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Abstract—The Internet of Things (IoT) devices, networks,
and applications have become an integral part of mod-
ern societies. Despite their social, economic, and indus-
trial benefits, these devices and networks are frequently
targeted by cybercriminals. Hence, IoT applications and
networks demand lightweight, fast, and flexible security
solutions to overcome these challenges. In this regard,
artificial-intelligence-based solutions with Big Data analyt-
ics can produce promising results in the field of cyberse-
curity. This article proposes a lightweight dense random
neural network (DnRaNN) for intrusion detection in the IoT.
The proposed scheme is well suited for implementation
in resource-constrained IoT networks due to its inherent
improved generalization capabilities and distributed nature.
The suggested model was evaluated by conducting exten-
sive experiments on a new generation IoT security dataset
ToN_IoT. All the experiments were conducted under dif-
ferent hyperparameters and the efficiency of the proposed
DnRaNN was evaluated through multiple performance met-
rics. The findings of the proposed study provide recom-
mendations and insights in binary class and multiclass
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scenarios. The proposed DnRaNN model attained attack
detection accuracy of 99.14% and 99.05% for binary class
and multiclass classifications, respectively.

Index Terms—Cybersecurity, deep learning, dense ran-
dom neural network (DnRaNN), Internet of Things (IoT),
intrusion detection.

I. INTRODUCTION

THE Internet of Things (IoT) can be generally described
as an extensive network of interconnected smart devices

that offer digital services to individuals and industries [1], [2].
The IoT plays a significant role in modern industries to acquire
real-time information through multiple sensors and actuators.
The worldwide acceptance of the IoT in modern industries is rev-
olutionizing the current industry trends in terms of information
collection, data analysis, and efficient monitoring of industrial
operations. The IoT can enhance the productivity and efficiency
of the smart industry through intelligent decision making and
remote management. However, the rapid growth of IoT networks
can increase security and privacy challenges. In 2016, a cyber-
attack was launched on power substations in Ukraine [3]. The
supervisory control and data acquisition (SCADA) system of the
smart grid was illegally accessed by the attackers through the
information technology network. As a result, more than 225 000
general consumers faced a complete power blackout. Another
attack reported in 2016 was a huge distributed denial-of-service
(DDoS) attack that compromised accessibility of the Internet on
the United States East Coast [4]. It was a malicious program that
replicated itself by finding, attacking, and infecting vulnerable
IoT devices.

The analysis of security and privacy risks in the IoT and the
potential solutions to address these challenges became an emerg-
ing topic in the field of cybersecurity [5]. In existing networks,
intrusion detection systems (IDSs) are the most commonly used
security models. The IDS monitors real-time Internet traffic
and identifies malicious activities within the traffic. The IDS
can be classified as anomaly based or signature based. The
anomaly based IDS analyzes the Internet traffic and compares
it to the previously learned patterns to detect malicious activi-
ties [6]. On the other hand, the signature-based IDS identifies
the intrusions by finding the relationship between the previously
learned signatures of known attacks. The anomaly based IDS
can identify recent and well-known attacks, but they often have
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a greater risk of false-positive rates. Signature-based methods
are not generally effective IDS to detect new and unknown and
threats [7].

In recent years, machine learning (ML) and deep learning
(DL) techniques have been used for a variety of security so-
lutions in IoT applications. ML/DL-based solutions with Big
Data analytics can produce significant results in the field of
cybersecurity. In several studies, DL-based algorithms have
gained considerable attention over conventional learning meth-
ods because of their better pattern extraction abilities. Modern
IoT networks necessitate lightweight security solutions due to
the resource-constrained nature of IoT devices. Prior research
findings that include evaluation of the suggested solutions using
outdated cyber security datasets do not meet modern security
criteria. To address these challenges, we propose a novel DL
scheme for intrusion detection in an IoT environment. Following
are the major contributions of this article.

1) It proposes a novel dense random neural network
(DnRaNN) for intrusion detection and classification in
IoT networks.

2) The proposed scheme is evaluated by conducting ex-
tensive experiments on the new generation IoT security
dataset ToN_IoT.

3) The performance of the DnRaNN is evaluated in both
binary class and multiclass scenarios through multiple
performance evaluation parameters including accuracy,
precision, recall, and F1 score.

4) Finally, it presents a detailed performance comparison
of the proposed scheme with some well-known ML/DL-
based intrusion detection.

