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Background
Many medical records are mostly in text format, and these documents must be analyzed 
to find meaningful information. According to the National Science Foundation, manag-
ing and analyzing scientific data on a large scale is a major challenge for data and future 
research [1]. The massive amount of biomedical text data can be a valuable source of 
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knowledge for biomedical researchers. Biomedical texts contain unstructured infor-
mation, such as scientific publications and brief case reports. Text mining seeks to dis-
cover knowledge from unstructured text sources by utilizing tools and techniques from 
a variety of fields such as machine learning, information extraction, and cognitive sci-
ence. Text mining is a promising approach and great scientific interest in the biomedical 
domain. These text documents in biomedical require new tools to search for related doc-
uments in a collection of documents. Today’s biomedical text data is created and stored 
very quickly. Such as, in 2015, the number of papers available on the PubMed website 
exceeded six million. The average record of hospital discharges in the United States is 
more than 30 million [2]. Therefore, companies can save annual costs by using advanced 
data analysis technology based on machine learning for biomedical text data. There-
fore, there is a need to produce efficient topic modeling techniques through advanced 
machine learning to discover hidden topics in complex biomedical texts.

One way to represent biomedical text documents in natural language processing is 
called the bag-of-words (BOW) model. The BOW model corresponds to the frequency 
of words reflected in the matrix of a document collection, and word order in the docu-
ment does not affect the BOW model. If the document has a vocabulary much shorter 
than a matrix, it is called a sparse matrix [3].

In text mining, all text corpora are processed, not just biomedical ones. There are 
several text mining applications such as Medline and PubMed. However, because most 
biomedical data is in unstructured text format, analyzing that unstructured data is a 
difficult task. Numerous text mining techniques are developed for the biomedical data 
domain that processes unstructured data into structured data. In the unstructured exist-
ence of biomedical text data, topic modeling techniques such as latent Dirichlet alloca-
tion (LDA) [4], Latent semantic analysis(LSA) [5], Fuzzy latent semantic analysis (FLSA) 
[6] and Fuzzy k-means topic model (FKTM)[7] are developed to analyze biomedical text 
data. LDA performs better in the classification of clinical reports [8]. LDA is used in a 
various applications, including the classification of genome sequence [9], the discovery 
of discussion concepts in social networks [10], patient data modeling [11], topic extrac-
tion from medical reports [12], the discovery of scientific data and biomedical relation-
ships [13, 14]. The LDA method finds important clinical problems and formats clinical 
text reports in another investigation [15]. In other work, [16] used topic modeling to 
express scientific reports efficiently, allowing the analysis of the collections more quickly. 
Probabilistic-based topic modeling is applied to find the basic topics of the biomedical 
text collection. Topic process models are utilized in a variety of activities such as com-
puter linguistics, overview for source code documents [17], product review brief opinion 
[18], description of a thematic revolution [19], discovery aspects of document analysis 
[20], sentiment analysis [21]  and Twitter text message analysis [22]. LSA discovers clini-
cal records from psychiatric narratives [19]. Semantic space is developed from psycho-
logical terms. LSA is also used to reveal semantic insights and ontology domains that 
are used to build a speech act model for spoken speech [23]. LSA also excels at topic 
identification and segmentation in clinical studies [24]. The RedLDA topic model is used 
in the biomedical field to determine redundancy in patient information data [25]. The 
latent semantic analysis (LSA) is an automatic analysis of the summary of clinical cases 
[26]. Topic models are used in biomedical data for a variety of purposes, such as finding 
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hidden theme in documents and searching documents [27], document classification 
[28], and document analysis [29]. Topic modeling is an effective way to extract biomed-
ical text, but word redundancy negatively affects topic modeling [30], and since most 
biomedical documents are duplicate words, it still needs improvement [31]. Answer-
ing biological factoid questions is a crucial part of the biomedical question answering 
domain [32]. In [33] relationship are discover from the text data.

