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Abstract: This paper proposes a novel nanobar–substrate medium model for static and free vibration
analyses of single-walled carbon nanotube (SWCNT) systems embedded in the elastic substrate
medium. The modified strain-gradient elasticity theory is utilized to account for the material small-
scale effect, while the Gurtin–Murdoch surface theory is employed to represent the surface energy
effect. The Winkler foundation model is assigned to consider the interactive mechanism between the
nanobar and its surrounding substrate medium. Hamilton’s principle is used to consistently derive
the system governing equation, initial conditions, and classical as well as non-classical boundary
conditions. Two numerical simulations are employed to demonstrate the essence of the material
small-scale effect, the surface energy effect, and the surrounding substrate medium on static and
free vibration responses of single-walled carbon nanotube (SWCNT)–substrate medium systems.
The simulation results show that the material small-scale effect, the surface energy effect, and the
interaction between the substrate and the structure led to a system-stiffness enhancement both in
static and free vibration analyses.

Keywords: free vibration; nanobar; modified strain-gradient theory; surface elasticity theory; elastic
substrate media; Hamilton’s principle

1. Introduction

Over the last few decades, nano-sized structures have found a wide spectrum of appli-
cations in nano-sized devices due to their superior and unique mechanical properties [1–5],
for example, nanofilms [6], nanobiosensors [7], nanomotors [8], nanoswitches [9], nano-
electro-mechanical systems (NEMS) [10], nanowires [11], and atomic force microscopes
(AFM) [12]. To reliably design and fabricate such tiny devices, mechanical characteristics of
their small-sized structural components are utterly crucial and necessary. Generally, the
most straightforward way to characterize the mechanical properties of structures is the
experimental approach. Unfortunately, conducting an experiment on nano-sized structures
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is extremely cumbersome and requires a high-precision testing apparatus and a unique test-
ing procedure [13–15]. The atomistic modeling approach based on the quantum mechanics
theory could be a viable choice to characterize the mechanical properties of small-sized
structures, but high computational costs and complex computational procedures inherently
arise with this modeling approach [16–20]. Therefore, the atomistic modeling approach is
valid only to systems with small numbers of molecules and atoms. To remedy the afore-
mentioned difficulties inherent to experimental and atomistic modeling approaches, there
is a pressing need for a more efficient modeling approach to characterize the mechanical
properties of nano-sized structures. Such a modeling approach could be possible with
unification of enhanced elasticity theories and structural mechanics models, thus leading to
the so-called “enhanced” structural mechanics models. A family of enhanced structural me-
chanics models has been formulated by researchers worldwide and ranges from a relatively
simple bar model to a sophisticated curvilinear shell model [21–25]. Small-scale and/or
size-dependent effects have been incorporated into these enhanced structural mechanics
models. The small-scale effect is induced by the long-range inter-atomic interaction, while
the size-dependent effect is caused by excessive energy of atoms at the free surface.

When the structural dimension is in the order of nanometers, the discrete nature of
materials becomes essential and induces the small-scale effect. In the research community,
several enhanced elasticity theories have been formulated by several researchers to consider
the small-scale effect, such as nonlocal elasticity theory [26,27], strain-gradient theory [28],
modified strain-gradient elasticity theory [13], couple stress theory [29], and modified
couple stress theory [30]. It is worth mentioning that the common feature of these enhanced
elasticity theories is the supplement of material length-scale parameters to account for the
small-scale effect associated with the discrete nature of materials. As the most widely used
among these enhanced elasticity theories, the nonlocal elasticity theory of Eringen [26,27]
has been employed to characterize the small-scale effect on static and dynamic responses of
nano-sized structures for the last two decades [31–39]. For example, Reddy and Pang [31]
developed the Euler–Bernoulli and Timoshenko beam models based on the Eringen non-
local differential constitutive relation to study the effect of the nonlocal parameter on the
bending, buckling, and natural vibration of straight beams. Wang et al. [32] investigated
the transverse shear deformation within the micro- and nano-beams by using the Timo-
shenko beam model based on Eringen’s nonlocal elasticity theory. Juntarasaid et al. [33]
extended the Euler–Bernoulli beam model of Reddy and Pang [31] to consider the surface
effects for bending and buckling analysis of the nanowire. Barretta et al. [34] developed the
Eringen differential law by the suggestion of an additional term involving the derivative of
the axial stress. Ebrahimi and Shafiei [35] proposed a rotating, functionally graded (FG)
Timoshenko nanobeam based on Eringen’s nonlocal theory to study the size-dependent
vibration behavior. Limkatanyu et al. [36] employed the so-called “strain-driven” nonlocal
elasticity model as proposed by Eringen [27] to enrich the Euler–Bernoulli beam model.
Next, Nguyen et al. [37] studied the bending, buckling, and post-buckling of nanobeams
undergoing large displacements and rotations based on the Eringen nonlocal beam model.
Subsequently, Sayyad and Ghugal [38] presented a theoretical unification of twenty-one
nonlocal beam theories based on Eringen’s nonlocal elasticity theory for the bending, buck-
ling, and vibration analysis of FG nanobeams, while Lal and Dangi [39] proposed the
nonlocal Timoshenko beam model for vibration analysis of bi-directional FG moderately
thick nanobeams. However, skeptical and inconsistent responses could arise with the non-
local elasticity model [40]. For example, Peddieson et al. [40] demonstrated that the beam
model based on the Eringen nonlocal differential form presents no small-scale effect on the
displacement response of the cantilever beam under an end load. This peculiar response
was subsequently defined as a “paradox” [40,41]. It was diagnosed by Romano et al. [41]
that adoption of the Eringen nonlocal differential model can result in an ill-posed structural
mechanics problem (bounded domain). Furthermore, Koutsoumaris et al. [42] showed that
the quadratic energy functional form of elasticity does not exist for the Eringen nonlocal
differential model, and Ma et al. [43] pointed out that there is ambiguity in the conjugate
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stress–strain pairs in this nonlocal constitutive model. To deviate from skeptical and incon-
sistent features inherent to the Eringen nonlocal differential model, several researchers have
paid attention to strain-gradient-type constitutive models. Within the framework of the
strain-gradient-type constitutive model, there is no ambiguity in the conjugate stress–strain
pairs and there exists the quadratic energy functional form of elasticity, thus leading to
a rational nano-sized structural model. Among a family of strain-gradient-type constitu-
tive models, the modified strain-gradient elasticity model proposed by Lam et al. [13] is
of particular interest in the present work since strain-gradient measures associated with
different deformations are naturally considered in this strain-gradient-type model, as will
be pursued herein.

