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ABSTRACT Antimicrobial Resistance (AMR) has been identified by the World Health Organisation (WHO)
as one of the top ten global health threats. Inappropriate use of antibiotics around the world and in particular
in Low-to-Middle-Income Countries (LMICs), where antibiotics use and prescription are poorly managed,
is considered one of the main reasons for this problem. It is projected that the COVID-19 pandemic will
accelerate the threat of AMR due to the increasing use of antibiotics across the world, and especially in
countries with limited resources. In recent years, machine learning-based methods showed promising results
and proved capable of providing the necessary tools to inform antimicrobial prescription and combat AMR.
This timely paper provides a critical and technical review of existing machine learning-based methods for
addressing AMR. First, an overview of the AMR problem as a global threat to public health, and its impact
on countries with limited resources (LMICs) are presented. Then, a technical review and evaluation of
existing literature that utilises machine learning to tackle AMR are provided with emphasis on methods that
use readily available demographic and clinical data as well as microbial culture and sensitivity laboratory
data of clinical isolates associated with multi-drug resistant infections. This is followed by a discussion of
challenges and limitations that are considered barriers to scaling up the use of machine learning to address
AMR. Finally, a framework for accelerating the use of AMR data-driven framework, and building a feasible
solution that can be realistically implemented in LMICs is presented with a discussion of future directions

and recommendations.

INDEX TERMS AMR, antimicrobial resistance, machine learning, LMICs.

I. INTRODUCTION

Inappropriate use of antibiotics around the world has con-
tributed to the steady rise of antimicrobial resistance (AMR)
[1]-[3] and in particular in Low-to-Middle-Income Coun-
tries (LMICs) [4]. AMR occurs as a result of genetic
changes in microbes which encode for mechanisms through
which microbes themselves can become less susceptible
or resistant to one or multiple types of antimicrobials (the
latter phenomenon known as multi-drug resistance). This,
in turn, leads to the clinical failure of treatment against many
types of infectious diseases [5]-[7]. It has been confirmed
that mortality of patients with blood infections caused by
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multi-drug resistant bacteria is significantly higher than those
where multi-drug resistant bacteria are not detected [8].
A surveillance review between the years 2002 and
2011 showed growing AMR trends in various countries
across the world [9]. Recently, AMR was identified by the
World Health Organisation (WHO) as one of the top ten
global health threats (WHO, 2019). A review commissioned
by the UK government estimated that AMR will result in
10 million yearly deaths by the year 2050, with a global
financial impact estimated to be up to 100 trillion USD.!
AMR is dependent on an array of healthcare as well as
socio-politico-economic factors. However, there is consen-
sus that overuse and misuse of antimicrobials, particularly a

1 https://amr-review.org/Publications.html
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certain type of antibiotics known as broad-spectrum antibi-
otics, is at the heart of the rise of AMR globally [10]. On this
basis, control of antibiotic use has been one of the pillars
of action plans to combat AMR, along with the promotion
of research of new antibiotics and non-antimicrobial alterna-
tives together with improved infection-control and improved
water, sanitation, and hygiene (WASH) conditions, both at
national (UK five-year National Action Plan, 2019-2024)
and global level (WHO, 2015). The framework of strategies
seeking to measure and improve the use of antibiotics to
reverse the rising rates of AMR is known as Antimicrobial
Stewardship.

The strategies underpinning antimicrobial stewardship
programmes around the world differ vastly amongst different
countries, but the common aim is to reduce antibiotic pre-
scription practices that have a detrimental effect on patient
safety and outcomes [10]. These programmes are now very
common in developed countries and are designed to ratio-
nalise the use of antibiotics by healthcare workers and to stop
the spread of multi-drug infections [11].

Despite strategies and efforts to manage AMR. It must be
pointed out that AMR rates can be significantly affected by
factors, other than overuse and misuse of antimicrobials, such
as pandemics. For example, in the context of the COVID-19
pandemic [12], it has been argued that “AMR represents a
slow-moving disaster, and that an urgent response to mitigate
its impact has become even more urgent”. It is projected
that the COVID-19 pandemic will compound AMR rates and
compromise antimicrobial stewardship activities [13]. This
is partly attributed to the increasing use of antibiotics across
the world which is expected to accelerate the threat of AMR
as suggested by recent literature [14]. A recent study found
that more than 70% of COVID-19 cases in Asia received
antimicrobial treatment [7]. Other studies also reported a
similar increase in antibiotic usage and AMR rates in several
countries and across income levels [15]—-[17]. These studies
suggest that there is an urgent need for collective efforts
to handle and manage AMR, especially in LMICs where
resources are very limited.

