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Highlights
A Self-Attention Integrated Spatiotemporal LSTM Approach to Edge-Radar Echo Extrapolation
in the Internet of Radars

• The self-attention memory mechanism is integrated into to original ST-LSTM.
• The SAM compensates for the limitation of convolution in the receptive field.
• Extra memory G stores global features to prevent the accumulation of errors.
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ABSTRACT
In recent years, the number of weather related disasters significantly increases across the world. As
a typical example, short-range extreme precipitation can cause severe flooding and other secondary
disasters, which therefore requires accurate prediction of extent and intensity of precipitation in a
relatively short period of time. Based on the echo extrapolation of networked weather radars, i.e.
the Internet of Radars, different solutions have been presented ranging from traditional optical-flow
methods to recent deep neural networks. However, these networks focus at local features by capturing
the spatial features of radar echo variations only, but suffer from rational recognition of holistic radar
echo’s trajectory, intensity and corresponding dynamics. In this paper, a self-attention integrated
LSTM approach is presented by introducing a SAST-LSTM cell into the original model. A self-
attentive mechanism is also designed for accurate analysis of the radar echo from both spatial and
temporal aspects. Comparative experiments show that the proposed model has better performance on
different real radar echo datasets over other recent methods, involving ConvLSTM, PredRNN, MIM,
PhyDNet and SA-ConvLSTM.

1. Introduction
Extreme precipitation can trigger flooding and waterlog-

ging in cities or mudslides and landslides in mountainous ar-
eas, which cause significant human and economic loss. The
ability to forecast high-intensity precipitation in a short pe-
riod of time can greatly facilitate damage reduction and even
prevention. Therefore, precipitation nowcasting has always
been a critical and difficult challenge, especially concern-
ing kilometre-level precipitation intensity forecasts in a lo-
cal area within a relatively short period of time such as 0-2
hours [1]. Traditional Numerical Weather Forecast (NWP)
methods rely on mathematical and physical models and re-
quire a large amount of computing resources, which have
been commonly used for medium and long-term precipita-
tion forecasting, but not suitable for precipitation nowcasting
due to low accuracy and “spin-up” problems [2, 3]. Modern
precipitation nowcasting mainly manipulates echo extrapo-
lation of networked radars, which is also known as Radar
Network Composite, or Internet of Radars (IoR) when echo
images and extrapolation results are remotely stored and ex-
changed [4].

Traditional radar echo extrapolationmethods include cross-
correlation methods, centroid tracking methods and optical
flow based methods. The cross-correlation methods [5, 6]
can only capture the direction of motion of individual rain-
fall clouds, but hardly capture the large-scale motion of the
whole weather system. The centroid tracking methods [7, 8]
are suitable for echoes of high intensity. When the echoes are
split, the accuracy of tracking and predictionwill be reduced.
The optical flow based methods [9, 10, 11] use the variation
of the image sequence in the temporal domain to calculate
the optical flow correlation between adjacent input frames,
as well as the motion field for extrapolation. However, it is
arbitrary for these methods to assume that the brightness of
radar echo is constant. In addition, the processes of optical
flow estimation and echo extrapolation are separated, so it
is difficult to determine the best parameters of the motion

field to obtain the best extrapolation effect, resulting in the
limitations of existing optical flow based methods.

Recently, artificial neural networks have beenwidely used
and achieved outstanding performances in fields such as com-
puter vision [12], edge computing [13, 14, 15, 16, 17, 18],
anomaly detection [19, 20, 21], data mining [22, 23, 24, 25],
algorithm optimization [26, 27, 28, 29], medical diagnosis
[30, 31], and climate prediction [32], etc. This has attracted
widespread attention from researchers in the field of weather
forecasting, and they began to apply these networks to radar
echo extrapolation. Radar raw data retrieved from a weather
radar can further generate radar combined reflectivity maps,
which are arranged in the chronological order. Due to its
similarity to video frames, radar echo extrapolation can be
regarded as a spatiotemporal sequence prediction problem,
where n future radar echo maps are predicted from the in-
put m maps. A ConvLSTM model was proposed in [33], for
example, replacing the full connection in LSTMwith convo-
lution to predict radar echo with the observed echo maps in
Hong Kong. In [34], a TrajGRU unit implemented by vari-
able convolution was proposed to effectively learn the spatial
changes of cyclic connections. PredRNN [35] and its variant
PredRNN++ [36] were constructed by the ST-LSTM and
Causal LSTMmodels respectively, where the features in the
top layer of network at the previous time step are conveyed to
the first layer of the current time step through a zigzag struc-
ture, enabling the network to capture short- and long-term
features at the same time. In addition, the classic U-Net net-
work was also employed for precipitation nowcasting [37].
Existing deep neural networks being applied to radar echo
extrapolation aremainly based onConvolutional Neural Net-
work (CNN), Recurrent Neural Network (RNN), etc., or the
combination ofmultiple deepmodels. Thesemethods are af-
fected by the receptive field and stacked structure of the con-
volutional layer [38], so they have limitations in capturing
long-range spatial features, making it difficult to model the
dynamics of complex objects like radar echoes that are con-
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stantly moving, merging and dissipating, as therefore caus-
ing inaccurate or wrong prediction results [39].