Besides the abovementioned small-scale effect, the size-dependent characteristic in-
duced by the surface energy effect becomes essential when the structural dimension is in the
order of nanometers. The surface energy effect is related to excessive energy stored in the
bulk surface of nano-sized structures. Both atomistic modeling and experimental studies on
the nano-sized structure have confirmed the existence of the surface energy effect [44–46].
To incorporate the surface energy effect into the structural mechanics model, several re-
searchers have used the surface elasticity theory proposed by Gurtin and Murdoch [47,48].
The fundamental assumption of this surface theory is that the wrapping surface layer is con-
sidered as a zero-thickness, two-dimensional membrane perfectly bonded to its embracing
bulk material and possessing its own elastic properties.

In nanomaterials and nanodevices, nanobars have often been assembled into larger
parts through elastic substrate media [49]. Therefore, the interactive mechanism between
the bar and its surrounding substrate medium is paramount to the design and control of
the performance of such materials and devices during their lifetime services. Up to now,
nanobar–substrate medium models available in the literature have mainly been developed
for static analyses of nanobar–substrate medium systems under tensile loadings. For
example, Limkatanyu et al. [50,51] developed the bar–substrate medium model based on
the nonlocal elasticity theory of Eringen [26,27] to characterize axial responses of nanowire-
substrate medium systems. Sae-Long et al. [52] and Limkatanyu et al. [53] unified the
thermodynamic-based strain-gradient model of Barretta and Marotti de Sciarra [54] and the
surface elasticity model of Gurtin and Murdoch [47,48] to develop a “paradox-free” nanobar-
elastic substrate medium model. Sae-Long et al. [55] combined the four-order strain-
gradient model of Narendar and Gopalakrishnan [56] with the surface elasticity model
of Gurtin and Murdoch [47,48] to formulate the sixth-order bar-elastic substrate medium
model containing one material length-scale parameter. Apart from the static characteristic
of nanobar–substrate medium systems, their dynamic characteristic is also essential to
rational design and fabrication processes of nanomaterials and nanodevices. Consequently,
there is still room to add a more general mathematical model of nanobar–substrate medium
systems into the research community. To the authors’ best knowledge, the present study
proposes, for the first time, a combination of the modified strain-gradient elasticity model of
Lam et al. [13] and the surface elasticity model of Gurtin and Murdoch [47,48] to formulate
a rational nanobar–substrate medium model for static and dynamic analyses.

The content of the present study is as follows: First, the interactive mechanism between
the bar and its surrounding substrate medium is presented. Then, the modified strain-
gradient elasticity model of Lam et al. [13] and the surface elasticity model of Gurtin
and Murdoch [47,48] are discussed. Next, Hamilton’s principle is employed to reveal
the system governing equation, initial conditions, and classical as well as non-classical
boundary conditions. These equations establish a complete set of the mathematical tool
to perform static and free vibration analyses of the nanobar–substrate medium systems.
Finally, two numerical simulations are employed to demonstrate the essence of the material
small-scale effect, the surface energy effect, and the surrounding substrate medium on
static and free vibration responses of single-walled carbon nanotube (SWCNT)–substrate
medium systems.
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2. Nanobar–Substrate Medium Interaction

In the present study, the interactive mechanism between the nanobar and its surround-
ing substrate medium is characterized by the Winkler foundation model [57]. Based on this
foundation model, the surrounding substrate medium is considered as smeared tangential
springs distributed along the nanobar length, as shown in Figure 1. The constitutive relation
between the substrate interactive force, Ds(x), and the substrate deformation, ∆s(x), is [57]:

Ds(x) = ks∆s(x) (1)

where ks is the substrate medium stiffness.
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3. Modified Strain-Gradient Theory

The modified strain-gradient theory employed herein is one of simplified variants
of Mindlin’s strain-gradient theory [28,58] and was first proposed by Lam et al. [13]. To
consider the material small-scale effect inherent to nano-sized structures, the strain-gradient
theory asserts that the stress at a generic point is described as a function of local strain
and strain gradients at that point. Consequently, the modified strain-gradient theory of
Lam et al. [13] possesses three more material constants related to strain gradients in addition
to two conventional material constants (Lame constants).

For a modified strain-gradient elastic body, the stored elastic strain energy, U, is given
by Lam et al. [13] as:

U =
1
2

∫
V

(
σijεij + piγi + τ

(1)
ijk η

(1)
ijk + ms

ijχ
s
ij

)
dV (2)
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where V represents the volume of the elastic body, εij represents the infinitesimal strain

and is the conjugate–work pair of the classical stress, σij, γi, η
(1)
ijk , and χs

ij represent strain-
gradient measures related to the dilatation gradient, the deviatoric stretch gradient, and the
symmetric rotation gradient, respectively, and pi, τ

(1)
ijk , and ms

ij represent the higher-order

stresses and are the conjugate–work pairs of the strain-gradient measures γi, η
(1)
ijk , and

χs
ij, respectively.

In the modified strain-gradient theory, the constitutive relations between stress and
strain quantities are [59]:

σij = λδijεmm + 2µεij (3)

pi = 2µl2
0γi (4)

τ
(1)
ijk = 2µl2

1η
(1)
ijk (5)

ms
ij = 2µl2

2χs
ij (6)

where λ and µ are Lame constants, l0, l1, and l2 are the material length-scale parameters
related to the dilatation gradient, the deviatoric stretch gradient, and the symmetric rotation
gradient, respectively, and δij is Kronecker delta.

