L essons From Experience:

Making Theorem Provers M ore Co-oper ative

Helen Lowe, Andrew Cumming, Michael Smyth, & Alison Varey

Department of Computer Studies, Napier University, Craiglockhart, Edinburgh EH14 1DJ

Abstract

We describe our experiences in trying to build a co-operative theorem proving system.
Our modelof co-operationis that of a userand an automatoncombiningforcesto

prove theoremsin a semi-automatedheoremproving systemWe describevarious
undesirablebehavioursof interactiveand automatedsystemsand set out our initial
objectives We evaluateour early attemptsand, in the light of this experiencedraw

up a tentative wish-list for future systems.

1. Interactive and Automated Theorem Provers

Theoremproversmay be completelyinteractive,totally automatedpr somewherédn

between.It is unusualfor a theoremprover to stay all its life at one end of this
spectrum.For example,usersof an interactive proof checker(or proof editor) will

mostprobablywrite tacticsto alleviatethe tedium,which may be storedin librariesfor

reuse.Usersof automatictheoremproversfind in practicethat the rangeof problems
that their system can do while they pressthe button and go off to coffee is
disappointinglysmall,andstartimplementingfacilities for interaction.The dangerwith

this activity is that it tendsto be piecemeaknd ad hoc Whateveris implementeds
never quite enough, at least for userswho are not themselvesimplementorsor
developersof the system.If we perseverdong enough,however,we can get quite
goodat "workarounds".We becomeusedto the foibles and limitations of our system
and push it over new frontiers. We become "expert users".

Wheredoesour term"co-operative'fit in to this spectrumt is easyto characterizea
theoremproverwhich fails with the singleword "no™ asuncooperativeHowever,lack
of co-operation takes many guises.

» A silenttheorem prover. We get no inkling of why it has failed at all.
* A verbosetheoremprover.At the endof its failed proof attemptwe canpaperour
living room with the output. This wikht leastgive us somethingo do aswe ponder

the outcome.

* An incomprehensibl¢heoremprover:it is hardto understandts terminologyor its
syntax.

* Aninflexibletheorem prover. We know what is needed but it will not let us do this.

» A theorem prover which doeslot of searchWhichfailing pathis mostpromising?
We do not know.

2. Explanations

A minimum prerequisitefor of a co-operativesystemseemsto be someexplanation
facility. The systemshouldbe capableof telling us why somethingfailed (or even,for
the curious, why something succeeded).

A claim made for proof planning (Bundy, 1988) was that it should facilitate
explanationThe cLAM theoremproving system(Bundy et al, 1990) specifiestactics
by methodsThese methods describe preconditi(mstten in a definedmetalanguage)
under which the tactic will be applicable. In practice, the authors of CLAM’S
preconditionshad not written them with explanationto a humanuserin mind, so in
their initial raw form they were not, in fact, useful for providing explanations.

A first stepin developingBARNACLE wasto rationally reconstructhe preconditionsof
CLAM methodsso thatit wasindeedfeasibleto presenttextual explanationsof what
was going on. This was one of our more successfuloutings and resulted in
explanations such as

“Rippling is blocked. Can you think of any more wave rules to try?”

Assumingthatthe userknow whatrippling (Bundy et al, 1993)was,andrecogniseca
waverule whenthey sawone, this allowedextrarules (lemmas)o be loadedandthe
proof to proceed otherwise uninterrupted.

BARNACLE could also give accountsof the recursionanalysisimplementedin CLAM

which s (largely) a rationalreconstructiorof thatof NQTHM (Boyer & Moore, 1979).

It is a heuristicmeasureof how likely eachpossibleinductionschemads to succeedn

the current conjecture and as such does not always provide the best answer, although it
quite often does.