In recent years, the Self-Attention mechanism (SA) has
been a hot topic in deep learning. There have been many
studies in natural language processing [40, 41], and com-
puter vision [42, 43]. Compared to the CNN structure, the
SA mechanism can efficiently capture global dependencies
and derive information from past aggregated features, en-
hancing the ability to recognise complex motion objects.

In order to alleviate the impact of problems with the ex-
isting networks so as to improve the prediction accuracy of
radar echoes, this paper proposes a SAST-LSTM (Self-Attention
Integrated Spatiotemporal LSTM) unit based on the SAmech-
anism, which enables the fusion of current featureswith global
features through a dedicated memory unit. Two practically
retrieved radar echo datasets have been prepared for compar-
ative experiments between the SAST-LSTMand other recent
published models, including ConvLSTM, PredRNN, MIM,
PhyDNet, etc. According to the results, the proposed work
shows improved performance over the other models for radar
echo extrapolation tasks. The rest of this paper is organ-
ised as follows: Section 2 provides a brief overview of re-
lated research on radar echo extrapolation using deep neural
networks. Section 3 explains the self-attention mechanism,
and describes in detail the working process of the proposed
SAST-LSTM. Section 4 shows the conducted experiments
and obtained results. Finally, the conclusion of the experi-
ment and future work plan are given in Section 5.

2. Related Work
Radar echo extrapolation tasks can be regarded as a kind

of spatiotemporal sequence prediction problem. At present,
a large number of researchers have used deep neural net-
works to conduct research. RNN is used to extract temporal
features, while CNN is generally used to extract spatial fea-
tures.

Most CNN-based extrapolationmodels have been inspired
by work in the fields of image classification and semantic
segmentation, the models in these fields are further opti-
mized and introduced into the radar echo extrapolation task.
[44] proposed a dynamic convolutional layer in which the
size of the convolutional kernel changes dynamically accord-
ing to the input data, and used this structure for short-term
weather forecasting. [45] designed a spatiotemporal convo-
lutional neural network (ST-CNN) to mine precipitation pre-
cursor information from data for extreme precipitation pre-
diction. [37] used U-Net to predict the rainfall status in one
hour. Inspired by U-Net and SegNet, RainNet [46] is pro-
posed, which predicts the precipitation intensity in Germany
5 minutes in advance. [47] proposed Broad-UNet equipped
with asymmetric parallel convolution andAtrous Spatial Pyra-
mid Pooling (ASPP) module, which combines multi-scale
features for nowcasting. [48] used a newly designed loss
function to train U-Net to predict the radar echo images in
northern China 30 minutes in advance.

RNN-based models are mostly used in combination with

convolution layers. ConvLSTM [33] is a landmark deep neu-
ral network in the field of radar echo extrapolation. It com-
bines convolution operation with traditional LSTM to en-
hance model’s ability to capture spatial features. The pre-
dicted radar echo intensity is converted into the precipita-
tion intensity through the Z-R relationship, and the precip-
itation nowcasting is realized. TrajGRU [34] expanded the
structure of ConvLSTM by using a location-varying connec-
tion structure and obtained better extrapolation results. Pre-
dRNN [35] is built by the newly designed Spatiotemporal
LSTM (ST-LSTM), which introduced an additional mem-
ory unit into the original LSTM, enabling the model to cap-
ture temporal and spatial features at the same time. The net-
work adds zigzag connections to convey extracted features
that improves the ability to model complex objects. To ad-
dress the gradient disappearance problem caused by stacking
multiple recurrent units in previous networks, PredRNN++
[36] uses the Causal LSTM unit based on the double cascade
mechanism to increase the non-linearity of the recurring unit
, and a gradient highway (GHU) to effectively convey gra-
dient information. Memory In Memory (MIM) [49] inno-
vatively uses the differential signal between adjacent loop
states to model the stationary and non-stationary character-
istics of spatiotemporal dynamics, with powerful generaliza-
tion capabilities for different tasks in multiple domains. [50]
proposed a dual-branch network PhyDNet, which uses Phy-
Cell to capture physical features such as the position objects,
and ConvLSTMcell to capture appearance, texture and other
residual features. Finally, the two types of information are
merged to model dynamics.

Several research integrated the attention mechanism into
the previous network to enhance the prediction performance,
and applied improved networks to spatiotemporal sequence
prediction tasks. [39] proposed the self-attention mecha-
nism based SA-ConvLSTMnetwork, which achieves the best
results on several video datasets. [51] proposed CMS-LSTM
networks based on multi-scale attention modules for video
prediction tasks. [52] improved the classic ST-LSTM cell,
and the attention mechanism is used to model the long-range
spatiotemporal dependence. [53] added convolutional block
attention modules (CBAM) to U-Net, which uses the atten-
tionmechanism for both channel and spatial dimensions. [54]
proposed a dual attention long short-term memory (IDA-
LSTM) for radar echo extrapolation tasks in response to the
underestimation of high-intensity radar echo regions by pre-
vious models.