The strain, εij, and the strain-gradient measures γi, η
(1)
ijk , and χs

ij are defined as [59]:

εij =
1
2

(
ui,j + uj,i

)
(7)

γi = εmm,i (8)

η
(1)
ijk = 1

3

(
ε jk,i + εki,j + εij,k

)
− 1

15

[
δij

(
εmm,k + 2εmk,m

)
+δjk

(
εmm,i + 2εmi,m

)
+ δki

(
εmm,j + 2εmj,m

)] (9)

χs
ij =

1
2
(
eipqεqj,p + ejpqεqi,p

)
(10)

where ui is the displacement vector and eijk is the permutation symbol.

4. Surface Elasticity Theory

As the size of a structure is in the range of nanometers, the free energy at the surface
of a bulk material becomes comparable to the energy stored in the bulk material. There-
fore, the size-dependent phenomenon induced by this surface-free energy is essential in
characterizing the mechanical response of nano-sized structures. To incorporate this size-
dependent phenomenon into the proposed nanobar–substrate medium model, the present
study employs the surface elasticity theory proposed by Gurtin and Murdoch [47,48]. Based
on the hypothesis of this surface elasticity model, the nanobar cross-section is assumed to
consist of a solid core and its wrapping outer surface shell, as shown in Figure 2. The solid
core and its wrapping outer surface shell are assumed to be in a perfect bond condition.
The wrapping outer surface shell is taken as a mathematically zero-thickness elastic layer.
The constitutive relation of the surface layer can be expressed as [47,48]:

τsur
αβ =

[
τsur

0 + (λsur
0 + µsur

0 )usur
γ,γ

]
δαβ + µsur

0

(
usur

α,β + usur
β,α

)
− τsur

0 usur
β,α (11)

where λsur
0 and µsur

0 are the surface elastic constants, τsur
αβ is the in-plane components of the

surface stress, τsur
0 is the residual surface stress based on the unconstrained conditions and

is determined from the atomistic simulation [45], and usur is the surface layer deformation.
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5. Nanobar–Substrate Medium Model: Single-Walled Carbon Nanotube
(SWCNT)–Substrate Medium System
5.1. Kinematics

In the present work, a SWCNT is considered as a bar, thus focusing merely on the
axial response. Therefore, only the bar axial displacement, ux(x, t), shown in Figure 3 is
relevant. It is worth mentioning that the bar axial displacement, ux(x, t), is described as
a function of the spatial variable x and the temporal variable t, since both static and free
vibration responses of SWCNT–substrate medium systems are investigated in this study.
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Following the bar kinematics of Figure 3, the non-zero strain of Equation (7) and
strain-gradient measures of Equations (8)–(10) are [59]:

εxx =
∂ux(x, t)

∂x
(12)

γx =
∂εxx
∂x

=
∂2ux(x, t)

∂x2 (13)

η
(1)
xxx =

2
5

∂εxx

∂x
=

2
5

∂2ux(x, t)
∂x2 (14)

η
(1)
xyy = η

(1)
xzz = η

(1)
yxy = η

(1)
yyx = η

(1)
zxz = η

(1)
zzx = −1

5
∂εxx

∂x
= −1

5
∂2ux(x, t)

∂x2 (15)

It is noted that the bar kinematics of Figure 3 results in a vanishing symmetric
rotation gradient, χs

ij. Consequently, the higher-order stress, ms
ij, also vanishes based

on the constitutive relation of Equation (6), and the material length-scale parameter, l2,
becomes unnecessary.

Employing Equations (12)–(15), the non-vanishing stress quantities (classical and
higher-order stresses) of Equations (3)–(5) can be expressed in terms of the bar axial
displacement, ux(x, t), as [59]:

σxx = E
∂ux(x, t)

∂x
(16)

px = 2µl2
0

∂2ux(x, t)
∂x2 (17)

τ
(1)
xxx =

4
5

µl2
1

∂2ux(x, t)
∂x2 (18)

τ
(1)
xyy = τ

(1)
xzz = τ

(1)
yxy = τ

(1)
yyx = τ

(1)
zxz = τ

(1)
zzx = −2

5
µl2

1
∂2ux(x, t)

∂x2 (19)

with E being the elastic modulus of the bar-bulk material. It is worth mentioning that the
effect of Poisson’s ratio, ν, is neglected in the present study. This assumption was also
made for the modified strain-gradient bar model proposed by Akgöz and Civalek [59].

Enforcing the full compatibility condition of the nanobar–substrate medium system
(∆s(x, t) = ux(x, t)), the substrate medium constitutive relation of Equation (1) can be
expressed in terms of the bar axial displacement, ux(x, t), as [57]:

Ds(x, t) = ks∆s(x, t) = ksux(x, t) (20)

Following the full compatibility condition of the bar-bulk-wrapping surface layer
system (εsur

xx (x, t) = εxx(x, t)) and the bar section kinematics, the surface layer constitutive
relation of Equation (11) can be written in terms of the bar axial displacement, ux(x, t),
as [47,48]:

τsur
xx (x, t)− τsur

0 = Esurεsur
xx (x, t) = Esur ∂ux(x, t)

∂x
(21)

where τsur
xx (x, t) and τsur

0 are, respectively, the surface stress and the residual surface stress
in the axial direction, Esur = λsur

0 + 2µsur
0 is the surface elastic modulus, and εsur

xx (x, t) is the
surface layer strain.

