A Generative Adversarial Network Based
Approach to Malware Generation Based on
Behavioural Graphs

Ross A. J. McLaren, Kehinde O. Babaagbal0000—0003—0786-2618] ' 311q Zhiyuan
Tan [0000—0001-5420—2554]

School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, United
Kingdom 40174116@live.napier.ac.uk,{K.Babaagba,Z.Tan}@napier.ac.uk

Abstract. As the field of malware detection continues to grow, a shift
in focus is occurring from feature vectors and other common, but easily
obfuscated elements to a semantics based approach. This is due to the
emergence of more complex malware families that use obfuscation tech-
niques to evade detection. Whilst many different methods for developing
adversarial examples have been presented against older, non semantics
based approaches to malware detection, currently only few seek to gen-
erate adversarial examples for the testing of these new semantics based
approaches. The model defined in this paper is a step towards such a
generator, building on the work of the successful Malware Generative
Adversarial Network (MalGAN) to incorporate behavioural graphs in or-
der to build adversarial examples which obfuscate at the semantics level.
This work provides initial results showing the viability of the Graph
based MalGAN and provides preliminary steps regarding instantiating
the model.

Keywords: Malware, Malware Detection, Adversarial Examples, Gen-
erative Adversarial Network (GAN), Behavioural Graphs.

1 Introduction

Malware attack landscape has evolved over time as malware authors and at-
tackers now employ a number of sophisticated techniques in launching attacks.
Some of these include the use of encryption [9], polymorphism [16] among oth-
ers to evade detection. Consequently, most traditional detection mechanisms are
vulnerable in defending against these new intrusive techniques.

As more and more of the world becomes connected through the internet, or
automated through technological advancements, defence against attacks on these
systems becomes a growing priority. As attackers become more sophisticated it
can be a struggle for defence vendors to keep up as it is not enough if they
can fix the issue after it occurs, preemptive defence of systems will always be
superior. Due to this, a crucial area in software security research is trying to
anticipate what attackers will do to keep systems safe. One such way to do this
is to generate adversarial examples of malware in a secure environment with the

2 Ross A. J. McLaren, Kehinde O. Babaagba, and Zhiyuan Tan

sole purpose of training automated detectors to be able to detect a wide range
of new, never before seen samples.

Machine learning has shown encouraging results as a useful tool in the de-
tection of malicious software. It has been used to learn patterns within header
files, raw bytes and instruction sequences which identify a piece of software as
malicious or benign [18]. Commonly, these machine learning solutions are cre-
ated as a black box in an effort to increase the security of the underlying system.
This follows an idea that if the attacker cannot access the underlying machine
learning algorithm then it is far more difficult for them to exploit it for their own
ends. This, however, has presented a weakness in such thinking as attackers are
able to probe the network and from that, determine which design features will
be flagged as malicious allowing them to design software that evades detection
by the machine learning models [13].

In addressing the aforementioned weakness, adversarial learning [3,4,11] was
introduced. The aim of an adversarial method is to create malicious software
which exploits the loopholes in other machine learning models. To this effect,
they collect data using models such as deep, convolutional neural networks used
in malware analysis in order to categorize what they will allow as a benign piece
of software. Another network is then trained to create malware which should be
considered benign by the first network, initially this yields poor results but over
numerous iterations the generated malware signature should successfully evade
detection. This is known as gradient based adversarial generation [10] and has
been done to great success with minuscule amounts of the malicious software
needing to be changed to evade detection.