The rest of this article is organized as follows. Section II
presents a detailed overview of some recent intrusion detection
schemes for IoT applications. Section III comprises research
methodology that includes the mathematical modeling of a
DnRaNN, and details of the proposed architecture. Section IV
describes the implementation platform, dataset description, sim-
ulations, and discussion of results. Finally, Section V concludes
this article.

II. RELATED WORKS

Cyberattack detection in IoT networks is generally a classifi-
cation problem. ML/DL techniques can effectively solve this
problem. This section presents an overview of some recent
ML/DL-based studies for intrusion detection in the IoT.

An efficient attack detection framework significantly con-
tributes to network security. False data injection (FDI) attack
is one of the dangerous security problems in IoT networks. This
attack aims to mislead IoT application platforms by falsifying
the sensor’s data from the perception layer. Aboelwafa et al. [8]
presented a novel autoencoder for FDI attack detection in IoT
networks. Researchers exploited the sensor data correlation in
time and space, which can be helpful to identify false data.
The results of the experiments demonstrate that the suggested
scheme identified the FDI attacks with a higher accuracy. In
IoT environments, ML approaches can play a significant role
in ensuring security and authorization. In this context, Makkar

et al. [9] developed an ML-based security framework for spam
detection in IoT devices. In the proposed technique, researchers
evaluated five ML models by using different parameters. The
spam score is calculated by using the refined input features.
The authors conducted extensive experiments on the REFIT
smart home dataset to validate the efficiency of the proposed
scheme. Jia et al. [10] presented a novel edge-centric ML-based
IoT defense system for DDoS attacks on the IoT. The proposed
model is used for the detection, identification, and classification
of DDoS attacks in IoT environments. The authors generated a
large dataset by using DDoS simulators; the SlowHTTPTest,
BoNeSi along with the CICDDoS2019 dataset. They com-
pared the proposed scheme with four well-known ML models.
The suggested approach outperformed previous state-of-the-art
DDoS attack detection systems, according to experimental data.

Several techniques for cyberattack detection and classification
have been developed, but very few of them have focused on
reducing the complexity of ML models. In the latest study,
Huong et al. [11] proposed a novel edge cloud framework that
performs attack detection on the edge layer. The proposed multi-
attack detection mechanism named LocKedge reduces the com-
plexity for deployment in resource-constrained devices while
maintaining a higher accuracy. To analyze the effectiveness
of the proposed model from multiple aspects, LocKedge was
implemented in federated and centralized learning manners.
Researchers analyzed the performance of the suggested frame-
work using the BoT-IoT dataset. In experimental findings, the
proposed approach demonstrated better performance than eight
well-known ML/DL algorithms. In another new work, Bokka
et al. [12] developed a deep neural network for cyberattack
detection in the smart home. The authors utilized a DS2OS
dataset in their experiments. The proposed scheme successfully
detected denial-of-service, malicious control, and spying attacks
in a smart home environment with higher accuracy, precision,
and F1 scores. Smart industries are employing SCADA systems
with their plants. However, the integration of SCADA with an
industrial system can be vulnerable to multiple cyberattacks.
Lu et al. [13] developed a deep belief network (DBN) with
population extremal optimization (PEO) for anomaly detection
in SCADA-based industrial control systems. In the proposed
approach, PEO is utilized to determine the optimal parameters
of the neural network. An ensemble learning approach is intro-
duced for the accumulation of the DBN. The proposed model is
evaluated on the water storage tank system dataset and the gas
pipeline system dataset from the SCADA network traffic. DDoS
attacks can destabilize the complete IoT system by sending
malicious requests over the network. In other recent research,
Rehman et al. [14] introduced a new attack detection approach
called DIDDOS to detect real-time DDoS attacks. Researchers
utilized recurrent neural networks (RNN), gated recurrent units,
and sequential minimal optimization to detect and identify real-
time DDoS attacks on IoT networks. The proposed framework
is evaluated through several performance parameters including
accuracy, precision, recall, and F1 scores.

The majority of the aforementioned studies discussed the val-
idation of the proposed techniques utilizing datasets from previ-
ous generations. Most of these datasets are devoid of information
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concerning recent and specified ranges of threats. Another main
challenge with the existing techniques is the compatibility of
security solutions with resource-constrained IoT networks. To
address these challenges, a lightweight dense random neural
network (DnRaNN) is proposed. Extensive experimentation is
conducted on the latest generation IoT security dataset ToN_IoT.
Multiple performance parameters are defined to assess the effi-
ciency and effectiveness of the proposed technique.