5.2. Formulation: Hamilton’s Principle

Based on the system constitutive relations of Equations (16)–(21), the elastic strain
energy, U, stored in the nanobar–substrate system can be expressed in terms of the bar axial
displacement, ux(x, t), as:
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U =

Local term︷ ︸︸ ︷
1
2

L∫
0

EA
(

∂ux(x, t)
∂x

)2

dx

︸ ︷︷ ︸
Nanobar contribution

+
1
2

L∫
0

EsurΓ
(

∂ux(x, t)
∂x

)2

dx

︸ ︷︷ ︸
Surface−energy contribution

+

Dilatation gradient term︷ ︸︸ ︷
1
2

L∫
0

2µAl2
0

(
∂2ux(x, t)

∂x2

)2

dx +

Deviatoric stretch gradient term︷ ︸︸ ︷
1
2

L∫
0

4
5

µAl2
1

(
∂2ux(x, t)

∂x2

)2

dx

︸ ︷︷ ︸
Nanobar contribution

+
1
2

L∫
0

ks(ux(x, t))2dx

︸ ︷︷ ︸
Substrate−medium contribution

(22)

where A =
∫
A

dA is the nanobar sectional area, and Γ =
∮
Γ

dΓ is the nanobar sectional perimeter.

The first variation of the elastic strain energy, U, of Equation (22) during the time
interval [t0, t1] is:

δU =
t1∫

t0

[
L∫

0
EA
(

∂ux(x,t)
∂x

)(
∂δux(x,t)

∂x

)
dx +

L∫
0

EsurΓ
(

∂ux(x,t)
∂x

)(
∂δux(x,t)

∂x

)
dx

+
L∫

0
2µAl2

0

(
∂2ux(x,t)

∂x2

)(
∂2δux(x,t)

∂x2

)
dx +

L∫
0

4
5 µAl2

1

(
∂2ux(x,t)

∂x2

)(
∂2δux(x,t)

∂x2

)
dx

+
L∫

0
ks(ux(x, t))(δux(x, t)) dx

]
dt

(23)

In order to remove all differential operations from the virtual axial displacement,
δux(x, t), integration by parts is applied to Equation (23), thus resulting in the
following expression:

δU =
t1∫

t0

L∫
0

δux(x, t)
[
(EA)H ∂4ux(x,t)

∂x4 − (EA)L ∂2ux(x,t)
∂x2 + ksux(x, t)

]
dx dt

+
t1∫

t0

δux(x, t)
[
−(EA)H ∂3ux(x,t)

∂x3 + (EA)L ∂ux(x,t)
∂x

]x=L

x=0

dt

+
t1∫

t0

∂δux(x,t)
∂x

[
(EA)H ∂2ux(x,t)

∂x2

]x=L

x=0

dt

(24)

where (EA)H = 2µAl2
0 +

4
5 µAl2

1 represents the higher-order axial stiffness considering the
bar-bulk dilatation strain gradient and the bar-bulk deviatoric stretch strain gradient, and
(EA)L = EA + EsurΓ is the lower-order axial stiffness combining the bar-bulk and surface
layer contributions.

Next, the first variation of the external work, W, performed due to the axially dis-
tributed load, qx(x, t), and end forces, P, as shown in Figure 1, during the time interval
[t0, t1] can be expressed as:

δW =

t1∫
t0

L∫
0

qx(x, t)δux(x, t) dx dt + δUTP (25)
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where the displacement vector U =
{

U1 U2 U3 U4
}T collects end displacements

of the system, and the force vector P =
{

P1 P2 P3 P4
}T contains end forces of

the system.
Finally, the first variation of the kinetic energy, T, for the axial response during the

time interval [t0, t1] is given by Akgöz and Civalek [59] as:

δK = −
t1∫

t0

L∫
0

ρA
∂2ux(x, t)

∂t2 δux(x, t) dxdt +
L∫

0

δux(x, t)
[

ρA
∂ux(x, t)

∂t

]t1

t0

dx (26)

where ρ is the bar-bulk mass density.
Recalling Hamilton’s principle, the relations in Equations (24)–(26) can be written

together as:

δ

{
t1∫

t0

[T − (U −W)] dt

}
= 0

=
t1∫

t0

L∫
0

δux(x, t)
[
−(EA)H ∂4ux(x,t)

∂x4 + (EA)L ∂2ux(x,t)
∂x2 − ksux(x, t)

+qx(x, t)− ρA ∂2ux(x,t)
∂t2

]
dxdt + δUTP

+
t1∫

t0

δux(x, t)
[
(EA)H ∂3ux(x,t)

∂x3 − (EA)L ∂ux(x,t)
∂x

]x=L

x=0

dt

+
t1∫

t0

∂δux(x,t)
∂x

[
−(EA)H ∂2ux(x,t)

∂x2

]x=L

x=0

dt

+
L∫

0
δux(x, t)

[
ρA ∂ux(x,t)

∂t

]t1

t0

dx = 0

(27)

Accounting for the arbitrariness of δux(x, t), the governing differential equation of
motion (Euler–Lagrange equation) for a nanobar–substrate medium system can be deduced
from Equation (27) as:

− (EA)H ∂4ux(x, t)
∂x4 + (EA)L ∂2ux(x, t)

∂x2 − ksux(x, t) + qx(x, t) = ρA
∂2ux(x, t)

∂t2 (28)

It is worth remarking that Equation (28) becomes identical to the governing differential
equation of motion for a modified strain-gradient nanobar model proposed by Akgöz and
Civalek [59] when the surrounding substrate medium and the surface energy effect are
neglected (ks = Esur = τsur

0 = 0). Moreover, when the effects of the material small-
scale and surface energy are all neglected (l0 = l1 = Esur = τsur

0 = 0), Equation (28)
degenerates to the governing differential equation of motion for a bar embedded in the
Winkler foundation [51].