In recent years, attackers have been able to stay ahead of defenders by util-
ising numerous obfuscation techniques. To combat this, steps are being taken
to move towards a broader semantics based, higher level approach to detection
[1]. Malware behavioural graphs are a step towards this, as they utilise a Con-
trol Flow Graph (CFG) as a signature. CFGs are used because the domain of
a CFG is at least as complex as the domain of strings in the same function [5].
A CFG consists of linked nodes with each node being a different element of the
program. In assembly, these could be the different calls such as jmp, call or end
[7]. This allows a mapping of the flow of data and functions within a greater
piece of malware [8]. This not only provides the information on the number of
times a function is called, but the order in which they were called thus map-
ping out the actual behaviour of the malware [1]. The structures of the created
graphs can be compared to identify crossovers and similarities in the behaviour
of two programs, allowing the classification of new malware into existing fam-
ilies based on the behavioural patterns they exhibit [5]. Unlike other classical
detection techniques, CFG detection improves its detection accuracy as the size
of the program increases [8]. This is due to a larger program creating a more
detailed end graph. It is also resistant to common obfuscation techniques due to
not being based on checks of specific vector or string details of a signature [7].

Generative Adversarial Networks (GANSs) [15] have already been used to
much success in the area of adversarial example generation, however, these at-

GAN for Malware Generation Based on Behavioural Graphs 3

tempts suffer from a lack of diversity within the malware used and the limited
features they use for generation. This paper seeks to outline a solution to these
problems by building the examples based on behavioural graphs rather than
simple feature semantics. Two research questions are addressed in this work and
they include:

1. To what extent can a Graph based Malware Generative Adversarial Network
(MalGAN) be used in creating adversarial samples?
2. How does the Graph based MalGAN compare with the original MalGAN?

The rest of the paper is structured as follows. The second section presents
related work. Section III describes the research methodology. The results and
evaluation are discussed in Section IV and we present the conclusion and future
work in Section V.

2 Related Work

Adversarial examples of malware have been utilized to show weaknesses in ma-
chine learning based malware detection systems [13]. These examples are capable
of bypassing the traditional black-box malware detection systems by allowing
attackers to infer the features likely to be flagged as malware [14]. Till very re-
cently, neural network based models for generating adversarial examples have
been primarily gradient based. These have had some success but struggle to
reach a detection rate of zero. They are also able to be quickly retrained against
by most defensive methods [17].

MalGAN has been introduced as a new model for generating adversarial ex-
amples [13]. It is based on the GAN model for generators and uses a system
which comprises a generator and discriminator. It takes API features as an ex-
ample of how to represent a program. The main difference between this given
model and current models is the fact that the generator can update dynamically
in relation to the feedback it receives from the black-box detector. Currently,
most models use a static gradient to produce examples instead. The generator
transforms an API feature vector into an adversarial malware example. It creates
a binary version of the feature vector of a piece of malware, showing a zero if
the API feature does not exist and a one if it does. This is concatenated with a
random noise function, altered to return values between 0 and 1 in an effort to
add non-malicious features to the example. This is fed into a multi-layer feed-
forward perceptron with the last layer’s activation function being sigmoid with
a restricted output range of 0 to 1 [13]. During the generation, only irrelevant
features are considered when adding features to the malware. The removal of fea-
tures is not considered as this could result in a cracked malware. The black-box
detector used is also a multi-layered feed-forward neural network that takes in a
feature vector as an input and outputs if the vector is malicious or benign [13].
The training data used for the black box detector consists of a mix of the gen-
erator’s examples, and benign pieces of software. MalGAN is also significantly
more dynamic than a gradient based approach which allows it to keep up with

4 Ross A. J. McLaren, Kehinde O. Babaagba, and Zhiyuan Tan

advances in security. This is because MalGAN only needs to be retrained on the
new detectors in order to be able to create adversarial examples against it.

It has a limitation of only currently generating feature vector examples, which
could make it difficult to produce examples which can fool higher-level, broader
semantics based detectors which utilize the behaviour of the malware rather than
its API features [14]. That is why this paper seeks to present a new generator
based on MalGAN that generates graph-based examples rather than feature
vectors and evaluate how this affects the detection rate against its examples.
MalGAN has also been suggested to have some issues which limit its functionality
in a real-world application [14]. For example, by using a set of the features in
a piece of malware rather than the entirety of the feature list, it limits to what
degree the adversarial examples it generates can be properly used to actually
harden machine learning based malware detection approaches. Also, by having
the generator and discriminator built and trained within the same process as the
generator, it creates an unrealistic advantage that traditionally attackers would
not have [14]. In the case of both of these versions of MalGAN, they are able
to reach under three percent detection rates based on the True Positive Rate
(TPR).