In addition to the traditional stewardship programs,
in recent years, the role of machine learning and deep learn-
ing became increasingly important in combating the AMR
problem [18], [19]. This is mainly due to the significant
progress in machine learning and data-driven products devel-
opment, and also due to the availability of large volumes
of structured and unstructured data, especially clinical and
experimental data [5]. Studies that use ’off-the-shelf” super-
vised machine learning algorithms to build predictive models
to inform antibiotic prescription showed some promising
results, and proved that machine learning-driven solutions
can provide the necessary tools to help inform antimicrobial
prescription and combat the AMR problem [3], [20], [21].
Despite these promising results in controlled environments
([31, [20]-[23]), existing literature suggest that the progress
in the area of using predictive modeling to support clini-
cal decisions for antibiotics prescription and antimicrobial
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management is still limited, and far from taking full advan-
tage of the significant progress and development of the data
and algorithms available [3].

This review will focus on studies that use clinical and
demographic data as well as microbiology data to train and
build supervised learning algorithms aimed at supporting
clinicians in choosing the appropriate antimicrobial treat-
ments. We expect machine learning-driven solutions to be
particularly impactful in LMICs where adoption of costly
point-of-care testing technologies is not realistic as discussed
later in this review. The main contributions of the paper are
outlined as follows:

« The paper provides an overview of the severe impact
of AMR on countries with limited resources (LMICs)
with attention to one case study flagging alarming AMR
trends in a setting facing some of the direst public health
conditions on the globe (Section II).

o In-depth technical review and evaluation of existing
studies of machine learning methods to tackle the
AMR problem with an emphasis on methods that use
patient clinical and demographic data as well as bac-
terial genotypic information to train predictive models
(Section III).

« Discussion of challenges and limitations that are consid-
ered barriers to exploiting the full potential of machine
learning and deep learning methods and scaling up their
use to impact AMR (Section IV).

« Recommendation of possible future directions toward
accelerating research and development in machine learn-
ing models to inform antibiotic prescribing and build
feasible solutions that can be realistically implemented
in LMICs (Section V).

The rest of this paper is organised as follows: Section II
presents an overview of AMR and its impact on public health,
especially in LMICs where concerns have been reported
in relation to the risk of epidemics of multidrug-resistant
infections in countries like Palestine [24], where parts of it
have been under blockade since 2007 and ranked amongst
the most densely populated places in the world (Gaza) (Pales-
tinian Central Bureau of Statistics).? In section III we present
an overview and discussion of supervised machine learn-
ing algorithms, including an in-depth technical review of
methods used to impact AMR, and a focus on learning
methods exploiting clinical, demographic and genotype data.
In Section IV detailed discussion of existing challenges is
presented, and finally, in Section V possible future directions
and conclusions are discussed.

Il. AMR AND LMICs

Immediate antibiotic treatment wherever severe bacterial
infections are suspected remains imperative for improvement
of patient outcome [25]. However, antibiotic treatment should
be specific to the microbe causing the infection. The stan-
dard laboratory methods to identify the bacterium causing

2http://www.pcbs. gov.ps/default.aspx
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the infection, as well as the antibiotic required to treat the
infection (known as phenotypic resistance testing), requires
between 24 to 48 hours, with inevitably much longer time-
frames in resource-limited settings. These long waits lead to
the lengthening of treatments using all-encompassing antibi-
otics (broad-spectrum antibiotics) which are not specific to
the microbe causing the infection [26].

While in resource-rich nations antimicrobial stewardship
programmes are being widely implemented, very little has
been accomplished in LMICs as a result of unfavourable
political and socio-economic factors and fundamentally
widespread poverty and inadequate resources. It is recognised
that in resource-limited settings, the lack of control over sales
of antibiotics and less than optimal antibiotic prescribing
practices is a key factor to the steady rise of AMR [4].