Considering the arbitrariness of δux(x, t) and δU on boundary terms in Equation (27)
yields initial conditions as well as boundary conditions of the nanobar–substrate medium
system as:

Initial conditions:

δux(x, t1)

[
ρA

∂ux(x, t1)

∂t

]
t=t1

− δux(x, t0)

[
ρA

∂ux(x, t0)

∂t

]
t=t0

= 0 (29)

Boundary conditions:

P1 =
[
(EA)H ∂3ux(0,t)

∂x3 − (EA)L ∂ux(0,t)
∂x

]
x=0

; P2 =
[
−(EA)H ∂2ux(0,t)

∂x2

]
x=0

P3 = −
[
(EA)H ∂3ux(L,t)

∂x3 − (EA)L ∂ux(L,t)
∂x

]
x=L

; P4 =
[
(EA)H ∂2ux(L,t)

∂x2

]
x=L

(30)
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5.3. Analytical Solution of the Nanobar–Substrate Medium System: Static Analysis

When the inertia force ρA
(
∂2ux(x, t)/∂t2) on the right-hand side is omitted, Equation (28)

degenerates to the governing differential equilibrium equation of a nanobar–substrate
medium system:

(EA)H ∂4ux(x)
∂x4 − (EA)L ∂2ux(x)

∂x2 + ksux(x)− qx(x) = 0 (31)

The general solution to the governing differential equilibrium equation of Equation (31)
can be written as:

ux(x) = uh
x(x) + up

x(x) (32)

where uh
x(x) is the homogeneous solution for qx(x) = 0, and up

x(x) is the particular solution
and is dictated by the axially distributed load, qx(x).

It is observed that Equation (31) is in the same form as the governing differential equi-
librium equation of the beam on the Winkler–Pasternak foundation [60]. Therefore, the ho-
mogeneous solution, uh

x(x), given by Limkatanyu et al. [60] can be employed for the present
problem. There are three cases for the homogeneous solution, uh

x(x), to Equation (31) de-
pending on the values of the system parameters λ1 = ks/(EA)H and λ2 = (EA)L/(EA)H .

Case I: λ2 < 2
√

λ1

uh
x(x) = C1 cosh[αx] cos[βx] + C2sinh[αx] cos[βx]

+C3 cosh[αx] sin[βx] + C4sinh[αx] sin[βx]
(33)

Case II: λ2 > 2
√

λ1

uh
x(x) = C1 cosh[αx] cosh[βx] + C2sinh[αx] cosh[βx]

+C3 cosh[αx]sinh[βx] + C4sinh[αx]sinh[βx]
(34)

Case III: λ2 = 2
√

λ1

uh
x(x) = C1e

4√λ1x + C2xe
4√λ1x + C3e−

4√λ1x + C4xe−
4√λ1x (35)

with the auxiliary variables α and β being defined as:

α =

√√
λ1

2
+

λ2

4
(36)

β =

√√
λ1

2
− λ2

4
for Case I and β =

√
λ2

4
−
√

λ1

2
for Case II (37)

where C1, C2, C3, and C4 are constants of integration to be obtained by enforcing
boundary conditions.

5.4. Analytical Solution of the Nanobar–Substrate Medium System: Free Vibration Analysis

To obtain the analytical solution to the governing differential equation of motion
of Equation (28), the method of separation of variables is utilized. Therefore, the axial
displacement, ux(x, t), can be expressed as [59]:

ux(x, t) = φ(x)eiωt (38)

where ω represents the natural frequency of the nanobar–substrate medium system.
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Substituting Equation (38) into Equation (28) and setting qx(x, t) and P to be zero for
the free vibration analysis leads to the following equation for the non-trivial solution φ(x):

∂4φ(x)
∂x4 − ψ1

∂2φ(x)
∂x2 − ψ2φ(x) = 0 (39)

where ψ1 = (EA)L

(EA)H and ψ2 = ρAω2−ks

(EA)H represent the auxiliary parameters.

As suggested by Dinçkal et al. [61], there are two possible solution cases for the
non-trivial solution, φ(x):

Case I: ρAω2 − ks > 0

u(x) = C1 cos[β1x] + C2 cosh[β2x] + C3 sin[β1x] + C4sinh[β2x] (40)

with

β1 =

√
−ψ1 +

√
ψ2

1 + 4ψ2
√

2
; β2 =

√
ψ1 +

√
ψ2

1 + 4ψ2
√

2
(41)

Case II: ρAω2 − ks < 0

φ(x) = C1 cosh[β3x] cos[β4x] + C2 cosh[β3x] sin[β4x]

+C3sinh[β3x] cos[β4x] + C4sinh[β3x] sin[β4x]
for ψ1 < 2

√
ψ2 (42)

φ(x) = C1 cosh[β5x] + C2 cosh[β6x] + C3sinh[β5x] + C4sinh[β6x] for ψ1 > 2
√

ψ2 (43)

φ(x) = C1 cosh[β7x] + C2x cosh[β7x] + C3sinh[β7x] + C4xsinh[β7x] for ψ1 = 2
√

ψ2 (44)

with

β3 =
√√

ψ2
2 + ψ1

4 ; β4 =
√√

ψ2
2 −

ψ1
4 ; β5 =

√
ψ1+
√

ψ2
1−4ψ2√

2
;

β6 =

√
ψ1−
√

ψ2
1−4ψ2√

2
; β7 =

√
ψ1
2

(45)

6. Numerical Simulations

To assess both static and free vibration characteristics of SWCNT–substrate medium
systems, this study employs the proposed nanobar–substrate medium model to analyze
SWCNT–substrate medium systems through two numerical simulations. Each simulation
contains two analysis cases and will be presented in the following sections.

6.1. Simulation I: Static Analysis

Simulation I investigates static responses of nanobar–substrate medium systems with
two analysis cases. The first one considers only the material small-scale effect and demon-
strates the ability of the proposed model to eliminate the paradoxical response inherent
to the widely used small-scale bar model, while the second one assesses the influences of
system parameters on the effective Young’s modulus of the nanobar–substrate system.

6.1.1. Paradox Resolved

Several small-scale bar models available in the literature have shown no small-scale
effect under a constant axial-force state, and this peculiar behavior has been considered as
a paradox [62]. Therefore, the present analysis case is employed to show the ability of the
proposed model to eliminate this paradoxical response.