3 Methodology

3.1 Overview

The implementation of the Graph based MalGAN comprises of multiple com-
ponents. It required the collection of API features from analysed examples, the
connection of dependencies between these calls and the encoding into a format
a neural network can utilise. These steps led on to the model construction and
neural network training and testing. This section gives a brief overview of these
parts and presents an explanation of how the model works.

Dynamic Analysis This was used in order to get the correct API calls that
were used at run time for each program, rather than relying on all possible API
calls as is present in static analysis. To facilitate this, a Windows Operating
System was procured and loaded onto a Virtual Box Machine. This machine was
then hardened and set up for malware analysis, being completely cut off from
being able to connect to the host or the Internet and had all of the Windows
Defender settings turned off. The host machine was also prepared as per the
specifications listed by the Cuckoo' sandbox website and finally the Cuckoo
agent was loaded onto the Virtual Machine to allow for secure communication
between the host and machine. After the malware binaries were analysed on the
Virtual Machine, several python scripts were developed which first extracted
the API calls from the Cuckoo log which consists of a JSON file, then removed
any exact duplicate calls before assembling them into a behavioural graph that

! Cuckoo - https://cuckoosandbox.org/

GAN for Malware Generation Based on Behavioural Graphs 5

represents the initial program. One-hot encoding was then used to have valid
inputs for the neural network.

The Neural Network (NN) Model The NN model put forward for Graph
based MalGAN consists of a generator and discriminator as in a typical GAN
architecture. The generator takes a concatenated input consisting of a malware
example and a noise vector and outputs an adversarial example that the dis-
criminator takes as an input. The discriminator then determines whether or not
the example is malicious based on the classification given to it from an outside
detector, the detector an attacker is trying to bypass in a real world scenario.
The generator and discriminator train with the goal being to minimise the num-
ber of samples correctly identified by the external detector as shown in Figure
1.

Behavioural o Labeled Benign
Feature Vector | Adversarial And Adversarial
Input N o . Examples N Black Box Examples ‘_.' A, \
enerator) Detector iscriminator
) i
Random Noise
Benign
Samples.

Fig. 1: A simple overview of the entire network model

3.2 Input Formatting and Encoding

Behaviour-based malware detection focuses on security critical operations, and
this was taken into consideration when deciding what operations and API calls
to focus on for the API graphs. Unlike in the original MalGAN paper, none of the
APT call graphs were capped. The resulting behavioural graph for each program
only counts unique API call graphs, as duplicate behaviours are rare and overall
unlikely to affect the behavioural obfuscation displayed in this paper.

Whilst all of the calls selected appear in benign samples, the combination
of them can lead to intentional malicious design. From this, the generator can
learn what combination of behaviours are likely to be assessed as malicious and
how to alter them to avoid detection without cracking the underlying malware.

Behavioural graphs are an un-ordered set of API call graphs for a given
program and are used as the basis of behaviour-based malware detection. By
cleaning and processing a set of API calls from a given program, dependencies
can be built between calls which act upon the same Operating System resource,

6 Ross A. J. McLaren, Kehinde O. Babaagba, and Zhiyuan Tan

this lets a user view the API calls in a graph structure. This graph structure
presents the function of a piece of code within the program in a human friendly
format, allowing for better understanding of the behaviour of the code. A be-
havioural graph is the next step up, and instead of displaying the behaviour of
a particular section of code, it combines all of them into an un-ordered graph
which describes the behaviour of the whole program.