3. Evaluation of BARNACLE

As reportedin Lowe, Bundy, & McLean (1996), we built a version of BARNACLE

comprisedof an explanationmechanismwhich the user could switch on and off for

eachmethodto allow explanationgo be providedfor eitheror both of succeedingr

failing preconditionsanda veto facility: this allowedthe userto vetothe useof either
all methodsproposedby BARNACLE, or certain selectedmethodsknown to cause
problemsfor exampleinduction(becauseLAmM sometimeshooseshewrongone,as
intimated above), and generalization(which can result in a non-theorembeing
conjectured).This interface,written largely in LPA Prolog for windows, is shownin

Figure 1

= WIN-PROLOG
File Edit Search Bun Library Explain Plan Interactive Quit Window

='| Current Subgoal | h
w0 + s[v0] = s[vD + v0] in pnat

= | Rewriting Window | h
s[(v0 + v0] = s[v0 + v0] in pnat
w0 + w0 = v0 + w0 in pnat

<1

= Plan Window n

L I1als

induct([s{v0)],[x : pnat])
. basecase({[sym_eval([reduct(plus1r),evaldefthalfl)]),elem]) O
. stepcase(ripple{wave(plus2)) then [fert{weak)]) then rippcanc ([wave(ha]B),l:ancel(l:nc_ha]i),l:am:eldl:nl:_s)])))])
. . hasecase{[sym_eval{[reduct(plus2r),reduct{cnc_s)]),elem]) O
doned

-

Threewindowsare open: current subgoal;rewriting; and plan. The current subgoalwindow shows
the formula that BARNACLE is currently trying to prove. The rewriting window showsthe chunk of
proof just tackled. The plan window shows the plan which has been constructed. We were initié
pleased that we had separated out different kinds of information into different

windows.

Figure1: Thefirst BARNACLE interface

Theimmediatefailing of this systemwhich is obviousfrom the figure is thatthe screen
is somewhatcluttered.In additionto the threewindows openthereis a bewildering
array of iconized windows which the user may double click on to solicit more
information. The questionwhich we (eventually)askedourselvesvas: how muchthe
information doesthe usernee® Unfortunatelyit seemedat first that we potentially
neededall of it and made use of iconization and focus to reducethe number of
windowswhich were actuallyopenat onetime. WhenBARNACLE beginsthe planning
processwe seeonly the conjectureandthe emptyplanwindow. If thefirst applicable
methodis induction, then following recursionanalysis(Bundy et al, 1992) the plan
window showsthe induction schemachosen.This is followed by one or more base
casesa rewriting window showsthe stepsof eachandthendisappearskFor the step
case(s)the induction hypothesisis shown, above the rewriting window for the
induction conclusion.The plan expandsin its window as eachapplicablemethodis
chosen.A commoncommenton this scenariowas that the screenseemed‘rather
busy”.

When do we want these rewritings? Usually only wbeswv is unableto carry out the
planning processunaided.However, a surplusof output, however organized,was
making it again hard to seethe wood for the trees. We startedto analysemore

carefully the tasksinvolved in guiding cLAM when it is failing. We cameto the
conclusion there are two phases:

1. alerting the user;
2. letting the user decide what action to take.

We hopeto undertakea detailedstudy of how usersdiscoverfailing behaviourin
theoremproverswith our new interface,currently underdevelopmen{Figure 2). In
this we show by defautinly the plantreewith the currentsubgoalandgraphical(tree)
representation of the plan.

irrent Theorem:

Figure 2: Designing the new BARNACLE interface (UNIX platform)

For now, we have identified some patterns, for example:

» Theuserspotsthatthe currentsubgoalis a non-theoren{cLAM will gamelytry to
provethis subgoal;if we arelucky thenit will fail andif we are not thenit will not
terminate). The knowledgeableuser looks above the faulty conjecturefor a
generalization step: if the original conjecture was {arelof coursethis will bethe
next thing to consider)then this is the only way falsehoodcould have been
introduced.

» The userspotsthat the currentsubgoalis in someway “worse” than a previous
subgoal. It is likely

¢ either that a bad choice was made,
¢ or that a lemma might usefully be introduced.

Oncethe userknowswhereto look andwhat further informationthey needthey may
click in the appropriate place to expand a node or elicit more detailBi(gee 3.

irrent Theorem:

Figure 3: User icits more details (UNIX platform)

We hadalreadyaddeda graphicalrepresentationf the planto our previousversionof
BARNACLE; this seemeduseful from the point of view of showingthe userwhat was
goingon (Lowe, Bundy & McLean,1996),but wasfrustratingin that the usercould
not interactwith the plan, other than to display more, or less, detailed steps.We
decidedfor the nextreleaseto makethe centralfeatureof our designa planwith the
user could interact. Thus we intend that, for example:

1. Theuserspottingan overgeneralizatioshouldundothat step(andof coursethose
below it), leaving the rest of the plan intact.