Clustering is a process utilized in the biomedical investigation to extract meaning-
ful information from large datasets. Fuzzy clustering is another way for hard clustering 
algorithms to divide data into subgroups with similar aspects [34]. The nonlinear nature 
of fuzzy clusters and the flexibility of large-scale data clusters distinguish them from 
hard clustering. It offers more accurate solutions for partitioning and additional options 
for decision-making. Fuzzy clustering is a type of computation based on fuzzy logic, 
reflecting the probability or score of a data item belonging to multiple groups. Once the 
data is partitioned, the centers of the clusters are moved instead of the data points. Clus-
tering is commonly done in order to identify patterns in large datasets and to retrieve 
valuable information [35]. Fuzzy grouping techniques are frequently used in a variety 
of applications where grouping of overlapping and ambiguous elements is required. In 
the biomedical field, some experience has been gathered in diagnosis and decision sup-
port systems, where a wide range of measurements is used as the data entry space, and 
a decision result is formed by suitably grouping the data symptom. Fuzzy clustering is 
a technique used for various applications such as medical diagnosis, biomedical signal 
classification, and diabetic neuropathy [36, 37]. It can also detect topics from biomedical 
documents and make informed decisions about radiation therapy. Fuzzy clustering has 
several uses in the biomedical field, especially in image processing and pattern recogni-
tion, but it is rarely used in topic modeling. In this study, we presented a multiple kernel 
fuzzy topic modeling method for biomedical text data. The main contributions made to 
this research are summarized below.

• We proposed a novel multiple kernel fuzzy topic modeling (MKFTM) technique, 
which solves the problem of sparsity and redundancy in biomedical text mining.

• We proposed a FP-IDF (fusion probabilistic inverse document frequency) for global 
term weights, which is very effective for filtering out common high frequency words.

• We conduct extensive experiments and show that MKFTM achieves better classifi-
cation and clustering performance than latest state-of-the-art topic models including 
LDA, LSA, FLSA, and FKTM.

• We also compare the execution time of MKFTM and shows that its execution time is 
stable for different topics.

Materials and method
We described our proposed multiple kernel fuzzy topic modeling method that discover 
the uncover hidden topics in biomedical text documents. The two main approaches 
to clustering are hard clustering and fuzzy (soft) clustering. In clustering, objects are 
divided, and each object is a partition. MKFTM handles multi-kernel fuzzy view, a 
unique method for topic modeling, and validates over various experiment for medical 
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documents. LDA performance is better for topic modeling, but redundancy always 
negatively impacts its performance. Therefore, MKFTM has the potential to deal with 
redundancy issues and discover more accurate topics in biomedical documents with 
higher performance than competitors like LDA and LSA.

Multiple kernel fuzzy topic modeling (MKFTM)

The documents and words in these document are fuzzy groups in multiple clusters. 
Fuzzy logic is an extension of the classic 1 and 0 logic to a truth value between 1 and 0. 
Through MKFTM, documents and words are fuzzily clustered, with each cluster being 
a topic. The documents are multi-distribution across topics, and clusters are the topics 
in these documents. MKFTM finds the different matrices of probability. The proposed 
MKFTM are the following steps:

Pre‑processing

This step performs a preprocessing of the document input text collection. There is a lot 
of noise in text documents, such as word transforms, word shape transforms, special 
characters, punctuation marks, and stop words that add noise. Several pre-processing 
steps are used to clean up the text data. The punctuation is removed from the document 
collection. Text data is converted to lowercase and documents are tokenized. After that, 
short, empty words with fewer characters are removed. Also, the words are normalized 
through the Porter Stemmer [38].

Bag‑of‑words (BOW) and term weighting

The bag-of-words model represents text documents and extracts features from text 
documents for machine learning algorithms. BOW is a systematic method for calcu-
lating document words count [39]. After collecting and preprocessing the document’s 
text, the BOW model is applied. BOW model converts unstructured text data into word-
based structured data, ignoring the grammar in information retrieval [40]. The m docu-
ments contain the word k finding the association between words and document. Also, 
the frequency of k words in documents m is calculated. Equation 1 represent the words 
k frequencies in documents m . The kn means the words k count in n documents. The 
ni,j means the count of words in matrix i, j . The kj means numbers that the numbers of 
words count in rows. The tf  is term frequency.

Local terms are weighted after applying BOW and the term frequency method is 
another local term method. The term frequency [41] evaluate evaluates the frequency 
with which the term appears in a document. Because each document is of different 
lengths, more terms may appear in longer documents than shorter ones. Equation  2 
shows a typical weighting term that uses a vector field of normalization coefficients. The 
term weight, which reduces these terms, is essential and assigned wdk that constantly 
varies from 0 to 1. Here, d represents a document, k defines the term and wdk means k 
terms of d documents in words w. Weight is used in the most important terms and zero 

(1)tfi,j =

ni,j

kn

k , j
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is used in the least important terms. In some cases, the use of a standard weight assign-
ment may be useful, and the weighting term depends on many impacts on the weights, 
using different terms individually within each vector.

