexible plates in cross-flow. We first consider a single plate 
to assess the effect of adaptive integration on the forces and displace-

ments. The setup of the problem is as illustrated in Fig. 27, and the finite 
element mesh used for the analysis is shown in Fig. 28. The density and 
viscosity of the fluid are 𝜌𝑓 = 1 and 𝜇𝑓 = 0.01, respectively. The material 
properties of the solid are: density, 𝜌𝑠 = 1.0, Young’s modulus, 𝐸 = 2000, 
and Poisson’s ratio, 𝜈𝑠 = 0.3. A doubly-parabolic velocity profile with a 
maximum value of 𝑈𝑚 = 2.25 (and an average of �̄� = 1.0) is imposed in 
the X-direction. Based on the length of the plate, the Reynolds number 
is 𝑅𝑒 = 60.

Simulations are performed with 𝑄1 b-splines with different levels of 
adaptive integration using a constant time step Δ𝑡 = 0.05. Due to the 
presence of significant added-mass in this example, a first-order force 
predictor (𝐹 𝑠𝑃

𝑛+1 = 𝐹
𝑠
𝑛
) with relaxation parameter 𝛽 = 0.02 is used. The 

evolution of the X-component of the total force on the plate and the 
horizontal displacement of point A (see Fig. 27) is shown in Fig. 29. We 
can observe that there is a negligible difference in the force and dis-

placement values obtained with different levels of adaptive integration. 
Moreover, the force response is free from spurious oscillations. The fluid 
mesh along with the sub-cells used for adaptive integration at the mid-
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Fig. 29. Flexible plate in cross-flow: evolution of horizontal displacement at point A for different levels adaptive integration.
Fig. 30. Flexible plate in cross-flow: cut view of the fluid mesh along with the 
sub-cells used for adaptive integration at 𝑡 = 10.

dle plane of the domain along the Y-axis at the final time instance is 
shown in Fig. 30.

Figs. 31 and 32 show deformed shapes and streamlines at two differ-

ent time instances for the problem of four equally-spaced thin plates in 
an extended domain. Such simulations would have been quite challeng-

ing to perform using subtetrahedralisation. This example illustrates the 
clear advantage of using the adaptive integration technique for the inte-

gration of cut-cells. In accordance with previous examples, three levels 
of adaptive integration are sufficient to obtain forces and displacements 
of acceptable accuracy.

5. Summary and conclusions

In this paper, we comprehensively assessed the performance of adap-

tive integration of cut-cells in the context of laminar fluid-structure 
interaction problems in two and three dimensions. The present work 
offers some important insights into the performance of the adaptive 
integration technique for cut-cells for laminar FSI problems. First, the 
effect of adaptive integration on the convergence rates in velocity and 
pressure field is studied using the example of Kovasznay flow. It is 
demonstrated that excessive levels of adaptive integration are required 
to recover optimal convergence rates. Later, using the examples of un-

steady flow past a fixed square in 2D, unsteady flow past a fixed cylinder 
in 3D, vortex-induced vibrations of a flexible plate behind a fixed cylin-

der in 2D and flexible plates in cross-flow in 3D, the accuracy of results 
obtained with different levels of the adaptive integration technique 
in computing forces and displacements for fluid-structure interaction 
problems are assessed.

The numerical results demonstrate that although excessive levels of 
adaptive integration are required for recovering optimal convergence 
16
Fig. 31. Flexible plates in cross-flow: cut view of the fluid mesh along with the 
deformed shapes of the plates at time instants 𝑡 = 0.3 and 𝑡 = 10.0.

rates, fewer levels are sufficient enough to obtain numerical results of 
comparable accuracy for FSI problems. While it certainly is possible to 
devise efficient alternatives to the standard quadtree/octree based re-

cursive subdivision used in this work, for example, smart octrees [26], 
present work shows that such sophisticated implementations are not 
necessary for simulating force and displacement response in laminar 
FSI problems. We conclude that when we take computational cost and 
accuracy of results into account, three levels of adaptive integration 
are an optimal choice for integrating cut-cells for laminar FSI prob-

lems.
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Fig. 32. Flexible plates in cross-flow: streamlines overlaid with velocity contours along with the deformed shapes of the plates at time instants 𝑡 = 0.3 and 𝑡 = 10.0.
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[33] P.H. Saksono, W.G. Dettmer, D. Perić, An adaptive remeshing strategy for flows with 
moving boundaries and fluid-structure interaction, Int. J. Numer. Methods Eng. 71 
(2007) 1009–1050.