The middle east region is considered a hotspot for AMR
[27] likely as a result of suboptimal laboratory capacity, poor
implementation of antimicrobial stewardship programmes
and inadequate data and digital recording of patients infor-
mation [11]. These are the countries on or near the Ara-
bian Peninsula, including Kuwait, Saudi Arabia, Bahrain,
Qatar, Oman, United Arab Emirates, Egypt, Sudan, Iraq,
Iran, Yemen, Syria, Jordan, Palestine, Cyprus, Libya, Turkey,
and Lebanon [28]. While the socio-economic landscape in
this region differs greatly amongst different countries, gross
inequalities in healthcare provision and widespread poverty
remains a common feature across most countries, some of
which have been devastated by decades of wars and political
conflicts.

Specific concerns have been reported concerning the
risk of epidemics of multidrug-resistant infections in Gaza
[24], [29], under political blockade since 2007 and ranked
amongst the most densely populated places in the world
(Palestinian Central Bureau of Statistics).> Numerous out-
breaks of antibiotic resistance that have been documented are
likely the result of poor infection control, irrational prescrip-
tion practices, and easy access to antimicrobials [30]-[32].
Naturally, management of serious infections in this setting is
nowhere close to the standards called by most antimicrobial
stewardship programmes. The exceptional pressure on the
health care system and substandard laboratory infrastructure
lead to over-use of antibiotics as antibiotic susceptibility
testing is often not carried out at all.

A recent retrospective study of records of patients admitted
to the European Gaza Hospital, which serves patients from all
Palestinian Ministry of Health hospitals in Gaza, confirmed
arbitrary prescription of a broad range of antibiotic regimes
and little or no microbiological testing [33]. Over-use of
antimicrobials in healthcare settings adds to poorly regulated
antibiotic sales in Gaza and the Occupied Palestinian Territo-
ries, where antibiotics can be purchased without a need for a
medical prescription [11], [27]. These practices will continue
to exacerbate the current high AMR rates in Gaza [34] where
the control of other critical factors contributing to AMR

3http://www.pcbs. gov.ps/default.aspx
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such as infection control and sanitation remains a struggle.
Only recently, local health authorities have recognized the
importance of regulation of antibiotic use with colistin being
banned in the Gaza strip for animal use.

It should be noted that the development of rapid and cheap
point-of-care diagnostic tools to guide prescribing practices
in LMICs has been long advocated* as the benefit of these
technologies is likely greater in under-resourced settings
with reduced access to specialist expertise that can guide
antibiotic prescribing [10]. However, little progress has been
made in this area partly because of the general lack of inter-
est of the pharmaceutical industry in the development of
rapid diagnostics for infections.’ In this context, the parallel
development of machine learning and data-driven tools to
inform antibiotic prescribing at the point of care could make
a major contribution to overcoming irrational prescribing
practices in areas under exceptional pressure such as Gaza.
The urgent need for machine learning and intelligent methods
to be ‘put to good use in changing antibiotic practices’ was
acknowledged in the O’Neil report commissioned by the
UK.° While little has been done to develop this area of work,
the effectiveness of these methods to improve antimicrobial
prescribing in hospitals has been proven [35]. For example,
a relatively recent study in a children’s hospital in Cambodia
demonstrated the highly predictive value of simple machine
learning algorithms applied to patient data readily available
in a resource-limited setting and the superiority of these tools
over traditional and common machine learning methods such
as logistic regression models [3]. Existing literature suggests
that with basic clinical information and some demographic
patients data such as age, gender, and residential address,
good results can be achieved in terms of informing drugs
prescription and AMR management [36]-[38].

Ill. MACHINE LEARNING & AMR

Recent literature shows clearly that the use of datasets that
capture patient’s demographic and clinical data can provide
decision support tools to determine whether a bacterium is
resistant to a line particular antibiotic.

Existing data-driven methods based on machine learn-
ing approaches to tackle AMR can be broadly categorised
into 1) methods that utilise clinical and demographic infor-
mation of patients as well antimicrobial susceptibility data
[3], [20]-[22] (Section III-B) and 2) methods utilising the
whole genome- sequencing data [39]-[41] (Section III-C).
Both types of methods have shown promising results and
proved potential as valid tools to support stewardship pro-
grammes and inform antibiotic prescribing practices. How-
ever, whole-genome sequencing-based approaches will be
unlikely adopted in LMICs due to the relatively high costs
associated with this technology [42]. On this basis, the
present review will focus mostly on approaches that utilise

4https ://amr-review.org/Publications.html
5 https://amr-review.org/Publications.html
6https ://lamr-review.org/Publications.html

31563


http://www.pcbs.gov.ps/default.aspx

IEEE Access

E. Elyan et al.: AMR and Machine Learning: Challenges and Opportunities

demographic, clinical, and basic microbiological culture data.
We precede this with a quick overview of supervised learning
algorithms in the context of AMR.