III. RESEARCH METHODOLOGY

This section discusses the detailed mathematical model of the
proposed DnRaNN and highlights the performance evaluation
metrics.

A. Random Neural Network (RaNN)

The RaNN was introduced by Gelenbe in 1989 [15]. An RaNN
mimics the behavior of biological neurons with its “integrate
and fire” system. The RaNN is used in several applications
including image processing, optimization, communication sys-
tems, cybersecurity, classification, and pattern recognition [16].
The RaNN has several key advantages. First, it can efficiently
represent signal transmission through the human brain. It pro-
vides easy-to-understand complex stochastic behaviors among
neurons through simple mathematical modeling. Second, it has
better generalization capabilities because of its probability con-
straints. Third, it has established mathematical properties that
can simplify complex computations [16]. Fourth, it is an ideal
algorithm for deployment in resource-constrained hardware and
IoT devices because of its highly distributed nature [17], [18].

1) Mathematical Model of RaNN: Consider an RaNN model
comprised of N neurons. Each neuron receives excitatory and
inhibitory spikes from some external sources that can be sensors
or cells. The arrival occurs to the cell n ∈ {1, . . . , N}. The rate
of occurrence for excitatory and inhibitory spikes can be denoted
as rates ψ+

n and ψ−
n , respectively.

In the RaNN model, each neuron can be represented by its
internal state sn(t) at time t ≥ 0. If sn(t) > 0. The arrival of
an inhibitory spike to neuron n at time t can then cause the
reduction of the internal state by one unit sn(t+) = sn(t)− 1.
If sn(t) = 0, then the arrival of an inhibitory spike to a cell has
no impact. On the other hand, the arrival of an excitatory spike
will always increase the sn(t) by +1.

The neuron n is “excited” if its internal state sn(t) > 0. It can
“fire” a spike with probability RnΔt in the interval [t, t+Δt].
Here, Rn > 0 is its “firing rate,” such that R−1

n is the average
firing delay of the excited nth neuron.

At time t ≥ 0, neurons can interact in the following manners.
If neuron α is excited, such that sα(t) > 0, then its internal
state drops by 1, and we have sα(t+) = sα(t)− 1. Neuron α
can either send an excitatory spike to neuron β with probability
ϕ+(α, β), which results in sα(t+) = sα(t)− 1 and sβ(t+) =
sβ(t) + 1, or it can send an inhibitory spike to neuron j with
probability ϕ−(α, β) so that sβ(t+) = sβ(t) + 1 and sβ(t+) =
sβ(t)− 1 if sβ(t) > 0, else sβ(t+) = 0 if sβ(t) = 0. In another
case neuronα can “trigger” neuronβwith probabilityϕ(α, β) so
that sα(t+) = sα(t)− 1 and sβ(t+) = sβ(t)− 1 if sβ(t) > 0.

When the neuronα triggers neuronβ, both sα(t+) = sα(t)−
1 and sβ(t+) = sβ(t)− 1, and one of two things may happen.
First, we have sn(t+) = sn(t) + 1 with probability δ(β, n) so
that neurons α and β together have incremented the state of
neuron n. A trigger allows two neurons α and β to increase the
excitation level of a third neuron n by +1, while neurons α and
β are both depleted by −1. Second, the trigger moves on to the
neuron n with probability σ(β, n), and then, this sequence will
be repeated.

Note that

N∑
β=1

[
ϕ(α, β) + ϕ−(α, β) + ϕ+(α, β)

]
= 1 − �α. (1)

When neuron α fires, the corresponding spike is lost, or it
leaves the network with the probability �α.

Cells in the different layers of the human brain communicate
with each other through simultaneous firing patterns of densely
packed somas. An extended work of the RaNN algorithm was
presented in [19] and [20], using a branch theory of stochastic
networks. In the following, we will exploit this framework for
DL.

2) Modeling of Soma-to-Soma Interactions: Let μ(n) =
(α1, . . . , αm) be any ordered sequence of distinct numbers
where αβ ∈ {1, . . . , N} and αβ �= n; obviously 2 ≤ m ≤ N −
1

γn = lim
t→∞ [sn(t) > 0] . (2)

The probability of excitation for the neuronn can be described
by the following expression:

γn =
ε+n

Rn + ε−n
(3)

where the variables in (3) are of the form

ε+n = ψ+
n +

N∑
β=1,β �=n

Rβγβϕ
+(β, n)

+
∑
μ(n)

Rα1

∏
β=1,...,m−1

γαβ
ϕ (αβ , αβ+1) γαm

δ (αm, n)

(4)

ε−n = ψ−
n +

M∑
β=1,β �=n

Rβγβϕ
−(β, n)

+
∑
μ(n)

Rα1

∏
β=1,...,m−1

γαβ
ϕ (αβ , αβ+1) γαm

ϕ (αm, n) .