3. Methodology
3.1. Self-Attention Mechanism

Self-attention mechanism is one kind of attention mech-
anisms. Compared to the convolutional operation, the self-
attention mechanism can focus on global important features
by calculating similarity scores, without limiting the recep-
tive field of the network due to kernel size. The structure of
self-attention mechanism is shown in Fig. 1, this mechanism
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Figure 1: The structure of standard self-attention mechanism.

can be formulated as:

Attention(Q,K, V ) = sof tmax

(

QKT
√

dk

)

V (1)

The input original feature maps are first operated by 1×1
convolution filters Wq , Wk, Wv to obtain three matrixes:
Query, Key, Value, their size is B × C × H × W . Then,
the matrix transpose operation is performed on Query, and
the matrix multiplication with the Key is used to calculate
the similarity score, the score for each group of points forms
the similarity matrix, and dividing each element of the sim-
ilarity matrix by√dk to reduce the influence of variance onthe network gradient update, where dk is the dimension of
Key. Then the results are normalized by the Softmax func-
tion to obtain the Weight matrix, i.e. the attention map. Fi-
nally, the attention map is weighted and summed with Value
to obtain the final self-attention maps, which contain the
extracted global features. [39] proposes the self-attention
memory module based on the standard self-attention mech-
anism, as shown in Fig. 2. The upper part on the left side
of the structure is a standard self-attention module, the out-
put of this part is Zℎ. The lower part is also essentially a
Self-Attention module, sharing the same Query as the upper
half, where the global features extracted by the self-attention
mechanism are stored in M . Through the filter Wmk and
Wmv , the Key and Value of the lower half are obtained, andthe output Zm is calculated together with Query. The Zℎand Zm are concatenated along the channel dimension, and
then concatenated with the input feature Ht after the con-
volution operation. The lower right part updates M with a
gated structure similar to GRU. The upper right part updates
the feature Ht through the output gate. The entire calcula-

tion process can be formulated as follows:

Zℎ = sof tmax

(

QℎKT
ℎ

√

dkℎ

)

V

Zm = sof tmax

(

QℎKT
m

√

dkm

)

V

Z = Wz ∗
[

Zℎ, Zm
]

i′t = �
(

Wm;zi ∗ Z +Wm;ℎi ∗ Ht + bm;i
)

g′t = tanh
(

Wm;zg ∗ Z +Wm;ℎg ∗ Ht + bm;g
)

Mt =
(

1 − i′t
)

⊙Mt − 1 + i′t ⊙ g
′
t

o′t = �
(

Wm;zo ∗ Z +Wm;ℎo ∗ Ht + bm;o
)

Ĥt = o′t ⊙Mt

(2)

3.2. SAST-LSTM
Inspired by previous work, this paper proposes a novel

recurrent cell called SAST-LSTM, which is a fusion of SAM
module and the original ST-LSTM. With the SAM module,
the recurrent cell can effectively capture global spatiotem-
poral variations, and the extracted features are stored in a
dedicated attentional memory, which works in concert with
the standard temporal memory and spatiotemporal memory
to compensate for the previous networks’ limitation on the
receptive field due to the size of the convolutional kernel,
the structure of a single SAST-LSTM cell is shown in Fig. 3,
where t represents the t -th time step, and l is the number of
layers. X is the input data of the current time step,H is the
hidden state, C is the standard temporal memory, M is the
spatiotemporal memory, and G is the attention memory.

The cell receives these parameters as input and updates
C after two symmetric gating mechanisms. The temporary
hidden state T lt is then obtained through the output gate,
which, together with Glt−1 are used as the input of the SAM
module to capture the global dependencies. The extracted
global features are stored in Glt , and the final hidden state
H l
t is obtained. Thememory update process in SAST-LSTM

can be formulated as Equation 3.
SAST-LSTM cells are stacked to build a four-layer ar-

chitecture called SAST-Net, as shown in Fig. 4. The cell at
the bottom layer receives the input data Xt. The spatiotem-
poral memory cell M l

t , which stores higher-order features,
is updated layer by layer in a zigzag route, while the hidden
state Ht is conveyed to the next cell in both the horizontal
and vertical directions. Memory M l

t that stores coarse lo-
cal features and Glt that stores global features, are conveyedhorizontally to the next cell. Under the action of these three
types of memory, the SAST-LSTM can receive more infor-
mation and dependencies to model complex dynamics such
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Figure 2: The structure of self-attention memory module (SAM).

as radar echo more accurately.

gt = tanh
(

Wxg ∗ Xt +Wℎg ∗ H l
t−1 + bg

)

it = �
(

Wxi ∗ Xt +Wℎi ∗ H l
t−1 + bi

)

ft = �
(

Wxf ∗ Xt +Wℎf ∗ H l
t−1 + bf

)

C lt = ft ⊙ C
l
t−1 + it ⊙ gt

g′t = tanh
(

W ′
xg ∗ Xt +Wmg ∗M l−1

t + b′g
)

i′t = �
(

W ′
xi ∗ Xt +Wmi ∗M l−1

t + b′i
)

f ′
t = �

(

W ′
xf ∗ Xt +Wmf ∗M l−1

t + b′f
)

M l
t = f ′

t ⊙M
l−1
t + i′t ⊙ g

′
t

ot = �
(

Wxo ∗ Xt +Wℎo ∗ H l
t−1 +Wmo ⊙M

l
t + bo

)

T lt = ot ⊙ tanh
(

M l
t
)

H l
t , G

l
t = SAM

(

T lt , G
l
t−1

)

(3)

4. Experiments
4.1. Experimental Setup

In this section, the SAST-LSTM proposed in this paper
is evaluated on two different real world radar echo datasets,
Guangzhou Station dataset and CIKM 2017 dataset.