Both the API call and its relevant Operating System resources are extracted
from an analysed program and used to construct the API call graph. The API
calls are assigned a numerical value in order to aid in the labelling during the
encoding stage. The graph is directed and acylic with the nodes being defined
as the API calls and the edges between them being their connected Operating
System resource and the dependence between them. It can be defined as:

G=(V,E,f) (1)

Wherein, APT call graph G has a set of nodes, V, and a set of edges represented
by E which is a member of V' x V and an incidence function f, mapping E to V.

In order to allow for further classification of API call graphs within the over-
arching behavioural graph, different commands which serve the same purpose
are treated as the same call. An example of this is seen in samples with multiple
calls which all serve the purpose of creating a new key for the registry -

1. RegCreateKeyExW
2. RegCreateKeyExA
3. RegCreateKeyW

For the API call graph, all of these calls have been transformed into RegCre-
ateKey.

Firstly, a dataset of program samples was constructed by analysing both
malicious and benign samples within the Cuckoo sandbox. This dataset ABg
contained sixteen-hundred malicious examples and five-hundred-and-fifty benign
examples. After being analysed, the APT calls, their Operating System resource
arguments and the time they were called are all extracted from the Cuckoo
reports and held in a JSON file. At this point, exact duplicate calls which happen
in sequence are removed as during dynamic analysis it is possible for calls to be
logged which have not actually occurred and are as such, simply copies of the
previous call.

From here, API calls are linked together through the dependencies present
in both their Operating System arguments using both the addresses in memory
and the names of the processes, unlike in relevant studies using behavioural
graphs which only use the memory addresses. Whilst it should be noted that the
malware may use a different name for a process than the actual process’ name, it
was decided to still be an important factor in correctly linking API calls within
this study. These graphs are then ordered based on the time at which the call
was made in order to appropriately structure the order they happen in. This
is crucial for identifying the correct patterns because the transference of data
between different calls within the API graphs is important for their underlying
functionality.

GAN for Malware Generation Based on Behavioural Graphs 7

Class: "Malicious"
» Pattern @: [-]
w Fattern 1:
a: "setErrorHode”

w Pattern 2:

:H “LoadString”
1: "FindrResource”
2: "Loadresource”
3: "CregteactCtx”
4: "DrawText”

w Pattern 3:

:H "GetSystemInfo™

1: "GetNativesystemInfo™
w Fattern 4:

e: "@etsystemMetrics”

w Pattern G:
e: “searchrath”
1: "GetFileattributes”™

Fig. 2: Excerpt from a Behavioural Graph in JSON format

Once all of the patterns for a program have been successfully identified, dupli-
cates within the same program are removed. This is because, whereas in MalGAN
the objective is the generation of adversarial examples for specific malware, the
objective here is training a generator which can successfully obfuscate these pat-
terns to generate adversarial examples. At this point the dataset of behavioural
graphs ABg is created by iterating through each program’s behavioural graph
and creating a list of every unique occurrence.

By utilising one hot encoding, each program’s behavioural graph is compared
to the dataset and at each pattern, given a one or zero if the pattern exists within
the program.

T.=(V,C)

Tpg € ABg

Tevn = {0|1}
Teyv1i=1 <= Bgi1 € Tpa

Where T, is equal to an encoded program and contains a binary vector V and
a class definition C' which defines if T is benign or malicious when training

8 Ross A. J. McLaren, Kehinde O. Babaagba, and Zhiyuan Tan

the discriminator. Tpg refers to the behavioural graph for program T, ABg
is the dataset of all behavioural graphs used in this work. As with one hot
encoding T,y equals a one if the n* value of the greater dataset exists within
the behavioural graph for program 7. This results in a binary vector which can
be used as the inputs for a neural network.