Figure 4 shows a cantilever SWCNT subjected to an end load Pend = 100 nN, thus
inducing a constant axial-force state. As stated by Jena et al. [63], the bulk modulus, E,
of the SWCNT is 1 TPa. The following geometric properties of the SWCNT follow those
employed by Jena et al. [63]: length, L, of 10 nm, diameter, D, of 2.17 nm, and wall thickness,
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tb, of 0.34 nm. To consider only the material small-scale effect, model parameters associated
with the surface energy effect and the surrounding substrate medium are set to be zero
(Esur = τsur

0 = ks = 0). The material length-scale parameters associated with the dilation
gradient, l0, and the deviatoric stretch gradient, l1, are set to be identical (l0 = l1) and vary
from 0.5 to 2 nm. Three bar models based on different constitutive relations are used in
this analysis case, namely: the proposed bar model, the local (classical) bar model, and
the Eringen nonlocal bar model of Limkatanyu et al. [50]. As suggested by Akgöz and
Civalek [59], imposed classical and non-classical boundary conditions for the cantilever
SWCNT are:

ux(x)|x=0 = 0 and
[
−(EA)H ∂3ux(x)

∂x3 + (EA)L ∂ux(x)
∂x

]∣∣∣∣
x=L

= Pend (46)

(EA)H ∂2ux(x)
∂x2

∣∣∣∣
x=0

= 0 and
∂ux(x)

∂x

∣∣∣∣
x=L

= 0 (47)
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Figure 4. Cantilever SWCNT subjected to a constant axial-force state: static analysis.

Figure 5 presents and compares the axial-displacement distributions obtained with
all three bar models. Clearly, the axial-displacement response obtained with the Eringen
nonlocal bar model is identical to that obtained with the local bar model. Therefore,
the Eringen nonlocal differential model fails to represent the material small-scale effect
under the constant axial-force state. Contrastingly, the modified strain-gradient bar model
proposed herein succeeds in capturing the material small-scale effect and yields a stiffer
axial-displacement response when compared to that obtained with the local bar model.
This increased system stiffness complies well with experimental evidence and analytical
results available in the literature [13,64,65].
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Figure 5. Axial displacement versus distance along the cantilever SWCNT under a constant axial-
force state.

6.1.2. Parametric Investigation of System Parameters on the Effective Young’s Modulus

Influences of several system parameters on the effective Young’s modulus, Ee f f
B , are

scrutinized in the present analysis case. A free–free SWCNT embedded in elastic substrate
medium under an end load Pend = 100 nN, as shown in Figure 6, is employed in this
parametric investigation. The material and geometric properties of the SWCNT follow those
employed in the previous analysis case. The surface property of the SWCNT is given by
Jena et al. [63]. The elastic surface modulus, Esur, is 35.3 nN/nm, while the residual surface
stress is assumed to be zero (τsur

0 = 0). The material length-scale parameter associated with
the deviatoric stretch gradient, l1, is kept constant at 1 nm. System parameters assessed in
this analysis case are the dilation-gradient small-scale parameter, l0, the SWCNT diameter,
D, and the elastic substrate stiffness, ks. The material length-scale ratio, l0/l1, varies
from 0 to 4. The slenderness ratio, L/D, ranging from 10 to 50 is employed to specify
the SWCNT diameter parameter, thus reflecting the surface energy effect. A specified
value of the slenderness ratio, L/D, can be obtained by keeping L = 10 nm and varying
D. The corresponding wall thickness, tb, of the SWCNT is equal to 0.291D, thus keeping
the ratio D/tb constant at 3.44. This specific value of D/tb is given by Anvari [66]. The
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dimensionless substrate-stiffness parameter, Ks, ranging from 1 to 100 is employed to vary
the elastic substrate stiffness, ks, and is defined as [50]:

Ks =
KsΓL2

(EA)L (48)

where Ks represents a stiffness coefficient of the substrate medium and is defined as
Ks = ks/D. This range of the dimensionless substrate-stiffness parameter, Ks, follows that
employed by Demir et al. [67].
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Classical and non-classical boundary conditions for the free–free SWCNT–substrate
system follow those suggested by Akgöz and Civalek [59]:[

−(EA)H ∂3ux(x)
∂x3 + (EA)L ∂ux(x)

∂x

]∣∣∣
x=0

= 0 and ∂ux(x)
∂x

∣∣∣
x=0

= 0[
−(EA)H ∂3ux(x)

∂x3 + (EA)L ∂ux(x)
∂x

]∣∣∣
x=L

= Pend and ∂ux(x)
∂x

∣∣∣
x=L

= 0
(49)

Employing the procedure suggested by He and Lilley [68], the effective Young’s
modulus, Ee f f

B , can be obtained in the following fashion: The end displacement, uend,
of the SWCNT–substrate medium system is first computed using the proposed model.
Subsequently, Equation (50) is solved for Ee f f

B .

uend =

Pendcoth
(

L
√

ks/
(

Ee f f
B A

))
√

ksEe f f
B A

(50)

It is noted that the right-hand side of Equation (50) defines the end displacement
analytically obtained from the local bar–substrate medium system.

The variation of the effective Young’s modulus, Ee f f
B , with all above-mentioned system

parameters is shown Figure 7. It is worth mentioning that solution case I (λ2 < 2
√

λ1) of
Equation (33) and solution case II (λ2 > 2

√
λ1) of Equation (34) are both activated in the
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present analysis case. Figure 7 shows that the effective Young’s modulus, Ee f f
B , nonlinearly

increases with increasing the dilation-gradient small-scale parameter, l0, particularly for
larger values of dimensionless substrate-stiffness parameters, Ks (stiff substrate media),
and lower values of the SWCNT slenderness ratio, L/D (stubby SWCNT). This observation
implies that the stiffening phenomenon associated with the dilatation gradient becomes
more pronounced for a stiff substrate medium and a stubby SWCNT. It is worth pointing
out that the stubby SWCNT results in lower values of the SWCNT surface area/bulk vol-
ume ratio, thus diminishing the stiffening effect associated with the surface-free energy [69].
With decreasing SWCNT diameters, D, the effective Young’s modulus, Ee f f