The radar echo data in Guangzhou Station dataset is col-
lected from aCINRAD-SADoppler weather radar inGuangzhou.
The dataset contains radar echo data during the rainy season

!!"#
$

"!"#
$

#!
%

$!
$"#

%!
% &!

% '!
%

!!
$

(!
%

%&
!

&&
!

'&!

)!
$

*+,

$!
$

-!"#
$ -!

$

! "#$%$&'()*+$ ,--*'*.& ! "#$%$&'(/*+$ 01.-23'

"!
$

Figure 3: The structure of SAST-LSTM cell.

(May to August) from 2012 to 2014, the interval of every two
radar echo maps is 6 minutes, so the radar can generate 10
radar echo maps in one hour. The original size of each radar
echo map is 500×500, and the spatial resolution is 1km. To
reduce the computational pressure, the original echo map is
resized to 100 × 100 by the method of max pooling. The
model predicts the next 10 frames based on 10 input frames
in the experiments.

TheCIKM2017 dataset is a two-consecutive-year Doppler
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Figure 4: The overall architecture of SAST-Net built by stacking SAST-LSTM cell.

Table 1
Statistics of training, validation and test sets.

Dataset Training Validation Test
Guangzhou Station 4,570 602 603

CIKM 2017 8,000 2,000 4,000

weather radar echo image dataset collected by the Shenzhen
Meteorological Bureau. The size of each image in dataset is
101× 101, and each 1× 1 pixel represents a 1× 1 km square
area. To facilitate the division of patches, we fill in zeros at
the bottom and right side of the original image, so that the
new image size is 104 × 104. Each sequence of CIKM 2017
contains 15 frames, , with the first 5 frames used for input
and the last 10 frames used for prediction. The number of
sequences for the training set, validation set and test set of
two datasets is shown in Table. 1.

In experiments, we selected ConvLSTM, PredRNN, Pre-
dRNN++, Memory in Memory (MIM), PhyDNet and SA-
ConvLSTM as comparison models. The residual branch of
PhyDNet and the other five models all use a four-layer archi-
tecture, and the number of feature maps in each layer is 64.
All models are trained using with Adam optimizer [55], us-
ing scheduled sampling [56], layer normalization [57] and
early stopping training strategies. The initial learning rate

is 0.001, mini batch size is 4, and the mean squared error
(MSE) is used as the loss function.

Due to the privacy concerns of weather radar data, this
paper uses a distributed cloud platform based on Java EE
and ICE (Internet Communications Engine) technology. Re-
searchers use the SSL-encrypted Internet of Weather Radars
transmission network to read and manage radar data. The
platform accesses the Java Web API through the ICE frame-
work, realizingmodel training, testing, log viewing and other
functions. ICE is similar to socket technology and is respon-
sible for handling the underlying communication program-
ming. The service interfaces written in the SLICE (Speci-
fication Language for ICE) language, which decouples the
client end from the server end, and the two ends can use
different programming languages to keep the programming
style consistent. The communication process of the ICE frame-
work is shown in Fig. 5. In addition, the communication
channel is configured with security protocols such as RSA,
which can guarantee the security of communication during
the training process.
4.2. Evaluation Metrics

In this paper, Critical Success Index (CSI) and Heidke
Skill Score (HSS) are used as the evaluationmetrics ofmodel
performence. With a given threshold �, the real and pre-
dicted radar echo maps are converted into a 0-1 matrix, and
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Table 2
Results of the comparative experiment using CSI and HSS as evaluation metrics on the
Guangzhou Station dataset.

Model CSI HSS
10 20 30 40 avg 10 20 30 40 avg

ConvLSTM 0.6792 0.5997 0.4329 0.1715 0.4708 0.7373 0.7022 0.5728 0.2822 0.5736
PredRNN 0.6601 0.6147 0.4899 0.2104 0.4938 0.7227 0.7156 0.6265 0.3345 0.5998

PredRNN++ 0.6453 0.5861 0.4345 0.1764 0.4606 0.7067 0.6878 0.5696 0.2851 0.5623
MIM 0.6520 0.6034 0.4805 0.1805 0.4791 0.7158 0.7068 0.6186 0.2948 0.5840

PhyDNet 0.6050 0.5222 0.3735 0.1744 0.4188 0.6690 0.6328 0.5119 0.2859 0.5249
SA-ConvLSTM 0.6948 0.6305 0.5105 0.2200 0.5140 0.7493 0.7276 0.6462 0.3490 0.6180