3.3 Dataset

The dataset used for this work was the MC-binary-dataset [2]. Sixteen-hundred
malicious samples and five-hundred-and-fifty benign samples were used to create
the behavioural graph dataset and used for training the black box detector and
generator system. The malicious dataset was split with sixty percent going to the
generator system and forty percent going to the black box detector. This results
in the generator having nine-hundred-and-sixty malicious examples to utilise and
the black box detector having six-hundred-and-forty to train on. This split is for
two reasons:-

1. It better simulates a real world scenario where an attacker is unlikely to have
the exact malicious examples used to train a detection system.

2. It forces the generator to obfuscate the malicious patterns, rather than ob-
fuscating specific malware as in both the original and improved MalGAN
papers.

3.4 Network Architecture

Generator The generator is a dense, multi-layer, feed-forward network with
weights classified as §,. The output layer is the same shape as the number of
patterns within the dataset. The weighting of the graph is informed from the
feedback of the discriminator and effects the distribution of the noise throughout
the vector in an attempt to favour patterns which allow the generated example to
appear benign. The final layer uses a sigmoid activation function for the express
purpose of limiting the outputs to the range [O, 1], and in order to ensure that
the malware remains functionally malicious, the generated adversarial example is
combined with the original sample using the OR function, allowing the non-zero
values in the adversarial example to act as pattern obfuscation. This resulting
vector is transformed into a binary by affixing a one in every position where the
value is greater than zero-point-five and a zero when below this threshold.

This obfuscated behavioural pattern vector is then able to be used as the
input for the black box detector to be labelled, and then based on this labelling
receives gradient information from the discriminator in order to improve its
weighting and results. The goal of the generator is to have its adversarial exam-
ples mislabelled as benign by the detector.

Discriminator The discriminator in this instance is a substitute detector. It
acts as a stand-in for the black box detector system to enforce the real world

GAN for Malware Generation Based on Behavioural Graphs 9

Layer Activation|Size
Input

Dense ReLLU 256
Batch Normalization

Dense ReLu 128
Dense ReLU 64
Batch Normalization

Dropout(0.5)

Output Layer Sigmoid

Table 1: The model used as the generator in graph based MalGAN

scenario where attackers would be unable to access the underlying system within
the detector. It is fed classifications from the black box detector based on the
adversarial examples and benign code given to the black box which can then
be used to train the generator. It does this by learning the classification rules
involved in the black box detector. Like the generator it is a dense, multi-layer,
feed forward network.

As input it takes in either a benign example or an adversarial one that
has been classified and labelled by the black box detector. As its purpose is as
a stand-in for the black box detector it is only able to see the samples that
the detector itself has labelled as malicious, rather than the data set of actual
malicious examples. This ensures that it trains the generator to successfully fool
the detector. As with the generator, the goal and associated loss function of the
discriminator relates to lowering the number of examples correctly identified as
malware by the black box detector.

Layer Activation|Size
Input

Dense ReLU 256
Dense ReLu 128
Dropout(0.5)

Dense ReLU 64
Output Layer|Sigmoid

Table 2: The model used as the discriminator in graph based MalGAN

3.5 Machine Learning Models used for Comparison

Multilayer Perceptron (MLP) MLP is a deep Artificial Neural Network
(ANN) which has different layers consisting of at least an input layer, a hidden
layer and an output layer. Input reception is handled by the input layer, the
hidden layer is termed the computation engine and decision making or predictive
analysis is carried out by the output layer [19].

10 Ross A. J. McLaren, Kehinde O. Babaagba, and Zhiyuan Tan

Random Forest (RF) RF is also referred to as random decision forest. This is
a machine learning ensemble that combines several algorithms to derive better
learning results. RF as the name suggests, comprises of several separate decision
trees that form an ensemble with every of these trees spitting out a prediction
for a class and the class that has the highest vote then becomes the prediction
of the model [6].

Logistic Regression (LR) LR is commonly employed for binary data and
for categorical target variables. An example would be in the prediction of an
email as being either benign (0) or spam (1). A logit transformation is used to
force the Y value to take on differing values between 0 and 1. The probability
P =1/(1+e— (c+bX)) is initially calculated after that X is then linearly
correlated to log, P/(1 — P) [12].