(5)

Here, we set ϕ(α, β) = σ(α, β) to simplify the expression.
The simplified equation can be presented as follows:

ω+
βα = RRϕ+(β, α) (6)

and

ω−
βα = RRϕ−(β, α). (7)
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3) Clusters of Densely Connected Cells: Now, we consider
the construction of clusters of densely interconnected cells. First,
in a networkD(d) that contains d identically connected cells, the
external excitatory and inhibitory arrival of spikes is represented
by ψ+and ψ−. Each connected cell has a firing rate R and its
state is denoted by γ. Each cell receives inhibitory input from the
state of some cell h, which does not belong to D(d). Thus, for
any cellh ∈ D(d), we have an inhibitory weightω−

�
≡ ω−

�,h > 0
from � to h.

For any α, β ∈ D(d), we have ω+
α,β = ω−

α,β = 0, but when-
ever one of the cells fires, it triggers the firing of the other cells
with ϕ(α, β) = ϕ

d and δ(α, β) = 1−ϕ
d . As a result, we have

γ =
ψ+ +Rγ(d− 1)

∑∞
m=0

[
γϕ(d−1)

d

]m
1−ϕ
d

r + ψ− + γ�ω
−
�
+Rγ(d− 1)

∑∞
m=0

[
γϕ(d−1)

d

]m
ϕ
d

(8)
This can be reduced to

γ =
ψ+ + Rγ(d−1)(1−ϕ)

d−γϕ(d−1)

R+ ψ− + γ�ω
−
�
+ Rγϕ(d−1)

d−γϕ(d−1)

(9)

where the aforementioned equation can be represented as a
second-degree polynomial in terms of γ as follows:

γ2ϕ(d− 1)
[
ψ− + γ�ω

−
�

]
+ γ(d− 1)

[R(1 − ϕ)− ψ+ϕ
]

− γd
(R+ ψ− + γ�ω

−
�

)
+ ψ+d = 0.

(10)
Under the conditions that d ≥ 2, ϕ ≤ 1, ψ+ > 0, ψ− > 0,

and R > 0 and ψ− ≥ ψ+, this equation can easily be solved
for its positive roots, where one of them is less than 1. This is
the only one of interest because γ is a probability.

4) RaNN With Multiple Clusters: In this subsection, we de-
scribe the construction of a multiple cluster-based DL architec-
ture. This DL framework contains K clusters D(d) each with
d hidden cells. For the kth cluster, k = 1, . . . ,K, the state of
each of its identical cells is denoted by γk. In addition, U input
cells do not belong to these K clusters and the state of the lth
cell l = 1, . . . , L is denoted by γ̄l.

Each hidden cell in the clusters k, with k ∈ {1, . . . ,K},
receives inhibitory input from each of theL input cells. Thus, for
each cell in the kth cluster, we have inhibitory weights ω−

l,k > 0
from the lth input cell to each cell in thekth cluster. The lth input
cell will have a total inhibitory “exit” weight or total inhibitory
firing rate R−

l to all of the clusters, which are of value

R−
l = d

K∑
k=1

ω−
l,k. (11)

Then, from (9) and (10), we have

γk =
ψ+
k + Rkγk(d−1)(1−ϕk)

d−γkϕk(d−1)

Rk + ψ−
k +

∑L
l=1 γ̄lω

−
l,k + Rkγkϕk(d−1)

d−γkϕk(d−1)

(12)

yielding a second-degree polynomial for each of the γk as

wkγ
2
k + xkγk + γk = 0 (13)

where

wk = ϕk(d− 1)

(
ψ−
k +

L∑
l=1

γ̄lω
−
l,k

)
(14)

xk = zk − d

(
ψ−
k +

L∑
l=1

γ̄lω
−
l,k

)
(15)

yk = dψ+
k (16)

zk = ψ+
k ϕ+Rkϕ− ψ−

k d−Rk − ψ+
k ϕkd− dϕkRk. (17)

Its positive root can be described as

ξk =
− (zk − dη)−

√
(ek − dη)2 − 4ϕk(d− 1) (ψ− + η) yk

2ϕk(d− 1)
(
ψ−
k + η

)
(18)

where

η =

L∑
l=1

γ̄lω
−
l,k. (19)

When all the parameters d, ϕc = ϕ,ψ+
c = ψ+, ψ−

c =
ψ−,Rk = R, zk = z, and yk = y, with k = 1, . . . ,K are the
same for all of the clusters, we will have

ξ(η) =
− (zk − dη)−√(z − dη)2 − 4ϕ(d− 1) (ψ− + η) y

2ϕ(d− 1) (ψ− + η)
.