SAST-Net 0.6835 0.6335 0.5120 0.2558 0.5212 0.7415 0.7300 0.6451 0.3918 0.6271

when the value in the map is greater than �, the value at the
corresponding position in the matrix is set to 1, otherwise
the value is set to 0. In this paper, the value of � is set to
10, 20, 30 and 40 dBZ. After conversion, the values of TP
(real map = 1, predicted map = 1), TN (real map = 0, pre-
dicted map = 0), FP (real map = 0, predicted map = 1), FN
(real map = 1, predicted map = 0) are obtained. The CSI
and HSS values under the current threshold � can be further
calculated according to the following formulas:

CSI = TP
TP + FP + FN

HSS =
2 × (TP × TN − FN × FP)

(TP + FN) × (FN + TN) + (TP + FP) × (FP + TN)
(4)

4.3. Experiment results and Analysis
The evaluation results for the extrapolation task on the

two real-world radar echo datasets for all themodels involved
in the comparison are given in Table. 2 and Table. 3 re-
spectively. It can be seen that although the performance of
the SAST-Net proposed in this paper under certain thresh-
olds is slightly inferior to the previous model, it is worth
noting that when � = 40, the CSI value of SAST-Net on
Guangzhou Station dataset is up to 16.27% higher than the
best-performing SA-ConvLSTM in previous works, HSS is
improved by 12.26%, and similar results can be seen onCIKM
2017. This shows that SAST-Net can more accurately pre-
dict heavy precipitation areas.

Comparing with the results of PredRNN, which com-
posed of the original ST-LSTM stack, it can be seen that
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Figure 5: The communication process between server and
client based ICE framework.

SAM has played an important role in improving the perfor-
mance of the model. It can capture more global features
and learn the radar echo movement more accurately. On
Guangzhou Station dataset, the average CSI increased by
5.55%, the average HSS increased by 4.55%, and both in-
creased by 7.53% and 10.12% on CIKM 2017. Compared
with SA-ConvLSTM, which contains SAM but has no spa-
tial temporal memory, SAST-Net captures high-order fea-
tures through the additional unit, which improves the overall
predictive ability of the model. The average CSI increased
by 1.40%, the averageHSS increased by 1.47% onGuangzhou
Station dataset, and the two increased by 2.27% and 0.67%
respectively on CIKM 2017. It can be seen that the spa-
tiotemporal memoryand SAM together contribute to the ex-
cellent prediction performance of the model proposed in this
paper.

Fig. 6 shows the frame-by-frame CSI and HSS variation
curves of different models on the two datasets when thresh-
old � = 40, to compare the long-term prediction capabilities
of the models. It can be seen from the figure that in the first
and second frames, the previous models have a better perfor-
mance, but the values of CSI and HSS of these models drop
rapidly over time. In contrast, the prediction performance
of SAST-Net was not as good as some models in the first
two frames, the curves of CSI and HSS decreased much less
rapidly than other models, and are always higher than other
models from the third frame until the last frame, indicating
that SAST-Net can be better applied to long-term prediction
tasks and the accuracy of the prediction results is relatively
stable.

Fig. 7 and Fig. 8 respectively shows the visualization
of the model predictions on the two datasets. In Fig. 7, it
can be seen that PhyDNet performs the worst, and its pre-
diction results have been distorted. ConvLSTM and SA-
ConvLSTM have the problem of underestimating the high-
intensity echo area due to lack of spatiotemporal informa-
tion. PredRNN++ predicts the high-intensity echo area cor-
rectly, but the low-intensity areas are not. PredRNN has the
problem of overestimation of echo intensity in a large area.
MIM and SAST-Net predict similar results, but SAST-Net
predicts more accurately in terms of echo appearance and
area boundaries. Fig. 8 is the prediction result on CIKM
2017. It can be clearly seen that ConvLSTM, PhyDNet and

First Author et al.: Preprint submitted to Elsevier Page 6 of 10



SAST-LSTM

Table 3
Results of the comparative experiment using CSI and HSS as evaluation metrics on the
CIKM 2017 dataset.

Model CSI HSS
10 20 30 40 avg 10 20 30 40 avg

ConvLSTM 0.6283 0.4021 0.2116 0.0809 0.3307 0.6235 0.4913 0.3367 0.1485 0.4000
PredRNN 0.6743 0.3809 0.1819 0.0848 0.3305 0.6582 0.4382 0.2808 0.1528 0.3825

PredRNN++ 0.6777 0.3860 0.2073 0.0968 0.3420 0.6569 0.4427 0.3201 0.1731 0.3982
MIM 0.6642 0.3776 0.2092 0.0970 0.3370 0.6539 0.4422 0.3259 0.1735 0.3989

PhyDNet 0.5811 0.3276 0.1576 0.0649 0.2828 0.5677 0.4091 0.2628 0.1212 0.3402
SA-ConvLSTM 0.6642 0.4006 0.2155 0.1096 0.3475 0.6613 0.4739 0.3423 0.1962 0.4184

SAST-Net 0.6856 0.3924 0.2295 0.1140 0.3554 0.6721 0.4553 0.3551 0.2025 0.4212

Figure 6: The frame-by-frame variation curves of different models in terms of CSI and HSS scores onGuangzhou Station and
CIKM 2017 datasets when threshold � = 40.