[34] M. Schäfer, S. Turek, F. Durst, E. Krause, R. Rannacher, Benchmark computations 
of laminar flow around a cylinder, in: E.H. Hirschel (Ed.), Flow Simulation with 
High-Performance Computers II, in: Notes on Numerical Fluid Mechanics (NNFM), 
vol. 48, Vieweg+Teubner Verlag, 1996.

[35] D. Schillinger, E. Rank, An unfitted hp-adaptive finite element method based on hi-

erarchical B-splines for interface problems of complex geometry, Comput. Methods 
Appl. Mech. Eng. 200 (2011) 3358–3380.

[36] S. Sen, S. Mittal, G. Biswas, Flow past a square cylinder at low Reynolds numbers, 
Int. J. Numer. Methods Fluids 67 (2011) 1160–1174.

[37] A. Sharma, V. Eswaran, Heat and fluid flow across a square cylinder in the two-

dimensional laminar flow regime, Numer. Heat Transf., Part A, Appl. 45 (2004) 
247–269.

[38] A. Stavrev, L.H. Nguyen, R. Shen, V. Varduhn, M. Behr, S. Elgeti, D. Schillinger, Geo-

metrically accurate, efficient, and flexible quadrature techniques for the tetrahedral 
finite cell method, Comput. Methods Appl. Mech. Eng. 310 (2016) 646–673.

[39] T. Strouboulis, K. Copps, I. Babuška, The generalized finite element method: an 
example of its implementation and illustration of its performance, Int. J. Numer. 
Methods Biomed. Eng. 47 (2000) 1401–1417.

[40] T. Strouboulis, K. Copps, I. Babuška, The generalized finite element method, Com-

put. Methods Appl. Mech. Eng. 190 (2001) 4081–4193.

[41] Y. Sudhakar, W.A. Wall, Quadrature schemes for arbitrary convex/concave volumes 
and integration of weak form in enriched partition of unity methods, Comput. Meth-

ods Appl. Mech. Eng. 158 (2013) 39–54.

[42] T.E. Tezduyar, Finite element methods for flow problems with moving boundaries 
and interfaces, Arch. Comput. Methods Eng. 8 (2001) 83–130.

[43] A. Thari, V. Pasquariello, N. Aage, S. Hickel, Adaptive reduced-order modeling for 
non-linear fluid-structure interaction, Comput. Fluids 229 (2021) 105099.

[44] V. Thiagarajan, V. Shapiro, Adaptively weighted numerical integration in the Finite 
Cell Method, Comput. Methods Appl. Mech. Eng. 311 (2016) 250–279.

[45] S. Turek, J. Hron, Proposal for numerical benchmarking of fluid-structure interac-

tion between an elastic object and laminar incompressible flow, in: Fluid-Structure 
Interaction, in: Lecture Notes in Computational Science and Engineering, vol. 53, 
Springer, Berlin, 2006, pp. 371–385.

[46] V. Varduhn, M. Hsu, M. Reuss, D. Schillinger, The tetrahedral finite cell method: 
higher-order immersogeometric analysis on adaptive non-boundary-fitted meshes, 
Int. J. Numer. Methods Eng. 107 (2016) 1054–1079.

[47] G. Ventura, E. Benvenuti, Equivalent polynomials for quadrature in heaviside func-

tion enriched elements, Int. J. Numer. Methods Eng. 102 (2015) 688–710.

[48] F. Xu, D. Schillinger, D. Kamensky, V. Varduhn, C. Wang, M. Hsu, The tetrahedral 
finite cell method for fluids: immersogeometric analysis of turbulent flow around 
complex geometries, Comput. Fluids 141 (2016) 135–154.

[49] S. Xu, B. Gao, A. Lofquist, M. Fernando, M.C. Hsu, H. Sundar, B. Ganapathysubrama-

nian, An octree-based immersogeometric approach for modeling inertial migration 
of particles in channels, Comput. Fluids 214 (2021) 104764.

[50] S. Yogaraj, An embedded interface finite element method for fluid-structure-fracture 
interaction, Technical report, Technical University of Munich, Germany, 2015.