(20)
The resulting activation function given by (20) is highly

nonlinear and goes beyond the capabilities of conventional
activation functions like the Sigmoid, Tansig, and Sine func-
tions. The activation of the cluster (20) depends on parameters
d, ϕ, ψ+, ψ−, andR. The curves of ξ(η) versus η under different
parameters for a cluster with 20 cells satisfy the conditions
derived for (10) (d ≥ 2, ϕ ≤ 1, ψ+ > 0, ψ− > 0,R > 0, and
ψ− ≥ ψ+).

B. Proposed DnRaNN Architecture

The main idea of a DnRaNN is extracted from the structure
of the human brain. Several important areas in the human brain
contain dense clusters of cells. These clusters may contain
similar cells or a variety of different cells. Because of the density
of their arrangement, these clusters can allow for substantial
communication through synapses and dendrites [21]. Therefore,
a mathematical model of dense clusters is developed that can
model both soma-to-soma interactions and synapses to create
a DnRaNN whose proposed framework is presented in Fig. 1.
This model contains one input layer, four cluster hidden layers,
and one output layer. The framework of dense clusters allows
the formulation of multilayer architecture, in which each layer
contains a finite number of dense nuclei. The cells in each
nucleus communicate with each other in a fully connected
architecture by using synapse and soma-to-soma interactions.
The communication framework among the hidden layers is
based on a traditional multilayer feed-forward architecture. The
nuclei of the first layer receive the excitation signal from an
input layer. After that, every cell in each nucleus creates an
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Fig. 1. Architecture of the proposed DnRaNN.

inhibitory projection to the layer above. Finally, the gradient
descent algorithm efficiently trains the neural network.

C. Performance Evaluation Metrics

Several evaluation metrics such as accuracy, precision, recall,
and F1 score are used to analyze the performance of the proposed
DnRaNN.

1) Accuracy (AC): It determines the ratio of correctly pre-
dicted observations to the total number of observations by the
IDS. It can be mathematically described as

AC =
TP + TN

TP + TN + FP + FN
. (21)

2) Precision (PR): It determines the ratio of correctly pre-
dicted malicious observations to the total number of observations
classified as an attack by IDS. It can be mathematically described
as

PR =
TP

TP + FP
. (22)

3) Recall (RC): It determines the ratio of correctly predicted
malicious observations to the correctly predicted malicious ob-
servations and incorrectly predicted normal observations. It can
be mathematically described as

RC =
TP

TP + FN
. (23)

4) F1 Score (F1): It determines the weighted average of
precision and recall. It maintains the balance between PR and
RC by considering positive and negative results. It can be math-
ematically described as

F1 =
2 × (PR × RC)

PR + RC
. (24)

IV. SIMULATIONS AND RESULTS

This section presents the experimental methodology, simula-
tions, and discussion of results.

A. Simulation Platform

The simulation and performance evaluation of the proposed
DnRaNN are conducted on the Hewlett-Packard Pavilion Gam-
ing Desktop TG01-2260xt workstation. This workstation con-
tains an 11th generation Intel Core i7 11700 processor with 8-GB
DDR4-2933 SDRAM. An Nvidia GeForce GTX 1660 Super
(6-GB GDDR6) graphic card ensures the smooth execution of
the simulations.

B. ToN_IoT Dataset

The ToN_IoT is a new generation open-source dataset. It was
generated at the Cyber Range and IoT Labs of the University
of New South Wales Australia [22]. It can be accessed from
the ToN_IoT repository [23]. This dataset contains a total of
1 379 274 samples, of which 270 279 are normal and 1 108 995
are attack samples. The ten classes are benign, DoS, DDoS, scan-
ning, backdoor, ransomware, cross-site scripting (XSS), data
injection, man-in-the-middle, and password cracking attacks.