2. The usershouldbe ableimmediatelyto spotchoicepointsin a toiling branch,and
click on them to see what those choices were (and choose alternatives).

3. Theusercansavetheir efforts, howevermeagreandcomebackto themrefreshed
another day.

We do not have usermodel,sincewe haveno baseof usersof the kind of systemwe
are building. We have someidea of the kind of tasksthat a user might want to
perform,if they could. Theseseemdependenpartly at leaston the user’sexperience
and would seem to require a good rendition of the planning process at the rigbf level
detail. The questionof introducinglemmass more of anopen-endegroblemandone
solutionis to automatehe procesf reasoningaboutthem(lreland& Bundy, 1994).
It is anopenquestionasto whetherthe useof annotationsaidsthe userandwe have
yet to find a good representatiorwhich showsall the options whilst not (again)
overwhelmingthe user.One thing seemsobvious,however,and that is the necessity
for goodlibrary browsingfacilities. Figure 3 showsthe browserwhich is incorporated
into the newpC version ofBARNACLE.

Barnacle for Windows

Library Browser
File Type Library

1 Theorem eAwbarnie\lib\central eduction Rule [Method [] Submethod [_] Definition |

assp I :- multifile theorem/2. t
assp | = lib theorem[assp.[l==> x:pnat=> y-pnat=> z:pnat=>
ene_s = central plus(x.plus(y.z))=plus{plus(x.y).z}in pr
#= thm

[_Move Down_|

[[AFiles -~ =lc: #] |

Figure4: The Browser (PC platform)

4. What do userswant? Some untested hypotheses

An early problem in developinBARNACLE waslack of focus- on a sufficiently narrow
usergroupor task. Thefirst motivationfor co-operativetheoremproving was simply
to increasethe power of suchsystems.The next wasto increasethe power of non-
expertusersof suchsystemsNext we wantednovicesto be ableto usethem.Choice
of taskfluctuatedbetweenwhateverthe trendytheoremof the monthwasin theorem
proving circles, and the “real” exampleswhich occasionallysurfacedin our other
software development work.

In the endwe realizedthat we shouldfocus more narrowly - andif the systemthus
developedurnedout to havea wider usagethenthis would be a bonus.We currently
think of our catchmentareaas peoplelike ourselvesand our studentswho develop
software,usingformal specificationsvhich call for proofs,which up to now they may
well have done by hand. This choiceis a pragmaticone - we want to be able to
evaluate our system; and to educate our students in using it if it turns out to be useful.

We decidednot to focus on expertusersof the cCLAM system.By definition, expert
usershave becomeusedto cLAM and have their own workaroundsto counterits
limitations. We guesshatcLAM is limited, on the groundsthatit doesnot havemany
usersandpeoplefind the learningcurvefor it quite steep Expertusershaveforgotten
this and will complainif we provide an interfacewhere they cannotinput arbitrary
Prolog; and whatever features we provide they will probably want moreisiitogad

thing in itself, but feedbackfrom twenty expertusers,if actedupon,would resultin
twenty different new features and our novices would be baffled again.

So: what do our users want? This is what we think.

1. They want familiar notation.For example,[Ix Oy . X + y = y + X is betterthan
x:pnat=>y:pnat=>plus(x,y) = plus(y,x) in pnat

2. Theywould like to be ableto seeall relevantinformationon one screen|f thatis
possible.

3. They prefer to haverigorous proof as well as formal proof; the formal proof is
given by executingthe proof plan and may be incomprehensiblea good enough
rigorousproof may be found secretlylurking in the proof plan with a judicioususe
of lemmas.Comparethis with the work on turning proofs into natural language
(Huang, 1994).

4. They want guidancein introducinglemmas.The most up to date and complete
accountof the useof annotationis found in Basin & Walsh (1994). Sincethis is
sucha fundamentafeatureof cLAM it seemsunlikely that the seriouscLAM user
canescapéiavingto understangomethingof how annotationsreused,if theyare
to combinewith the systemto prove theoremsco-operatively.Sincethe story has
becomencreasinglycomplicatedover the years,we seekboth a minimalistaccount
and a good minimalist representation.

5. Theywantto seeeasilywherethe choicesare. For this reasonwe arereviving the
heuristic plannerreportedin Manning, Ireland, & Bundy (1993). This finds all
applicablemethodsat eachnode,and somevisual artifice canindicateto the user
wherethe choicepointsare, so thatthey do not click aimlesslyon nodeswhereno
choice was available.