[51] M. Zhao, L. Cheng, T. Zhou, Numerical simulation of vortex-induced vibration of a 
square cylinder at a low Reynolds number, Phys. Fluids 25 (2013) 023603.
18

http://refhub.elsevier.com/S0898-1221(22)00288-7/bib5674634C91F48A35A5C9C6DDE175FD25s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib5674634C91F48A35A5C9C6DDE175FD25s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib39B0B1721A57C1B923629C8AA620ACBBs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib39B0B1721A57C1B923629C8AA620ACBBs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib39B0B1721A57C1B923629C8AA620ACBBs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib6E3882F60E2FEF7EDF73B9F28A082A4Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib6E3882F60E2FEF7EDF73B9F28A082A4Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib6E3882F60E2FEF7EDF73B9F28A082A4Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib382C95C6C79FFD022DB1A72DD9CA1605s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib382C95C6C79FFD022DB1A72DD9CA1605s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib382C95C6C79FFD022DB1A72DD9CA1605s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib03A16C0E9F4CC58B51A60731CA237302s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib03A16C0E9F4CC58B51A60731CA237302s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib03A16C0E9F4CC58B51A60731CA237302s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib03A16C0E9F4CC58B51A60731CA237302s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibB39423650913F31238798D8C8FC22AD4s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibB39423650913F31238798D8C8FC22AD4s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibB39423650913F31238798D8C8FC22AD4s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibC1B361D2789D2283398AF21B62F70BEEs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibC1B361D2789D2283398AF21B62F70BEEs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibB1DEB6B7CCF20B4276D186511587B645s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibB1DEB6B7CCF20B4276D186511587B645s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibB1DEB6B7CCF20B4276D186511587B645s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib978EF5E7B0156D00F5A73E6144ABF0F8s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib978EF5E7B0156D00F5A73E6144ABF0F8s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib978EF5E7B0156D00F5A73E6144ABF0F8s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib6DDAA4A1921086AB016C8115D185122Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib6DDAA4A1921086AB016C8115D185122Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib6DDAA4A1921086AB016C8115D185122Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibAAC429C1CB0ADD1692C93C078393BC7Fs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibAAC429C1CB0ADD1692C93C078393BC7Fs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib520336ADEFC53A9CB9D6F70056280C17s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib520336ADEFC53A9CB9D6F70056280C17s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib520336ADEFC53A9CB9D6F70056280C17s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib588BA743803C37F7189E84A652960CCBs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib588BA743803C37F7189E84A652960CCBs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib2ECC0E34966FA524A87FA49A7F04D1FAs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib2ECC0E34966FA524A87FA49A7F04D1FAs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibB2625174F429B30E7082D783B4A03DF9s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibB2625174F429B30E7082D783B4A03DF9s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib057096306211A8F0F8CE0D2EEAC37BF4s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib057096306211A8F0F8CE0D2EEAC37BF4s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib057096306211A8F0F8CE0D2EEAC37BF4s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib057096306211A8F0F8CE0D2EEAC37BF4s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib28452033C8C3AB4352DCB948FE7BA284s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib28452033C8C3AB4352DCB948FE7BA284s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib28452033C8C3AB4352DCB948FE7BA284s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib35B645EFFD4D9F007D50383627F96AD2s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib35B645EFFD4D9F007D50383627F96AD2s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib1150A83C6DB3866B8347B08BB5AC700Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib1150A83C6DB3866B8347B08BB5AC700Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib1150A83C6DB3866B8347B08BB5AC700Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib22528996A40EECEA5C4503CE77B70D9Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib22528996A40EECEA5C4503CE77B70D9Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib22528996A40EECEA5C4503CE77B70D9Es1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibCDBAB9D24471615132EFE58F7C1FDD73s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bibCDBAB9D24471615132EFE58F7C1FDD73s1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib2D4CF3AB613B69A8377E91976DF19A1Cs1
http://refhub.elsevier.com/S0898-1221(22)00288-7/bib2D4CF3AB613B69A8377E91976DF19A1Cs1

	A comprehensive assessment of accuracy of adaptive integration of cut cells for laminar fluid-structure interaction problems
	1 Introduction
	2 Formulation of the fluid-structure interaction problem
	2.1 The fluid problem
	2.2 The solid problem
	2.3 Interface conditions

	3 Integration of cut-cells
	3.1 Integration of cut-cells using subtriangulation
	3.2 Integration of cut-cells using adaptive integration

	4 Numerical example
	4.1 Kovasznay flow
	4.2 Steady flow past a fixed square body at Re=20
	4.3 Unsteady flow past a fixed square body at Re=100
	4.4 Unsteady flow past a fixed cylinder in 3D
	4.5 Turek-Hron FSI benchmark problem in 2D
	4.6 Flow past flexible plates in 3D

	5 Summary and conclusions
	Acknowledgement
	References