4 Results Discussion and Evaluation

Here, in answering the two research questions, (1) To what extent can a Graph
based MalGAN be used in creating adversarial samples? and (2) How does
the Graph based MalGAN compare with the original MalGAN?, we present an
overview of the performance of the Graph based MalGAN model which is pro-
vided in Table 3 which compares MalGAN’s True Positive Rate (TPR) against
different machine learning algorithms. The TPR is the percentage of the samples
that the black box has correctly classified and the lower the value is, the better
the model has performed. We present a graph for each learning algorithm, visu-
ally showing the change in the TPR throughout the training and testing phases
of each epoch.

4.1 Overall Performance

Table 3 presents the TPR of malware detection for the blackbox detector show-
ing how many of the original malware samples the different algorithms were able
to classify, how many of the original MalGAN samples the algorithms were able
to classify and finally, how many of the Graph based MalGAN samples that they
were able to classify. It is important to also include the TPR figures for the mal-
ware examples before they are obfuscated as high rates of correct classification
at this stage add validity to the behavioural graph method for presenting mal-
ware. If the detector was incapable of classifying malware correctly even before
the adversarial examples were generated then it could be determined that the
behavioural graph method was flawed and as such, results for the classification
of their adversarial examples would be invalid. The results for the Graph based
MalGAN are also compared to the original MalGAN in order to determine if
any improvements to the detection rate has been observed. In this instance, as
the objective is successfully generating examples which fool the detector, a lower
true positive rate is desired.

GAN for Malware Generation Based on Behavioural Graphs 11

It can be observed that against the unaltered malware examples, the black-
box detector was able to successfully classify the behavioural graph’s patterns
as malicious. This adds validity that the behavioural graph method for mal-
ware detection is a valid and good method of detection and therefore a system
which can successfully obfuscate these patterns is useful and results gathered
from such obfuscation are valid. The Graph based MalGAN was able to suc-
cessfully reduce the TPR for the blackbox detector consistently against multiple
different algorithms across both the training and testing set. From this, it can
be observed that neither the discriminator nor the generator became over fitted
against the training set. This infers that the Graph based MalGAN would con-
sistently work against new datasets and against multiple algorithms implying
robustness against change in the model.

TPR for Blackbox Detector
Original Malware Original MalGAN Graph Based MalGAN
Training Set Testing Set Training Set Testing Set Training Set Testing Set

MLP _ 93.00% = 94.00% _ 0.00% __ 0.00% __ 190% __ 2.70%
_RF_98.00% 100.00% _ 020% _ 0.19% __ 0.00% _ 1.00%
LR~ 97.00% ~~ 96.00% ~ ~ 0.00% 0.00% 0-80% 2.00%

Table 3: TPR for each Algorithm

MLP The progress for how the TPR changed over training was mapped to a
graph for easy visualisation. It can be observed that for the algorithm MLP,

—— Training Set
—=— Testing Set

0.8 q

0.6

TPR

0.4

0.2 4

0.0 q

Epoch

Fig.3: TPR progress Graph for MLP algorithm

the TPR had some spikes where it increased, but overall trended towards zero.

12 Ross A. J. McLaren, Kehinde O. Babaagba, and Zhiyuan Tan

The spiked increases may be caused by low variance within the dataset, and the
randomness at which the noise is applied.

RF The progress for how the TPR changed over training was mapped to a graph
for easy visualisation. For algorithm RF, the TPR trended quickly towards zero

1.04 —— Training Set
== Testing Set

0.8

0.6

TPR

0.4 1

0.2 f‘

0.0 1 -

T T T T T T
0 10 20 30 40 50
Epoch

Fig.4: TPR progress Graph for RF algorithm

before spiking and then had a gradual trend towards zero.