6. They want to do aslittle as possible.They want the machineto make as many
choices as is feasible.

5. Conclusions

5.1 Testing some hypotheses

We do not yet know whatuserswantfrom a co-operativeheoremproverbecauseave
have not yet built one. Our early attemptssufferedmany flaws and we made many
mistakes from which to learn. Our new desigjfundamentallydifferentfrom whathas
gonebefore,but usesthe proof planningtechniquesvhich have proved successfuin

providing a moreflexible kind of automatedheoremproving andwhich seemgo give
a good basis for co-operative interaction.

We believewe havecomefar enoughto testa prototypesystemon its intendedreal
life users.Only thencanwe beginto build a usermodel,andfeedthis backinto the
next prototype.

5.2 Wider issues

In parallelwith the needfor the theoremproving communityto catchup with HCI
research,there is a body of work specifically on building co-operative human-
computersystemgClarke & Smyth,1993; Smyth & Clark, 1990). A commoninitial

objective,reasonabldut often misguided,is to try to build an interfaceon top of an
existing system.Unlessthe original systemwas designedwith co-operativeuse in

mind, it is mostunlikely thatthis will succeedUsuallyit is necessaryo fundamentally

alter the architecture of the “underlying” system. Although we were able to reuse much
code,this turnedout to be the casehere.We hadto makethe interfacethe centreof

our universe, and arrange the rest around it.

In manywayswe were lucky. We wereright aboutthe proof planningapproachand
its amenabilityfor providing explanationsAdditionally, the CLAM is quite matureand
hasa userbaseanda humandatabankof accumulatedxperiencelt is comparatively
easy to modularize the different mechanisms- planning, testing applicability of

methods,use of heuristics,and choice of methods- and experimentby mixing and
matching. We look forward to reporting our initial trials.

References

Basin,D A. and Walsh, T (1994). Annotatedrewriting in inductive theoremproving. Technical
report, Max Planck Institute, Saarbriiken

Boyer, R S and Moore, J S (1978)Computational LogicAcademic Press, ACM monograph series.

Bundy, A (1988). The useof explicit plansto guide inductive proofs.In Lusk, R and Overbeek R
(eds.),9th Conferenceon automatedDeduction pages111-120.Springer-Verlag.Longer version
available from the University of Edinburgh as DAl Research Paper 419.

Bundy, A, vanHarmelenF, Hesketh J, Smaill, A, and StevensA (1992).A rationalreconstruction
and extension of recursion analysis. In Sridharan, N S (ed.), Proceedingsof the Eleventh
International Joint Conference on Artificial Intelligengeges 359-365. Morgan Kaufmann.

Bundy, A, van Harmelen, F, Horn, C, and Smaill, A (1990). The Oyster-Clam syst&tickal,M E
(ed.), 10th Conferenceon AutomatedDeduction pages647-648.Springer-Verlag.Lecture Notesin
Artificial Intelligence No. 449.

Bundy, A, StevensA ,vanHarmelenJ, Ireland,A, Smaill, A, and(1993).Rippling: A heuristicfor
guiding inductive proofsArtificial Intelligence 62, pages 185-253.

Clarke, A and Smyth, M (1993). A co-operativecomputerbasedon the principles of human co-
operation|nternational Journal of Man-Machine Studjest, pages 3-22.

Huang, X (1994). Reconstructing Proofs at the Assertion Level. In Bundy, AlgiiConferenceon
Automated Deductigmpages 738-752.

Ireland, A and Bundy, A (1994).Productiveuseof failure in inductive proof. Journal of Automated
Reasoning16.

Lowe, H, Bundy, A, and McLean,D (1996). The Use of Proof Planningfor Co-operativeTheorem
Proving, University of Edinburgh DAl Research Paper 745.

Manning, A, Ireland,A, and Bundy, A (1993).Increasingthe versatility of heuristicbasedtheorem
provers.In Voronkov, A (ed.), International Conferenceon Logic Programmingand Automated
Reasoning- LPAR 93, St Petersburg Lecture Notes in Atrtificial Intelligence, pages 194-204.
Springer Verlag.

Smyth, M and Clarke, A (1990). Human-humanco-operationand the design of co-operative
mechanismdCL Technical JournalVol 7 Issue 1, pages 110-126.