C. Dataset Preparation

Data preparation is an essential stage to prepare and clean
the data before feeding it into any ML/DL algorithm, to accel-
erate the learning process and achieve a good accuracy. At this
stage, several operations can be performed such as elimination
of unnecessary features, conversion of nonnumerical features,
and replacement of missing values with suitable data. In this
article, we applied a two-step process for data preparation, which
includes both data preprocessing and data normalization.

1) Data Preprocessing: In this stage, the categorical features
with nominal values are converted into numerical values to
ensure data compatibility with the input of the neural network. In
this work, the categorical features are converted into numerical
values by applying label encoding. Because data, time, and time
stamp features have no impact and contribution on the output
prediction, these columns are eliminated in preprocessing.
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2) Data Normalization: Because model is biased toward
large values, some features in the dataset contain larger values
as compared to others, thereby it may reduce the accuracy of
results. In data normalization, the data are mapped in the range
between 0.0 and 1.0 without disturbing the normality of data
behavior. In this work, we have used min–max scaling for data
normalization [24].

y =
x− xmin

xmax − xmin
.

Here, x and y represent the original and normalized values,
respectively. The minimum and maximum values of the features
are represented by xmax and xmin, respectively.

D. Hyperparameter Selection

Hyperparameters are the variables that determine the network
structure and control the learning process. In our experiments,
the main framework of the DnRaNN is fixed [25]. To ensure the
best performance of the proposed DnRaNN, we determine the
optimal hyperparameters by conducting extensive experiments.
These hyperparameters include learning rate, momentum, num-
ber of epochs, and batch size.

1) Learning Rate: This parameter controls the learning
speed of ML/DL models. A lower learning rate can help the
model to learn better but can increase the training time, and
the process can get stuck. On the other hand, a high learning
rate can allow fast training but can cause a large output error.
Therefore, the selection of an appropriate learning rate helps to
ensure the optimum performance of the ML/DL model. In this
article, we define five values of learning rates to obtain the best
performance.

2) Momentum: This parameter helps to determine the direc-
tion of the next stage based on the knowledge of the previous
stage. It helps to prevent oscillations in the model. Multiple
experiments found that a suitable choice of momentum lies
between 0.5 and 0.9.

3) Number of Epochs: In terms of ML/DL, an epoch refers
to one cycle through the full training dataset. Usually, training an
ML/DL model takes more than a few epochs. In our experiments,
we conducted all the simulations for 100 epochs.

4) Batch Size: This parameter is related to the gradient de-
scent algorithm, which controls the number of training samples
to be processed before the model’s internal parameters are
changed. The popular default values for batch size are 32, 64,
and 128.

E. Simulations and Result Analysis

The ToN_IoT dataset is split into training and testing datasets
with the ratio of 80% and 20%, respectively. The class dis-
tribution of the ToN_IoT dataset is presented in Table I. The
22 most prominent features are used as input of the neural
network. A detailed analysis is performed for both binary class
and multiclass scenarios.

1) Result Analysis of Binary Classification: The perfor-
mance of the proposed DnRaNN was first evaluated for the
binary class scenario. Initially, we set the batch size as 32,

TABLE I
CLASS DISTRIBUTION IN THE TON_IOT DATASET

TABLE II
PERFORMANCE COMPARISON OF THE DNRANN FOR THE BINARY CLASS

SCENARIO AT BATCH SIZE: 32, MOMENTUM: 0.55, AND EPOCHS: 100

Fig. 2. Confusion matrices of the DnRaNN for binary class scenarios
at batch size: 32, momentum: 0.55, and epochs: 100.

momentum as 0.55, and a range of learning rates: 0.001, 0.005,
0.01, 0.10, 1.00, and 2.00. We performed a simulation for
100 epochs by keeping the batch size and momentum at fixed
values and recorded the results at the aforementioned learning
rates. The performance of the proposed model for the defined
hyperparameters is presented in Table II. The best train and test
accuracies attained are 99.22% and 99.15%, respectively, for
the learning rate of 0.10. The other performance scores at this
learning rate also indicate the satisfactory performance of the
DnRaNN. For the learning rate of 0.001, 0.005, and 0.01, the
model achieved an accuracy higher than 98%. At a higher learn-
ing rate of 1.00 and 2.00, the accuracy and other performance
scores indicate a lower performance of the proposed model.
A detailed performance comparison using these parameters is
presented using the confusion matrices shown in Fig. 2.