This shows the weight w of the k term. If a term index ki frequency fi,j appear in the 
document dj , the general frequency Fi of the k terms is well-defined in Eq. 3.

N  is a numbers of document in a large set of text corpus. The frequency of document 
term kiki refers to the number of ni documents occurrence and ni < Fi.

Fusion probabilistic inverse document frequency (FP‑IDF)

The weight of global term (GTW) is estimated at this stage. GTW provide "discrimi-
nation values" for all terms. The less frequent terms in document collection are more 
discriminating [42]. The tfij symbol determine the number of time word i appears in 
document j. The number of documents is indicated by N  and ni is total number of docu-
ments appearing in the i term. GTW is calculated by finding the b(tfij) and Pij using 
Eq. 4, 5.

The b(tfij) and Pij are used to calculate the fusion probabilistic inverse document fre-
quency. We proposed a FP-IDF by combining the hybrid inverse documents frequency 
(

Hybrid− IDF
)

 and probabilistic Inverse documents frequency (Probablistic− IDF) 
for weighting global term. Equations  6 and 7 show the formula for Hybrid− IDF and 
Probablistic− IDF.

Use the product property of logarithms, logbx+ logby = logbxy.

(2)
wdk

√

∑

vector(wdi)2

(3)Fi =

N
∑

(j=1)

fi,j

(4)b
(

tfij
)

=

{

1 if tfij > 0
0 if tfij = 0

}

(5)Pij =
tfij

∑

j tfij

(6)Hybrid − IDF = log

(

max
{t ′∈d}nt′

(

N

nt

)

)

(7)Probablistic − IDF = log

(

N − nt

nt

)

(8)Fusion Probablistic − IDF = log

(

max
{t ′∈d}nt′

(

N

nt

)

)

+ log

(

N − nt

nt

)
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Combine max{t′∈d}nt′ and Nnt

Multiply 
max{t′∈d}nt′

N

nt
and N−nt

nt

Raise nt to the power of 1.

Raise nt to the power of 1.

Use the power rule aman = am+n to combine exponents.

Add 1 and 1. We proposed a FP-IDF in Eq. 15.

Principal component analysis (PCA)

After the FP-IDF global terms weighting method, the PCA is used. The PCA [43] tech-
nique has been used to avoid large-scale adverse effects in the weighting of global terms. 
This method removes redundant dimensions from the data and retains only the most 
important data dimensions. The PCA calculates the new variable that refers to the prin-
cipal component, resulting from the integrated integration of the initial variables.

Multiple Kernel fuzzy C‑means clustering

At this step, the multiple kernel fuzzy c-means clustering algorithm [44] is used for fuzz-
ily group documents, which is represented by GTW method. In multiple kernel fuzzy 
c-means clustering algorithm B is a data point,Y = {Yi}

B
i=1 , kernel function 

{

Gg

}S

g=1
 , 

numbers of desired clusters are F and output membership matrix V = {vif}
B,F
i,f=1  with 

weight 
{

Zg

}S

g=1
 for kernels. The multiple kernel fuzzy c-means have the following steps:

(9)Fusion Probablistic − IDF = log

(

max
{t ′∈d}nt′

(

N

nt

N − nt

nt

)

)

(10)Fusion Probablistic − IDF = log

(

max{t ′∈d}nt′ N

nt
·
N − nt

nt

)

(11)Fusion Probablistic − IDF = log

(

max{t ′∈d}nt′ N (N − nt)

ntnt

)

(12)Fusion Probablistic − IDF = log

(

max{t ′∈d}nt′ N (N − nt)

n1t nt

)

(13)Fusion Probablistic − IDF = log

(

max{t ′∈d}nt′ N (N − nt)

n1t n
1
t

)

(14)Fusion Probablistic − IDF = log

(

max{t ′∈d}nt′ N (N − nt)

n1+1
t

)

(15)FP − IDF = log

(

max{t ′∈d}nt′ N (N − nt)

n2t

)
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1: Procedure multiple kernel fuzzy c-means MKFCM (Data Y, Clusters F, Kernels 
{

Zg

}S

g=1
)

2: Membership matrix initialization V (0).
3: Repeat
4: ⌢

v
l

if =
u
(l)s

ic
∑B

i=1 v
(l)s

if

 , ⊲ Calculate the normalized membership.