B , increases in
a linear fashion. Furthermore, it is observed that the variation of the effective Young’s
modulus, Ee f f

B , with the SWCNT diameters, D, is marginally affected by the dimensionless
substrate-stiffness parameters, Ks, for low values of the dilation-gradient small-scale param-
eter, l0 (l0/l1 ≤ 0.25). The implication of this observation is that when the system stiffness
enhancement is dominated by the surface-free energy, the variation of the effective Young’s
modulus, Ee f f

B , becomes invariant to the dimensionless substrate-stiffness parameters, Ks.
A similar observation was also noticed by Limkatanyu et al. [50].
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Figure 7. Variation of effective Young’s modulus with SWCNT diameter and material length-scale
parameter for various elastic substrate stiffness: (a) Ks = 1, (b) Ks = 25, (c) Ks = 50, and (d) Ks = 100.
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6.2. Simulation II: Free Vibration Analysis

Simulation II focuses on free vibration responses of nanobar–substrate systems with
two analysis cases. The first one examines the effects of material length-scale parameters
and elastic substrate stiffness on the fundamental natural frequency, while the second one
investigates the influences of the nanobar slenderness ratio (surface energy effect) and
elastic substrate stiffness on natural frequencies for the first three vibration modes.

6.2.1. Effect of Material Length-Scale Parameters on the Fundamental Natural Frequency
of SWCNT–Substrate Medium Systems

In this analysis case, a clamped–clamped SWCNT embedded in the substrate medium
shown in Figure 8 is employed to investigate the influence of material length-scale pa-
rameters on the natural frequency. The material and geometric properties as well as the
surface modulus of the SWCNT follow those employed in Simulation I. The mass den-
sity of the SWCNT is 1,370 kg/m3, as given by Jena et al. [63]. Two non-dimensional
parameters, ξ0 = l0/L and ξ1 = l1/L, are employed to vary two material length-scale
parameters associated with the dilation gradient, l0, and the deviatoric stretch gradient, l1,
while the dimensionless substrate-stiffness parameter, Ks, of Equation (48) is employed
to vary the elastic substrate stiffness, ks. The ranges of these parameters are ξ0 = 0− 0.2,
ξ1 = 0− 0.2, and Ks = 1− 10. The classical and non-classical boundary conditions of the
clamped–clamped SWCNT follow those suggested by Akgöz and Civalek [59]:

ux(0)|x=0 = 0 and (EA)H ∂2ux(0)
∂x2

∣∣∣
x=0

= 0

ux(L)|x=L = 0 and (EA)H ∂2ux(L)
∂x2

∣∣∣
x=L

= 0
(51)
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Figure 8. Clamped–clamped SWCNT embedded in the substrate medium: free vibration analysis.

Based on the properties of the SWCNT and the substrate medium employed in this
analysis case, only the solution case I (ρAω2 − ks > 0) of Equation (40) is activated.
Substituting the non-trivial solution, φ(x), of Equation (40) into Equation (39) and enforcing
the boundary conditions of Equation (51) yields the following matrix relation:

[A(ω)]C =


1 1 0 0

cos(β1L) cosh(β2L) sin(β1L) sinh(β2L)

−β2
1 β2

2 0 0

−β2
1 cos(β1L) β2

2 cosh(β2L) −β2
1 sin(β1L) β2

2sinh(β2L)




C1

C2

C3

C4

 = 0

(52)
The condition det[A(ω)] = 0 yields the following characteristic equation:

sin(β1L) = 0 ⇒ β1 =
nπ

L
(53)
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Therefore, the explicit form of the natural frequency for the clamped–clamped SWCNT–
substrate medium system can be obtained from Equation (53) as:

ωn
proposed =

√
L4ks + n2π2L2(EA)L + n4π4(EA)H√

ρAL2
(54)

with n being the vibration mode (n = 1, 2, 3, . . .).
Figure 9 plots variations of the normalized natural frequency, ξ1

ω = ω1
proposed/ω1

classical ,
for the first vibration mode (n = 1) with non-dimensional material length-scale parameters
(ξ0 and ξ1) for various values of the dimensionless substrate-stiffness parameter, Ks. The
“classical” natural frequency, ω1

classical , for the first vibration mode is obtained with the
bar–substrate medium model, in which material small-scale and surface energy effects are
both excluded. Point A shown in Figure 9 represents the normalized natural frequency,
ξ1

ω, when only the surface energy effect is considered (ξ0 = ξ1 = 0). It is observed that
the surface energy effect consistently enhances the system stiffness, thus increasing the
natural frequency (ξ1

ω > 1.0). However, this stiffening phenomenon is diminished by a
stiffer substrate medium. The value of the normalized natural frequency, ξ1

ω, deceases
from 1.098 to 1.056 when the value of the dimensionless substrate-stiffness parameter, Ks,
increases from 1 to 10. An increase in the normalized natural frequency, ξ1

ω , associated with
the material small-scale effect is also noticed in Figure 9. Both non-dimensional material
length-scale parameters (ξ0 and ξ1) enhance the system stiffness, but at different degrees
of enhancement. The system stiffness enhancement associated with the dilation gradient,
l0, is more pronounced than that associated with the deviatoric stretch gradient, l1. This
observation was noticed by Akgöz and Civalek [59] as well. However, this system stiffening
enhancement becomes less pronounced when a substrate medium becomes stiffer.
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scale parameters for various elastic substrate stiffnesses: (a) Ks = 1, (b) Ks = 4, (c) Ks = 7, and
(d) Ks = 10.
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.