At the second stage, we set the batch size as 64, momentum
as 0.70, and the same range of learning rates as we had used
in our first experiment. The performance using the defined
hyperparameters is presented in Table III. The best train and test
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TABLE III
PERFORMANCE COMPARISON OF THE DNRANN FOR THE BINARY CLASS

SCENARIO AT BATCH SIZE: 64, MOMENTUM: 0.70, AND EPOCHS: 100

Fig. 3. Confusion matrices of the DnRaNN for binary class scenarios
at batch size: 64, momentum: 0.70, and epochs: 100.

TABLE IV
PERFORMANCE COMPARISON OF THE DNRANN FOR THE BINARY CLASS

SCENARIO AT BATCH SIZE: 32, MOMENTUM: 0.82, AND EPOCHS: 100

accuracies attained are 98.80% and 98.20%, respectively, for the
learning rate of 0.01. The other performance scores at this learn-
ing rate indicate a superior performance of the DnRaNN. For the
learning rates of 0.001, 0.005, and 0.10, the model achieved train
and test accuracy higher than 97%. Again, for higher learning
rates of 1.00 and 2.00, the accuracy and other performance
scores indicate an unsatisfactory performance of the proposed
model. A detailed performance comparison of these parameters
is presented using the confusion matrices shown in Fig. 3.

At the third stage, we set the batch size as 32, momentum
as 0.82 and the same range of learning rates as in our previous
two experiments. The performance at the given hyperparameters
is presented in Table IV. The best train and test accuracies are
attained as 98.66% and 98.17%, respectively, for the learning
rate of 0.10. The other performance scores at this learning rate
indicate a good performance of the DnRaNN. For the learning
rates of 0.001, 0.005, and 0.01, the model achieved train and test
accuracies between 97% and 98%. Again, for the higher learning
rates of 1.00 and 2.00, the accuracy and other performances
were decreased. A detailed performance comparison for these

Fig. 4. Confusion matrices of the DnRaNN for binary class scenarios
at batch size: 32, momentum: 0.82, and epochs: 100.

TABLE V
PERFORMANCE COMPARISON OF THE DNRANN FOR THE MULTICLASS
SCENARIO AT BATCH SIZE: 32, MOMENTUM: 0.55, AND EPOCHS: 100

parameters is presented using the confusion matrices shown in
Fig. 4.

The overall performance comparison for binary classification
indicates that the proposed DnRaNN model achieved the op-
timum results at the learning rate of 0.10, batch size 32, and
momentum 0.55.

2) Result Analysis of Multiclass Classification: As described
earlier, the ToN_IoT dataset contains ten classes. Therefore, in
the second phase of experimentation, we evaluated the efficiency
of the proposed DnRaNN in a multiclass scenario. As in the
binary class experiments, we initially set the batch size as 32,
momentum as 0.55 and learning rates as 0.001, 0.005, 0.01,
0.10, 1.00, and 2.00. We executed the simulation for 100 epochs
by keeping the batch size and momentum at fixed values and
recorded the results at the aforementioned learning rates. The
performance of the model at the predefined hyperparameters is
presented in Table V. The results demonstrate that the proposed
model attained a higher attack detection accuracy for the learning
rate of 0.01. The best train and test accuracies are recorded as
99.11% and 99.05%, respectively. For the learning rates of 0.001,
0.005, and 0.10, the model achieved train and test accuracy
between 97% and 98%. For higher learning rates of 1.0 and 2.0,
the model attained low accuracy scores between 85% and 95%.
As the model achieved higher performance scores at the learning
rate of 0.01, we analyzed the attack detection performance for
each class at this learning rate. The bar graph in Fig. 5 presents
a comparative analysis of actual and predicted results of the
proposed DnRaNN algorithm.

At the second stage, we set the batch size as 64, momen-
tum as 0.70, and the same range of learning rates as in our
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Fig. 5. Comparative analysis of multiclass classification at batch size:
32, momentum: 0.55, and epochs: 100.

TABLE VI
PERFORMANCE COMPARISON OF THE DNRANN FOR THE MULTICLASS
SCENARIO AT BATCH SIZE: 64, MOMENTUM: 0.70, AND EPOCHS: 100

first experiment. The performance of the proposed algorithm
at predefined hyperparameters is presented in Table VI. The
results demonstrate that the proposed model achieved higher
attack detection accuracy for the learning rate of 0.01. The
train and test accuracies are recorded as 99.07% and 98.98%,
respectively. At the learning rates of 0.001, 0.005, and 0.10, the
model attained train and test accuracies between 97.50% and
98%. As in the previous experiment, the model achieved lower
performance scores at a higher learning rate. Again, the proposed
model demonstrated a higher performance for the learning rate
of 0.01, so we analyzed the attack detection performance for
each class at this learning rate. The bar graph in Fig. 6 presents
a comparative analysis of actual and predicted results of the
proposed DnRaNN algorithm.