5: ⊲ Calculate Coefficients Eq. 16

 αifg = Gg

(

yi, yi
)

− 2
B
∑

J=1

⌢
vjfGg

(

yi, yj

)

+
B
∑

j=1

B
∑

j′=1

⌢
vjf

⌢
vj′fGg

(

yj, yj′
)

(16)

6: for (i = 1…B; f = 1..F; g = 1..S) do
7: 

8: end for
9: ⊲ Calculate coefficient by Eq. 18.
10: for (g = 1…S) do
11: 

12: end for
13: ⊲ Update weights by Eq. 19.
14: for (g = 1…S) do

15: z(l)g ←

1
βg

1
β1

+ 1
β2

··· 1
βS

(19)

 end for
16: ⊲ distance calculate by Eq. 20.
17: for (i = 1…B;c = 1..F) do
18: 

19: end for
20: ⊲ update memberships Eq. 21
21: for (i = 1…B;f = 1..F) do
22: 

23: end for
24: until 

∣

∣

∣

∣Vl − V l−1
∣

∣

∣

∣< ∋ 

αifg ←−−− Gg (yi, yi)− 2

B
∑

J=1

⌢
vjcGg

(

yi, yj
)

+

B
∑

j=1

B
∑

j′=1

⌢
vjf

⌢
vj′f Gg

(

yj , yj′
)

(17)

βk ←

B
∑

i=1

F
∑

f=1

(

v
(l)
if

)s
αifg (18)

T 2
if ←

S
∑

g=1

αifg

(

z(l)g

)2
(20)

v
(l)
if ←

1

∑F
f ′=1

(

D2
if

D2
if ′

)
1

s−1

(21)
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25: return V (l),
{

z
(l)
g

}S

g=1
.

26: end procedure

Probabilistic distribution of documents

The document term matrix, along with the GTW method (matrix of words × docu-
ments), find the probability of a document P(Dj), calculated by Eq. 22. Here i represents 
the various documents.

Probabilistic distribution of the topics for documents

The probabilities of obtaining the j documents in the k topic are P(Dj|Tk) through 
P(Tk|Dj) with P(Dj), as described in Eq. 23.

Since, finding the P(Dj|Tk) , normalized the P(D,T) for each topic through Eq. 24.

Probabilistic distribution of words in documents

This step calculates the probability of a word i in the j document applying Eq. 25.

Probabilistic distribution of words in topics

The probabilities of word i in topic k P(Wi|Tk) through P(Dj|Tk) and P(Wi|Dj) is calcu-
lated through Eq. 26.

Datasets

In this research, we used six state-of-the-art datasets, which are publicly available. 
The first dataset is a medical abstract of the English scientific corpus from MuchMore 
Springer Bilingual Corpus,1 a labeled dataset. We used two categories of journals, 

(22)P(Dj) =

∑m
i=1 (Wi,Dj)

∑m
i=1

∑n
j=1 (Wi,Dj)

(23)P(Dj ,Tk) = P(Tk |Dj)× P(Dj)

(24)P(Dj|Tk) =
P(Dj ,Tk)

∑n
j=1 P(Dj ,Tk)

(25)P(Wi|Dj) =
P(Wi,Dj)

∑m
i=1 P(Wi,Dj)

(26)P(Wi|Tk) =

n
∑

j=1

P(Wi,Dj)× P(Dj|Tk)

1 http:// muchm ore. dfki. de/ resou rces1. htm

http://muchmore.dfki.de/resources1.htm
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including the federal health standard and arthroskopie, for experimentation. Table  1 
shows the statistics of datasets.

• The medical abstract from MeSH categories from Ohsumed Collection2 is a second 
labeled corpus dataset. The experiments are conducted in three categories: virus dis-
ease, bacterial infection, and mycoses.

• Biotext [45] is the third dataset, containing summaries of diseases and treatments 
collected from Medline.

• The fourth data set is GENIA corpora [46], abstracts collection from Medline papers 
describing the molecular biology literature.

• The fifth is the redundant corpus of synthetic WSJ and is generally used in natural 
language processing (NLP) [47, 48].

• The six datasets are health news tweets3 (T-datasets), an unlabeled dataset.