LR The progress for how the TPR changed over training was mapped to a
graph for easy visualisation. For algorithm LR, the TPR had a spiky descent

101

—— Training Set
== Testing Set

0.8 4

0.6 4

TPR

0.4 1

0.2 4

0.0+

Epoch

Fig.5: TPR progress Graph for LR algorithm

GAN for Malware Generation Based on Behavioural Graphs 13
before evening out and trending towards zero.

4.2 Evaluation

Whilst the model performed well, the input range given by behavioural graphs
is very large and makes the generation of adversarial examples challenging as a
balance must be struck between generating enough noise to create adversarial
examples and not generating so much as to create patterns which belong in
neither dataset.

Graph based MalGAN versus Original MalGAN in terms of TPR
Whilst the presented model was able to achieve results of less than two percent
detection, this is not as low as the original MalGAN model which produced
results all of which were less than one percent as seen in Table 3. It should be
noted, however, that behavioural graph based interpretations of malware capture
more semantic information than simple feature vectors as they rely on specific
patterns of API features existing within code rather than simply the existence
of a specific call. Being able to obfuscate adversarial examples against detectors
which work at the semantics level of the code is a progressive step forward in the
field and as this is one of the first attempt as such obfuscation, the low detection
rates of under two percent shows its validity moving forward and that it should
be further researched and improved upon. Graph based MalGAN also continues
the same robustness as its predecessor as demonstrated by their comparable
differences in between algorithms.

Graph based MalGAN versus Original MalGAN in terms of Graphs
mapping TPR over Epochs Whilst the original MalGAN paper does not
show all of their graphs mapping the change in TPR over the number of epochs,
those that they do show demonstrate a similar gradient as those presented by
the Graph based MalGAN. One of the few differences between them is the rate
at which the TPR lowers with the original MalGAN presenting smoother graphs
with a gradual decrease over the number of epochs versus the spiky graphs
presented in this paper. A possible reason for this is the size of the patterns being
obfuscated. Graph based MalGAN uses an input layer size of one-thousand-
eight-hundred-and-ten whereas the original MalGAN uses an input layer of one-
hundred-and-twenty-eight. This not only reduces the likelihood that the Graph
based MalGAN will randomly assign the correct vector to obfuscate a given
piece of malware but increases the time it will take to be able to obfuscate the
example. It also makes it more likely for the detector to classify an example as
malicious unless the generator is correctly learning benign features to add to its
examples. Another possible explanation could be a difference in the size of the
datasets. The original MalGAN uses a larger data set for both their benign and
malicious examples as one of the limitations for this work was finding an equally
sized dataset to use. This could result in the detector simply learning the entire
data set and classifying any example that does not exist in its original benign
set as malicious.

14 Ross A. J. McLaren, Kehinde O. Babaagba, and Zhiyuan Tan

5 Conclusion and Future Work

The work presented in this paper sought to build on the existing work of MalGAN
and present a modern take on adversarial malware generation based on similar
research found in the field of malware detection. It presented code not only
for the feature extraction, ordering, graphing and encoding of malware into a
behavioural pattern based model but also a neural network capable of generating
similar but deceiving models. A wider range of both malware and benign samples
could have been collected for the training of this model and it is impossible to
determine if that has impacted the results gathered here.

Moving forward the work outlined in this paper could be utilised to gener-
ate completely new malware based on associated behaviours. In theory, if the
behavioural graph approach were to be combined with the original MalGAN’s
feature vector approach and applied to a semi-random walking function it would
be possible to define new malicious patterns for code. Undertaking such a task
would potentially involve the combination of both a GAN as presented here
and some form of auto-encoder system to handle the wide array of potential
variables involved in creating such a pattern generator. Future work could also
be undertaken to combine sparse auto encoders within the generator model as
this could also potentially lead to a generator capable of creating malware with
undocumented behaviour and patterns.