SA-ConvLSTM can’t predict the yellow area. The yellow
areas predicted by PredRNN and PredRNN++ are not accu-
rate enough. Although MIM predicts the yellow area in the
upper right corner correctly, but it can’t predict the yellow
area in the middle of echo map. In contrast, only SAST-Net
predicts the most accurate results.

By conducting comparative experiments on two differ-

ent real-world radar echo data sets, it can be seen that the
SAST-LSTM cell and the SAST-Net proposed in this paper
has a strong ability to predict radar echo motion in different
geographic areas, especially for Guangzhou Station, a kind
of data with a wider observation range, reflecting the power-
ful effect of the self-attention mechanism on global feature
capture.
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Figure 7: The prediction results of all models on Guangzhou Station dataset. The 10 images in the first row are the input, and
the 10 images in the second row are the real values. The other rows are the predictions of various models.
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Figure 8: The prediction results of all models on CIKM 2017 dataset. The 5 images in the first line are the input, and the second
line is the real value. The other rows are the predictions of various models.
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5. Conclusion
This paper proposes the SAST-LSTM, a spatiotemporal

recurrent cell integrates the self-attentive mechanism, which
enables the capture of global features by using a self-attentive
memorymodule (SAM) and an additional global featuremem-
oryG, extending the perceptual field of previous models and
enabling the cell to more accurately model the dynamics of
complex moving objects such as radar echoes. In the ex-
periment, the SAST-LSTM was stacked to build a four-layer
SAST-Net structure, together with the models in previous
works was used to perform radar echo extrapolation tasks
on two different real-world radar echo datasets. The results
show that the model proposed in this paper obtains the best
results on both datasets. In the future, the author will seek
solutions to improve the accuracy of the first two predicted
frames in radar echo extrapolation tasks.

References
[1] L. Li, S. Chen, X. Mai, Sub-pixel precipitation nowcasting over

guangdong province using optical flow algorithm, in: 2017 IEEE In-
ternational Geoscience andRemote Sensing Symposium, IEEE, 2017,
pp. 4638–4641.

[2] S. Mecklenburg, J. Joss, W. Schmid, Improving the nowcasting of
precipitation in an alpine region with an enhanced radar echo tracking
algorithm, Journal of Hydrology 239 (1-4) (2000) 46–68.

[3] Q. Chu, Z. Xu, Y. Chen, D. Han, Evaluation of the ability of the
weather research and forecasting model to reproduce a sub-daily ex-
treme rainfall event in beijing, china using different domain configura-
tions and spin-up times, Hydrology and Earth System Sciences 22 (6)
(2018) 3391–3407.

[4] O. B. Akan, M. Arik, Internet of radars: Sensing versus sending with
joint radar-communications, IEEE Communications Magazine 58 (9)
(2020) 13–19.

[5] Q. Liang, Y. Feng, W. Deng, S. Hu, Y. Huang, Q. Zeng, Z. Chen,
A composite approach of radar echo extrapolation based on trec vec-
tors in combination with model-predicted winds, Advances in Atmo-
spheric Sciences 27 (5) (2010) 1119–1130.

[6] R. Rinehart, E. Garvey, Three-dimensional stormmotion detection by
conventional weather radar, Nature 273 (5660) (1978) 287–289.

[7] J. Handwerker, Cell tracking with trace3d—a new algorithm, Atmo-
spheric Research 61 (1) (2002) 15–34.

[8] J. Johnson, P. L. MacKeen, A. Witt, E. D. W. Mitchell, G. J. Stumpf,
M. D. Eilts, K. W. Thomas, The storm cell identification and tracking
algorithm: An enhanced wsr-88d algorithm, Weather and forecasting
13 (2) (1998) 263–276.

[9] W.-c. Woo, W.-k. Wong, Operational application of optical flow tech-
niques to radar-based rainfall nowcasting, Atmosphere 8 (3) (2017)
48.

[10] H. Sakaino, Spatio-temporal image pattern prediction method based
on a physical model with time-varying optical flow, IEEE Trans.
Geosci. Remote. Sens. 51 (5-2) (2013) 3023–3036.

[11] P. Li, E. S. Lai, Applications of radar-based nowcasting techniques
for mesoscale weather forecasting in hong kong, Meteorological Ap-
plications 11 (3) (2004) 253–264.

[12] A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, Deep
learning for computer vision: A brief review, Computational intelli-
gence and neuroscience 2018.

[13] X. Xu, X. Zhang, X. Liu, J. Jiang, L. Qi, M. Z. A. Bhuiyan, Adap-
tive computation offloading with edge for 5g-envisioned internet of
connected vehicles, IEEE Trans. Intell. Transp. Syst. 22 (8) (2021)
5213–5222.