Results
Experimental performed

We performed the classification, clustering, execution time and redundancy issues for 
experiments. We used six state-of-the-art datasets for experiments. The first two data-
sets Muchmore springer bilingual and Ohsumed Collection, are labeled datasets. There-
fore, it’s used for classification. The other two datasets Biotext and Genia are unlabeled. 
Hence, it’s used for clustering. The redundant corpus of synthetic WSJ is used for the 
redundancy issue comparison because in literature this dataset is mostly consider for 
redundancy issue. Therefore, we used the same dataset for fair comparison. The execu-
tion time is compared to the health news tweets dataset, containing more documents.

Experimental setup

We used the laptop core i7 computer with 16  GB RAM and MATLAB software for 
experiments.

Table 1 Datasets statistics

Datasets Documents (Preprocess) Words Unique words

MuchMore Springer 1527 19,835 5008

Ohsumed 2092 22,669 13,238

Genia 2000 21,560 17,834

Biotext 40 25,921 10,267

Twitter 58,927 395,636 25,309

WSJ 1300 680 K 36 K

2 http:// disi. unitn. it/ mosch itti/ corpo ra/ ohsum ed- first- 20000- docs. tar. gz.
3 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Health+ News+ in+ Twitt er

http://disi.unitn.it/moschitti/corpora/ohsumed-first-20000-docs.tar.gz
https://archive.ics.uci.edu/ml/datasets/Health+News+in+Twitter
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Baseline topic models

In this section, our proposed MKFTM topic model is compared with the state-of-the-
art LDA [4], LSA [5], FLSA [6] and FKTM [7] topic models. Experiments are performed 
for both classification and clustering. We also compare our proposed topic model with 
RedLDA [25] and FKTM, which are used for redundancy problems.

Classification of documents

The first classification evaluation is performed with Bayesian optimization for two datasets, 
including MuchMore Springer Bilingual Corpus and Ohsumed Collection. Optimization 
refers to searching for points to minimize functions with real value, known as objective 
functions. The bayes optimization is a gauss-process objective function model that evalu-
ates the objective functions. Bayesian optimization minimizes cross-validation error. MAT-
LAB fit function is used for Bayesian optimization. MKFTM performance is compared 
to LDA, LSA, FLSA, and Fuzzy k-means topic models using a tenfold cross-validation 
method. Document classification is performed on topic probabilities for document P(T|D) 
through discriminant analysis machine learning classifier [49] using Bayes optimization. 
Discriminant analysis is described in Eq. 27

The ⌢y represent the expected classes and k is number of classes. The ⌢p(k|x) is the poste-
rior probability of class k and observations x. The Cy|k is the classification cost and obser-
vation y with the true class k . The discriminant analysis classifies the document features 
with different topics such as 50, 100, 150 and 200. MKFTM performance of classification is 
measured using precision, recall, accuracy, and F1-score. Precision, recall, accuracy and F1 
measurements are used to verify the performance of the MKFTM. The classification results 
of two datasets labeled MuchMore Springer and Ohsumed are shown in Tables 2 and 3. 
The results of the MKFTM classification are compared with the latest LDA, LSA, FLSA and 
FKTM state-of-the-art topic models for the biomedical text corpora.

Clustering of documents

The clustering performance is measured in two datasets, Genia and Biotext. Document 
clustering is performed using the k-mean clustering method of P (T | D).There are two 
methods for clustering validation, and internal validation method is more accurate than 
external validation [50]. We use the internal validation method of the Calinski-Harabasz 
index to evaluate multiple topics and clusters. The Calinsiki-Harabasz (CH) index [51] is 
a widely used internal verification method. The exponent CH is the exponent relationship 
where cohesion is estimated at the distance from the center point as shown in Eq. 28, where 
k is the number of clusters and N is the total number of observations. 

(27)y = argminy=1,....K

K
∑

k

p(k|x)C(y|k)

(28)CH(C) =
(N − K )

(K − 1)

∑

ck

∈ C|Ck |de| (Ck ,X)

∑

ck

∈ C
∑

xi

Ckde(xi,Ck)
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The Calinsiki-Harabasz index can assess the reliability of all clusters by summing the 
mean square error. The highest Calinsiki-Harabasz index shows the best results of the 
clustering. The Calinsiki-Harabasz index gives the best results for clusters and finds the 
corresponding clusters that appear. Figure 1, 2, 3, 4, 5, 6, 7 and 8 shows the CH index for 
clustering performance in Genia and biotext datasets.