References

1. Anderson, B., Quist, D., Neil, J., Storlie, C., Lane, T.: Graph-based malware de-
tection using dynamic analysis. Journal in computer Virology 7(4), 247-258 (2011)

2. Andrade, E.d.O.: Mc-dataset-binary (2018), https://figshare.com/articles/
MC-dataset-binary/5995408/1

3. Babaagba, K.O., Tan, Z., Hart, E.: Nowhere metamorphic malware can hide - a
biological evolution inspired detection scheme. In: Wang, G., Bhuiyan, M.Z.A.,
De Capitani di Vimercati, S., Ren, Y. (eds.) Dependability in Sensor, Cloud, and
Big Data Systems and Applications. pp. 369-382. Springer Singapore, Singapore
(2019)

4. Babaagba, K.O., Tan, Z., Hart, E.: Automatic Generation of Adversarial Meta-
morphic Malware Using MAP-Elites. In: P.A. Castillo et al (ed.) 23rd European
Conference on the Applications of Evolutionary and bio-inspired Computation. pp.
1-16. Springer-Verlag New York, Inc., Seville (2020)

5. Bonfante, G., Kaczmarek, M., Marion, J.Y.: Control flow graphs as malware sig-

natures (2007)

Breiman, L.: Random forests. Machine Learning 45(1), 5-32 (2001)

7. Cesare, S., Xiang, Y.: Malware variant detection using similarity search over sets of
control flow graphs. In: 2011IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications. pp. 181-189. IEEE (2011)

8. Cesare, S., Xiang, Y., Zhou, W.: Control flow-based malware variantdetection.
IEEE Transactions on Dependable and Secure Computing 11(4), 307-317 (2013)

9. Chuman, T., Sirichotedumrong, W., Kiya, H.: Encryption-then-compression sys-
tems using grayscale-based image encryption for jpeg images. IEEE Transactions
on Information Forensics and security 14(6), 1515-1525 (2018)

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

GAN for Malware Generation Based on Behavioural Graphs 15

Guo, C., Sablayrolles, A., Jégou, H., Kiela, D.: Gradient-based adversarial attacks
against text transformers. arXiv preprint arXiv:2104.13733 (2021)

He, R., Li, Y., Wu, X., Song, L., Chai, Z., Wei, X.: Coupled adversarial learning for
semi-supervised heterogeneous face recognition. Pattern Recognition 110, 107618
(2021)

Hoffman, J.I.: Chapter 33 - logistic regression. In: Hoffman, J.I. (ed.) Basic Bio-
statistics for Medical and Biomedical Practitioners (Second Edition), pp. 581 —
589. Academic Press, 2 edn. (2019)

Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on gan. arXiv preprint arXiv:1702.05983 (2017)

Kawai, M., Ota, K., Dong, M.: Improved malgan: Avoiding malware detector by
leaning cleanware features. In: 2019 International Conference on Artificial Intelli-
gence in Information and Communication (ICAIIC). pp. 040-045 (Feb 2019)
Maeda, H., Kashiyama, T., Sekimoto, Y., Seto, T., Omata, H.: Generative adver-
sarial network for road damage detection. Computer-Aided Civil and Infrastructure
Engineering 36(1), 47-60 (2021)

Popli, N.K., Girdhar, A.: Behavioural analysis of recent ransomwares and predic-
tion of future attacks by polymorphic and metamorphic ransomware. In: Compu-
tational Intelligence: Theories, Applications and Future Directions-Volume II, pp.
65-80. Springer (2019)

Saxe, J., Berlin, K.: Deep neural network based malware detection using two di-
mensional binary program features. In: 2015 10th International Conference on Ma-
licious and Unwanted Software (MALWARE). pp. 11-20 (2015)

Singh, J., Singh, J.: A survey on machine learning-based malware detection in
executable files. Journal of Systems Architecture p. 101861 (2020)

Taud, H., Mas, J.: Multilayer Perceptron (MLP), pp. 451-455. Springer Interna-
tional Publishing, Cham (2018)