[14] X. Xu, Z. Fang, J. Zhang, Q. He, D. Yu, L. Qi, W. Dou, Edge content
caching with deep spatiotemporal residual network for iov in smart
city, ACM Trans. Sens. Networks 17 (3) (2021) 29:1–29:33.

[15] X. Xu, Z. Fang, L. Qi, X. Zhang, Q. He, X. Zhou, Tripres: Traffic
flow prediction driven resource reservation for multimedia iov with
edge computing 17 (2).

[16] X. Xu, H. Li, W. Xu, Z. Liu, L. Yao, F. Dai, Artificial intelligence for
edge service optimization in internet of vehicles: A survey, Tsinghua
Science and Technology 27 (2) (2021) 270–287.

[17] Y. N. Malek, M. Najib, M. Bakhouya, M. Essaaidi, Multivariate deep
learning approach for electric vehicle speed forecasting, Big Data
Mining and Analytics 4 (1) (2021) 56–64.

[18] R. Bi, Q. Liu, J. Ren, G. Tan, Utility aware offloading for mobile-edge
computing, Tsinghua Science and Technology 26 (2) (2020) 239–250.

[19] W. Wang, Z. Wang, Z. Zhou, H. Deng, W. Zhao, C. Wang, Y. Guo,
Anomaly detection of industrial control systems based on transfer
learning, Tsinghua Science and Technology 26 (6) (2021) 821–832.

[20] S. C. K. Tekouabou, S. Hartini, Z. Rustam, H. Silkan, S. Agoujil,
et al., Improvement in automated diagnosis of soft tissues tumors us-
ing machine learning, Big Data Mining and Analytics 4 (1) (2021)
33–46.

[21] Y. Djenouri, A. Belhadi, G. Srivastava, U. Ghosh, P. Chatterjee, J. C.-
W. Lin, Fast and accurate deep learning framework for secure fault
diagnosis in the industrial internet of things, IEEE Internet of Things
Journal.

[22] Y. Liu, Z. Song, X. Xu, W. Rafique, X. Zhang, J. Shen, M. R. Khos-
ravi, L. Qi, Bidirectional gru networks-based next poi category pre-
diction for healthcare, International Journal of Intelligent Systems.

[23] L. Qi, H. Song, X. Zhang, G. Srivastava, X. Xu, S. Yu, Compatibility-
aware web api recommendation for mashup creation via textual de-
scriptionmining, ACMTransactions onMultimidia Computing Com-
munications and Applications 17 (1s) (2021) 1–19.

[24] U. Ahmed, G. Srivastava, J. C.-W. Lin, Reliable customer analysis us-
ing federated learning and exploring deep-attention edge intelligence,
Future Generation Computer Systems 127 (2022) 70–79.

[25] H. Li, J. Liu, R. W. Liu, N. Xiong, K. Wu, T.-h. Kim, A dimension-
ality reduction-based multi-step clustering method for robust vessel
trajectory analysis, Sensors 17 (8) (2017) 1792.

[26] Z. Ren, Y. Liu, T. Shi, L. Xie, Y. Zhou, J. Zhai, Y. Zhang, Y. Zhang,
W. Chen, Aiperf: Automated machine learning as an ai-hpc bench-
mark, Big Data Mining and Analytics 4 (3) (2021) 208–220.

[27] Y. Shao, J. C.-W. Lin, G. Srivastava, D. Guo, H. Zhang, H. Yi, A. Jol-
faei, Multi-objective neural evolutionary algorithm for combinatorial
optimization problems, IEEE Transactions on Neural Networks and
Learning Systems (2021) 1–11.

[28] Z. Tong, F. Ye, M. Yan, H. Liu, S. Basodi, A survey on algorithms for
intelligent computing and smart city applications, Big Data Mining
and Analytics 4 (3) (2021) 155–172.

[29] W. Fang, X. Yao, X. Zhao, J. Yin, N. Xiong, A stochastic control ap-
proach to maximize profit on service provisioning for mobile cloudlet
platforms, IEEE Transactions on Systems, Man, and Cybernetics:
Systems 48 (4) (2016) 522–534.

[30] N. Bhardwaj, P. Sharma, An advanced uncertainty measure using
fuzzy soft sets: Application to decision-making problems, Big Data
Mining and Analytics 4 (2) (2021) 94–103.

[31] D. Wei, H. Ning, F. Shi, Y. Wan, J. Xu, S. Yang, L. Zhu, Dataflow
management in the internet of things: Sensing, control, and security,
Tsinghua Science and Technology 26 (6) (2021) 918–930.

[32] Y. Liu, D. Li, S. Wan, F. Wang, W. Dou, X. Xu, S. Li, R. Ma, L. Qi,
A long short-term memory-based model for greenhouse climate pre-
diction, International Journal of Intelligent Systems.

[33] S. Xingjian, Z. Chen, H.Wang, D.-Y. Yeung,W.-K.Wong,W.-c.Woo,
Convolutional lstm network: A machine learning approach for pre-
cipitation nowcasting, in: Advances in neural information processing
systems, 2015, pp. 802–810.