Redundancy issue

The experiment examined the influence of the redundancy problem using a WSJ syn-
thetic redundant corpus. MKFTM versus LDA and RedLDA developed to address 
redundancy issues in biomedical documents [25]. LDA, RedLDA, FKLSA, Fuzzy 
k-means topic model and MKFTM are trained on the same redundant WSJ syn-
thetic corpus to compare the performance of these topic models. Table  4 shows the 

Table 2 Classification results (muchmore springer bilingual corpus)

Method AC (%) Precision Recall F1‑Score K

LSA [5] 57.65 0.6667 0.7221 0.6933 50

LDA [4] 60.95 0.6938 0.7356 0.7141 50

FKLSA(Entropy) [6] 97.66 0.955 0.9554 0.977 50

FKLSA(IDF) [6] 95.90 0.937 0.935 0.959 50

FKLSA(Normal) [6] 91.22 0.890 0.894 0.912 50

FKLSA(ProbIDF) [6] 97.66 0.954 0.953 0.977 50

FKTM [7] 98.29 0.9880 0.9883 0.9880 50

MKFTM 99.04 0.9975 0.9978 0.9975 50
LSA [5] 56.19 0.6676 0.6791 0.6733 100

LDA [4] 58.85 0.6854 0.7011 0.6932 100

FKLSA(Entropy) [6] 96.49 0.943 0.942 0.965 100

FKLSA(IDF) [6] 98.24 0.961 0.960 0.982 100

FKLSA(Normal) [6] 92.39 0.902 0.900 0.924 100

FKLSA(ProbIDF) [6] 97.66 0.955 0.952 0.977 100

FKTM [7] 98.87 0.9879 0.9841 0.9844 100

MKFTM 99.62 0.9974 0.9936 0.9939 100
LSA [5] 62.67 0.7091 0.7536 0.7285 150

LDA [4] 59.23 0.6991 0.6791 0.6890 150

FKLSA(Entropy) [6] 95.90 0.937 0.935 0.959 150

FKLSA(IDF) [6] 97.66 0.955 0.952 0.977 150

FKLSA(Normal) [6] 95.32 0.932 0.931 0.953 150

FKLSA(ProbIDF) [6] 97.07 0.950 0.952 0.971 150

FKTM [7] 98.97 0.9822 0.9882 0.9886 150

MKFTM 99.69 0.9917 0.9976 0.9980 150
LSA [5] 60.00 0.6980 0.7020 0.9886 200

LDA [4] 63.42 0.7039 0.7765 0.7000 200

FKLSA(Entropy) [6] 97.07 0.950 0.9501 0.7384 200

FKLSA(IDF) [6] 97.66 0.955 0.9553 0.971 200

FKLSA(Normal) [6] 92.39 0.901 0.902 0.977 200

FKLSA(ProbIDF) [6] 97.66 0.955 0.950 0.924 200

FKTM [7] 98.86 0.9883 0.9870 0.977 200

MKFTM 99.61 0.9978 0.9966 0.965 200
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Table 3 Classification results (Ohsumed collection dataset)