At the third stage, we set the batch size as 32, momentum as
0.82, and the same range of learning rates as in our previous
two experiments. The performance of the proposed model at
the predefined hyperparameters is presented in Table VII. The
results demonstrate that the proposed model achieved a higher
attack detection accuracy for the learning rate of 0.01. The best
train and test accuracies are recorded as 98.83% and 98.77%,
respectively. For other learning rates, 0.001, 0.005, and 0.10,
the model attained train and test accuracies between 97.0% and
98%. As in the previous experiments, the model achieved lower
performance scores at higher learning rates. Because our model
demonstrated a higher performance at the learning rate of 0.01,
we analyzed the attack detection performance for each class at
this learning rate. The bar graph in Fig. 7 presents a comparative

Fig. 6. Comparative analysis of multiclass classification at batch size:
64, momentum: 0.70, and epochs: 100.

TABLE VII
PERFORMANCE COMPARISON OF THE DNRANN FOR THE MULTICLASS
SCENARIO AT BATCH SIZE: 32, MOMENTUM: 0.82, AND EPOCHS: 100

Fig. 7. Comparative analysis of multiclass classification at batch size:
32, momentum: 0.82, and epochs: 100.

analysis of actual and predicted results of the proposed DnRaNN
model. In summary, the proposed DnRaNN gave a satisfactory
performance with the new generation dataset ToN_IoT in both
binary class and multiclass scenarios.

F. Performance Comparison With the Well-Known
ML/DL-Based IDS

To analyze the effectiveness of the proposed DnRaNN further,
we compared its performance with some well-known ML and
DL-based algorithms for the ToN_IoT dataset. These algorithms
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Fig. 8. Performance comparison of the state-of-the-art IDS for binary
class scenario.

Fig. 9. Performance comparison of the state-of-the-art IDS for multi-
class scenario.

include artificial neural network (ANN), support vector machine
(SVM), random forest (RF), autoencoder (AE), deep belief
network (DBN), and the RNN. For a better performance compar-
ison, we maintained the training and testing dataset split ratio
as 80% and 20%, respectively. All these algorithms were im-
plemented in the Python simulation environment. We evaluated
the performance of the proposed DnRaNN with other ML/DL
algorithms in both binary class and multiclass scenarios. A
detailed comparison for binary classification is shown in Fig. 8.
According to this figure, the intrusion detection accuracy and
other scores of ANN, SVM, and DBN for the ToN_IoT dataset
are obtained between 95% and 97.50%. The intrusion detection
performances of RF, AE, and RNN were less than 95%.

In the second phase, the performance of the ML/DL-based
model is evaluated for the multiclass scenario. A brief com-
parison is presented in Fig. 9. The two classifiers ANN and
SVM achieved a higher attack detection accuracy as greater than
96% and the performance scores for all the remaining classifiers
were between 90% and 95%. In summary, the performance of
the proposed DnRaNN is superior for both binary class and
multiclass scenarios, as compared to the other ML/DL-based
intrusion detection models.

V. CONCLUSION

In this article, a novel DnRaNN technique was proposed for
cyberattack detection in an IoT environment. To evaluate the
effectiveness of the proposed algorithm, extensive experiments
were conducted on the new generation ToN_IoT dataset. We
defined multiple parameters including accuracy, precision, re-
call, and F1 score for the performance evaluation. The effi-
ciency of the proposed approach was evaluated in both binary
and multiclass scenarios. In the binary class evaluation, the
DnRaNN achieved a higher attack detection accuracy of 99.14%.
For binary class scenarios, other performance scores are also
higher than 99%. In multiclass evaluation, the DnRaNN ob-
tained 99.05% attack detection accuracy. The proposed scheme
successfully classified nine different attacks on the IoT with a
high detection accuracy. To analyze the effectiveness of the pro-
posed model further, its performance was compared with some
well-known ML/DL-based intrusion detection schemes. The
experimental findings of the proposed model proved its higher
performance over other ML/DL-based schemes. To enhance the
performance of cyberattack detection algorithm in hardware
perspectives, a field programmable gate array (FPGA)-based
accelerator can be integrated with DnRaNN.
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