6.2.2. Effect of Surface-Free Energy on Natural Frequencies of SWCNT–Substrate
Medium Systems

To assess the surface energy effect on the system natural frequency, a clamped–free
SWCNT embedded in the substrate medium shown in Figure 10 is employed in this analysis
case. The material and geometric properties as well as the surface modulus of the SWCNT
follow those employed in the previous analysis case. Two non-dimensional material length-
scale parameters, ξ0 = l0/L and ξ1 = l1/L, are kept constant at 0.1. System parameters
assessed herein are the SWCNT slenderness ratio, L/D, and the elastic substrate stiffness,
ks. The slenderness ratio, L/D, is employed to specify the SWCNT diameter parameter and
ranges from 5 to 50. A specified value of the slenderness ratio, L/D, can be obtained by
keeping L = 10 nm and varying D. The corresponding wall thickness, tb, of the SWCNT is
equal to 0.291D, thus keeping the ratio D/tb constant at 3.44. This specific value of D/tb is
given by Anvari [66]. The dimensionless substrate-stiffness parameter, Ks, of Equation (48)
is employed to vary the elastic substrate stiffness, ks, and ranges from 1 to 10. The classical
and non-classical boundary conditions follow those suggested by Akgöz and Civalek [59],
as presented in Equations (46) and (47). Following the properties of the SWCNT and
substrate medium employed in this analysis case, the solution case I (ρAω2 − ks > 0) of
Equation (40) is activated. Substituting the non-trivial solution, φ(x), of Equation (40) into
Equation (39) and enforcing the boundary conditions of Equations (46) and (47) yields the
following matrix relation:

[A(ω)]C =


1 1 0 0

− sin(β1L) Φ2
Φ1

sinh(β2L) cos(β1L) Φ2
Φ1

cosh(β2L)

−β2
1 β2

2 0 0

− sin(β1L) β2
β1

sinh(β2L) cos(β1L) β2
β1

cosh(β2L)




C1

C2

C3

C4

 = 0 (55)

where Φ1 = (EA)Lβ1 + (EA)H β3
1 and Φ2 = (EA)Lβ1 − (EA)H β3

1.
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Figure 10. Cantilever SWCNT–substrate medium system: free vibration analysis.

The condition det[A(ω)] = 0 yields the following characteristic equation:

cos(β1L) = 0 ⇒ β1 =
(2n− 1)π

2L
(56)

Therefore, the explicit form of the natural frequency for the clamped–free SWCNT–
substrate medium system can be obtained from Equation (56) as:

ωn
proposed =

√
16L4ks + 4(1− 2n)2π2L2(EA)L + (1− 2n)4π4(EA)H

4
√

ρAL2
(57)
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with n being the vibration mode (n = 1, 2, 3, . . .).
Figure 11 plots variations of the normalized natural frequency, ξn

ω = ωn
proposed/ωn

classical ,
for the first three vibration modes (n = 1− 3) with the SWCNT slenderness ratio, L/D,
for various values of the dimensionless substrate-stiffness parameter, Ks. The “classical”
natural frequency, ωn

classical , is obtained with the bar–substrate medium model, in which
material small-scale and surface energy effects are both excluded. As pointed out by
Ponbunyanon et al. [69], the bar surface area/bulk volume ratio increases with the in-
creasing bar slenderness ratio, thus rendering the surface energy effect more pronounced.
Figure 11 shows that the normalized natural frequencies ξ1

ω, ξ2
ω, and ξ3

ω increase with
the increasing slenderness ratio, L/D (decreasing diameter, D), especially for higher vi-
bration modes. This observation implies that the stiffening phenomenon induced by the
surface energy magnifies all system natural frequencies and is in good agreement with
that of Ebrahimi et al. [70]. However, this system stiffening enhancement becomes less
pronounced when a substrate medium becomes stiffer, especially for the first vibration
mode. In other words, the size-dependency induced by the surface-free energy is stabilized
by a stiff substrate medium.
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7. Conclusions

The present work proposed a novel bar–substrate medium model with the inclusion
of material small-scale and surface energy effects for both static and free vibration analyses
of SWCNT–substrate medium systems. The material small-scale effect of the SWCNT
was represented by the modified strain-gradient theory, while the surface energy effect
was considered by the Gurtin–Murdoch surface model. The Winkler foundation model
was employed to account for the interactive mechanism between the SWCNT and its
surrounding substrate medium. Within the framework of Hamilton’s principle, the system
equation of motion as well as associated initial and boundary conditions were derived in
a consistent manner. To show the essence of the material small-scale effect, the surface
energy effect, and the surrounding substrate medium on static and free vibration responses
of SWCNT–substrate medium systems, two numerical simulations were employed.

The first numerical simulation collected two analysis cases and focused on static re-
sponses of SWCNT–substrate medium systems. The first analysis case showed that the
modified strain-gradient bar model was able to represent the material small-scale effect
under the constant axial-force state, thus eliminating the famous paradoxical characteristic
of the Eringen nonlocal bar model. The material small-scale effect accounted for by the
modified strain-gradient theory led to a system-stiffness enhancement. The second analysis
case showed that the effective Young’s modulus, Ee f f

B , of the SWCNT–substrate medium
system was enlarged upon increasing the dilation-gradient small-scale parameter, l0, espe-
cially for large values of dimensionless substrate-stiffness parameters, Ks (stiff substrate
media), and lower values of the SWCNT slenderness ratio, L/D (stubby SWCNT).

The second numerical simulation contained two analysis cases and emphasized on free
vibration responses of SWCNT–substrate medium systems. The first analysis case demon-
strated that the normalized fundamental frequency of the SWCNT–substrate medium
system increased with the increasing non-dimensional material length-scale parameters,
particularly for low values of dimensionless substrate-stiffness parameters, Ks (soft sub-
strate media). However, the frequency enhancement associated with the dilation gradient,
l0, was more pronounced than that associated with the deviatoric stretch gradient, l1.
The second analysis case showed that the normalized natural frequencies ξ1

ω, ξ2
ω, and ξ3

ω

increased with the increasing slenderness ratio, L/D (more pronounced surface energy ef-
fect), especially for higher vibration modes. However, this system frequency enhancement
became less noticeable when the substrate medium became stiffer, especially for the first
vibration mode.
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