Method AC (%) Precision Recall F1‑Score K

LSA [5] 48.36 0.4146 0.4224 0.4185 50

LDA [4] 54.10 0.4789 0.5155 0.4970 50

FKLSA(Entropy) [6] 75.21 0.720 0.722 0.746 50

FKLSA(IDF) [6] 75.90 0.722 0.723 0.746 50

FKLSA(Normal) [6] 71.25 0.6551 0.654 0.677 50

FKLSA(ProbIDF) [6] 74.87 0.715 0.714 0.735 50

FKTM [7] 92.35 0.9236 0.9006 0.9119 50

MKFTM 94.10 0.9431 0.9200 0.9213 50

LSA [5] 51.37 0.4430 0.4099 0.4258 100

LDA [4] 54.92 0.4873 0.4783 0.4828 100

FKLSA(Entropy) [6] 76.24 0.727 0.726 0.747 100

FKLSA(IDF) [6] 74.35 0.701 0.703 0.726 100

FKLSA(Normal) [6] 71.08 0.670 0.674 0.694 100

FKLSA(ProbIDF) [6] 74.52 0.702 0.704 0.724 100

FKTM [7] 87.70 0.8867 0.8261 0.8553 100

MKFTM 89.45 0.9063 0.8457 0.8747 100

LSA [5] 52.73 0.4651 0.4969 0.4805 150

LDA [4] 57.10 0.5123 0.5155 0.5139 150

FKLSA(Entropy) [6] 74.87 0.715 0.714 0.735 150

FKLSA(IDF) [6] 76.59 0.732 0.731 0.752 150

FKLSA(Normal) [6] 72.46 0.671 0.673 0.691 150

FKLSA(ProbIDF) [6] 75.04 0.715 0.712 0.735 150

FKTM [7] 90.16 0.8788 0.9006 0.8896 150

MKFTM 92.91 0.8984 0.9203 0.9092 150

LSA [5] 49.73 0.4303 0.4410 0.4356 200

LDA [4] 54.37 0.4819 0.4969 0.4893 200

FKLSA(Entropy) [6] 75.21 0.720 0.721 0.740 200

FKLSA(IDF) [6] 74.18 0.705 0.704 0.725 200

FKLSA(Normal) [6] 71.94 0.671 0.673 0.683 200

FKLSA(ProbIDF) [6] 74.87 0.701 0.702 0.729 200

FKTM [7] 88.25 0.8986 0.8261 0.8608 200

MKFTM 90.35 0.9182 0.8460 0.8802 200

Fig. 1 CH-index results for Genia datasets with K = 50
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log-likelihood probability of WSJ dataset synthetic redundancy with topics ranging from 
50 to 200.

Fig. 2 CH-index results for Genia datasets with K = 100

Fig. 3 CH-index results for Genia datasets with K = 150

Fig. 4 CH-index results for Genia datasets with K = 200
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Execution time

Health News Tweets are used to compare MKFTM runtime with LDA, LSA and 
FLSA. Figure 9 shows the runtime performance of MKFTM, LDA and LSA.

Fig. 5 CH-index results for Biotext datasets with K = 50

Fig. 6 CH-index results for Biotext datasets with K = 100

Fig. 7 CH-index results for Biotext datasets with K = 150
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Fig. 8 CH-index results for Biotext datasets with K = 200

Table 4 Comparison of loglikelihood for WSJ corpora

Topic Model Log‑Likelihood No of Topics

LDA -824,000 50

RedLDA -810,000 50

FKTM -789,000 50

MKFTM -773,000 50

LDA -814,000 100

RedLDA -805,000 100

FKTM -789,500 100

MKFTM -773,600 100

LDA -815,000 150

RedLDA -809,000 150

FKTM -789,200 150

MKFTM -773,700 150

LDA -816,000 200

RedLDA -800,000 200

FKTM -789,000 200

MKFTM -773,900 200

Fig. 9 Comparison of execution times of health tweet dataset
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Discussion
The classification, clustering, redundancy issue, and execution time are used for the per-
formance of experiments. The document classification is presented in Tables  2 and 3. 
Table  2 shows the classification results for the Muchmore Springer dataset. The clas-
sification results are measured with 50,100,150 and 200 numbers of topics on both 
datasets. MKFTM achieved 99.04%, 99.62%, 99.69%,99.61% accuracy with 50,100,150 
and 200 topics on Muchmore Springer dataset. FKTM accuracy is 98.29%, 98.87%, 
98.97%,98.86% with 50,100,150 and 200 topics for Muchmore Springer dataset. FLSA 
accuracy is higher than LDA and LSA on the Muchmore Springer dataset. FKTM 
accuracy is better than FLSA for the Muchmore Springer dataset. However, MKFTM 
achieved the highest accuracy compared to baseline topics models FKTM, FLSA, LDA, 
and LSA for the Muchmore Springer dataset. We also measured the precision, recall, 
and F1-sore score for all topic models. The precision, recall, and F1-sore score of FKTM 
is better than the FLSA on the Muchmore Springer dataset. LDA and LSA precision, 
recall, and F1-sore values are lower than FLSA for the Muchmore Springer dataset. 
Overall, MKFTM attained the higher scores values for precision, recall, and F1-sore for 
Muchmore Springer dataset. Table 3 shows the Ohsumed dataset classification results 
and MKFTM achieved 94.10%, 89.45%, 92.91%, 90.35% accuracy with 50,100,150, and 
200 topics, respectively. For the Ohsumed dataset, FKTM accuracy is 92.35%, 87.70%, 
90.16%, 88.25% for 50,100,150, and 200 topics, respectively. On the Ohsumed dataset, 
FLSA accuracy outperforms LDA and LSA. For the Ohsumed dataset, FKTM accuracy 
is highest than FLSA. However, the accuracy of MKFTM for the Ohsumed dataset is 
higher than the FKTM, FLSA, LDA, and LSA base topics models. In the Ohsumed data-
set, FKTM outperforms FLSA in precision, recall, and F1-sore. For the Ohsumed data-
set, LDA and LSA values of precision, recall, and F1-sore are lower than the FLSA. The 
precision, recall, and F1-sore of MKFTM is highest than the FKTM, FLSA, LDA, and 
LSA. The classification results show that MKFTM performance is superior to FKTM, 
FLSA, LDA, and LSA for Muchmore Springer and Ohsumed datasets.