[34] X. Shi, Z. Gao, L. Lausen, H. Wang, D.-Y. Yeung, W.-k. Wong, W.-c.
Woo, Deep learning for precipitation nowcasting: A benchmark and
a new model, arXiv preprint arXiv:1706.03458.

[35] Y. Wang, M. Long, J. Wang, Z. Gao, P. S. Yu, Predrnn: Recurrent
neural networks for predictive learning using spatiotemporal lstms,
in: Proceedings of the 31st International Conference on Neural Infor-

First Author et al.: Preprint submitted to Elsevier Page 9 of 10



SAST-LSTM

mation Processing Systems, 2017, pp. 879–888.
[36] Y. Wang, Z. Gao, M. Long, J. Wang, S. Y. Philip, Predrnn++: To-

wards a resolution of the deep-in-time dilemma in spatiotemporal pre-
dictive learning, in: International Conference on Machine Learning,
PMLR, 2018, pp. 5123–5132.

[37] S. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen,
J. Hickey, Machine learning for precipitation nowcasting from radar
images, arXiv preprint arXiv:1912.12132.

[38] W. Luo, Y. Li, R. Urtasun, R. Zemel, Understanding the effective re-
ceptive field in deep convolutional neural networks, in: Proceedings
of the 30th International Conference on Neural Information Process-
ing Systems, 2016, pp. 4905–4913.

[39] Z. Lin, M. Li, Z. Zheng, Y. Cheng, C. Yuan, Self-attention convlstm
for spatiotemporal prediction, in: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, Vol. 34, 2020, pp. 11531–11538.

[40] J. Kim, M. El-Khamy, J. Lee, T-gsa: Transformer with gaussian-
weighted self-attention for speech enhancement, in: ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2020, pp. 6649–6653.

[41] K. J. Han, R. Prieto, T. Ma, State-of-the-art speech recognition us-
ing multi-stream self-attention with dilated 1d convolutions, in: 2019
IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), IEEE, 2019, pp. 54–61.

[42] Y. Wu, Y. Ma, J. Liu, J. Du, L. Xing, Self-attention convolutional
neural network for improved mr image reconstruction, Information
sciences 490 (2019) 317–328.

[43] H. Zhao, J. Jia, V. Koltun, Exploring self-attention for image recog-
nition, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 10076–10085.

[44] B. Klein, L. Wolf, Y. Afek, A dynamic convolutional layer for short
range weather prediction, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 4840–4848.

[45] W. Zhuang, W. Ding, Long-lead prediction of extreme precipitation
cluster via a spatiotemporal convolutional neural network, in: Pro-
ceedings of the 6th International Workshop on Climate Informatics:
CI, 2016.

[46] G. Ayzel, T. Scheffer, M. Heistermann, Rainnet v1. 0: a convolutional
neural network for radar-based precipitation nowcasting, Geoscien-
tific Model Development 13 (6) (2020) 2631–2644.

[47] J. G. Fernandez, S. Mehrkanoon, Broad-unet: Multi-scale feature
learning for nowcasting tasks, arXiv preprint arXiv:2102.06442.

[48] L. Han, H. Liang, H. Chen,W. Zhang, Y. Ge, Convective precipitation
nowcasting using u-net model, IEEE Transactions on Geoscience and
Remote Sensing (2021) 1–8.

[49] Y. Wang, J. Zhang, H. Zhu, M. Long, J. Wang, P. S. Yu, Memory
in memory: A predictive neural network for learning higher-order
non-stationarity from spatiotemporal dynamics, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 9154–9162.

[50] V. L. Guen, N. Thome, Disentangling physical dynamics from un-
known factors for unsupervised video prediction, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2020, pp. 11474–11484.

[51] Z. Chai, C. Yuan, Z. Lin, Y. Bai, Cms-lstm: Context-embedding
and multi-scale spatiotemporal-expression lstm for video prediction,
arXiv preprint arXiv:2102.03586.

[52] S. Zhong, X. Zeng, Q. Ling, Q. Wen, W. Meng, Y. Feng, Spatiotem-
poral convolutional lstm for radar echo extrapolation, in: 2020 54th
Asilomar Conference on Signals, Systems, and Computers, IEEE,
2020, pp. 58–62.

[53] K. Trebing, T. Stanczyk, S. Mehrkanoon, Smaat-unet: Precipitation
nowcasting using a small attention-unet architecture, Pattern Recog-
nit. Lett. 145 (2021) 178–186.

[54] C. Luo, X. Li, Y. Wen, Y. Ye, X. Zhang, A novel lstm model with in-
teraction dual attention for radar echo extrapolation, Remote Sensing
13 (2) (2021) 164.

[55] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980.

[56] S. Bengio, O. Vinyals, N. Jaitly, N. Shazeer, Scheduled sampling for
sequence prediction with recurrent neural networks, arXiv preprint
arXiv:1506.03099.

[57] J. L. Ba, J. R. Kiros, G. E. Hinton, Layer normalization, arXiv preprint
arXiv:1607.06450.

First Author et al.: Preprint submitted to Elsevier Page 10 of 10



Declaration of interests 
 
The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 

☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 

 

 
 

 