Documents clustering performance is measured using the Calinski-Harabasz index for 
Genia and Biotext Datasets with 50,100,150 and 200 numbers of topics. Figure 1, 2, 3 
and 4 shows that the CH-index values of LDA and LSA are lower than FLSA for the 
Genia dataset. The FKTM CH-index values are higher than FLSA for the Genia dataset, 
and MKFTM CH-index values are higher than FKTM for the Genia dataset. Therefore, 
the clustering performance of MKFTM is highest than other topic models like FKTM, 
FLSA, LDA, and LSA for the Genia dataset. Figures 1, 2, 3, and 4 indicate that the CH-
index values of LDA and LSA are lower than those of FLSA for the Genia dataset. For 
the Genia dataset, the FKTM CH-index values are greater than the FLSA. For the Genia 
dataset, MKFTM CH-index values are greater than FKTM. As a result, MKFTM out-
performs other topic models for the Genia dataset, like FKTM, FLSA, LDA, and LSA in 
terms of clustering performance. Figures 5, 6, 7, and 8 show that the CH-index values 
of LDA and LSA are lower than FLSA for the Biotext dataset. For the Biotext dataset, 
the FKTM CH-index values are greater than the FLSA. MKFTM CH-index values are 
greater than FKTM for the Biotext dataset. As a result, for the Biotext dataset, MKFTM 
outperforms other topic models like FKTM, FLSA, LDA, and LSA for clustering. There-
fore, MKFTM achieved better clustering performance for Genia and Biotext datasets.
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Table 4 shows that log-likelihood for the WSJ dataset with 50, 100, 150, and 200 topics. 
The log-likelihood results of MKFTM are better than the FKTM, FLSA, LDA, and LSA 
with different topics. Therefore, MKFTM also solves the redundancy issues and achieves 
better performance for redundant corpora than FKTM, FLSA, LDA and LSA.

The execution time performance for the health news tweets dataset is shown in Fig. 9. 
The execution time performance is measured with 50, 100, 150, 200, 250, 300, and 350 
numbers of topics. The execution time of LDA and LSA is increased as the number of 
topics increases, but the execution time of MKFTM is stable.

Conclusion
Biomedical text is on the rise these days, while evaluating these documents is extremely 
important to discovering valuable sources of information. Biomedical databases like 
PubMed provide valuable services to scientific communities. To reveal the hidden theme 
structures from biomedical text document topic modeling is a famous technique. These 
text documents used structured to search, index, and summarize. In advanced machine 
learning the fuzzy methods are mostly utilized in medical imaging. The existing topic 
modeling method is based on linear and statistical distribution. This paper presented 
a new multiple kernel fuzzy topic modeling (MKFTM) approach for biomedical text 
documents. We also proposed a new fusion probabilistic inverse document frequency. 
MKFTM improves the negative consequences of redundancy words for biomedical text 
documents and perform better than LDA and RedLDA. MKFTM also remove the spar-
sity problem in biomedical text documents. Experimental results indicate that MKFTM 
performs better in biomedical documents’ classification and clustering tasks than the 
state-of-the-art topic models LDA, LSA, FLSA and FKTM. MKFTM is a new approach 
to topic modeling, which has the flexibility to work with a variety of clustering and scal-
ing techniques. Furthermore, the MKFTM method uses discrete and continuous data 
to extract topics from biomedical documents. The six datasets quantitative evaluation 
describes that MKFTM performs better than progressive baselines with significant 
improvements.
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