A. MACHINE LEARNING

Recent development in Artificial Intelligence (Al) in areas
such as machine learning [43] and in particular in the area
of deep neural networks and deep learning [44] had sig-
nificantly improved performance in data-driven applications
across different domains. In recent years, the use of machine
learning models and advanced deep learning-based methods
is becoming increasingly common in health sciences. This
can be attributed to three main reasons. Firstly, the signifi-
cant advancement and development at the algorithmic level,
where a wide range of learning algorithms are now readily
available to use. These methods range from simple linear
regression models up to advanced ensemble-based methods
and deep neural network-based methods [45]. Secondly, the
large amount of data available can provide a rich source
for data analytics. The final reason for the widespread of
Al-driven solutions in healthcare and across other domains
is the availability of powerful computing machines that are
capable of running large-scale experiments using complex
models and a huge amount of data.

Health, in particular, has benefited greatly from the adop-
tion of Al-driven solutions [46] in many areas of clini-
cal decision making [47]-[49] and infectious disease [50].
Despite some recent and promising results in hospital settings
[3], [35], antibiotic prescribing and management is the excep-
tion, it can be argued that more work is needed in this area
to apply the recent advances in machine learning and deep
learning to tackle the AMR problem. The relatively slow
progress in this area can be largely attributed to the lack
of public datasets that captures demographic and clinical
information to drive research in the data-driven application
for AMR management. This is unlike genome-based AMR-
related datasets which can be easily accessed from the public
domain [51], [52].

Machine learning is a very broad topic that can be cate-
gorised into different types including unsupervised learning,
supervised learning, and reinforcement learning. In health
science-related practice, including decision-making in antibi-
otic prescribing, supervised machine learning is used to learn
from past observations. In a nutshell, supervised classifica-
tion and regression methods use a set of features X (input
variables) to predict a certain outcome y often referred to as
a label. Formally, the aim is to find a function that maps X
toyas h(x) : X — y. As an example, consider a dataset
A with m instances x1, x2, ..., X;;, Where each instance x; is
a feature vector representing a patient’s information and is
defined by n features (e.g. age, gender, medical history, blood
pressure, etc...) as x; = (X1, Xj2, - - - , Xin), and y; denotes the
final diagnosis of that patient (outcome or the class label).
A typical AMR work in this context is reported in [53] where
the authors used clinical, demographic, and living condition
data of patients to predict bacteria’s resistance/sensitivity to
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common antibiotics. Equation 1 depicts this scenario, and in
a learning task, the aim is to build a model that can provide a
support tool to clinicians or medical experts to support their
assessment.

X1 X2 ... Xin Vi
X21 X2 ... Xopn ..

X=1 - : .. s, Y= . )
Xnl : cer Xmn Ym

It should be noted that the quality and accuracy of learning
algorithms, and the prediction of a certain outcome given a set
of input features (Equation 1), depend on several factors. The
three key critical elements for good performance of machine
learning solutions are 1) the dataset 2) the machine learning
algorithm chosen to map the input variables to the output
3) and the evaluation method of the model’s performance.

1) DATASET VARIATIONS

A dataset that captures more variations with appropriate class
distribution often leads to better results [54]-[56]. For this
reason, a major part of the work is commonly dedicated to
preparing the dataset and hand-crafting a set of discrimi-
nating features to improve the performance of the learning
algorithms [57], [58]. For example, in [58], the authors had
to apply unsupervised machine learning algorithms to find
within class similarities, before applying a predictive model
to different health-related datasets for diagnostic purposes.
This was achieved by applying a simple clustering technique
to the data (k-means) before feeding it into the learning algo-
rithm. The motivation was to increase the dataset diversity to
improve the model’s predictive power. Results showed, that
by applying such a simple pre-processing method, accuracy
can be significantly improved, especially, in health-related
datasets.

One of the inherent and most challenging problems in
healthcare data relating to a range of clinical areas, is class-
imbalance [59]. This problem happens in supervised machine
learning when the total number of samples in a class of data is
far less than the number of samples in another class of data as
depicted in Figure 1(a). This scenario is very common in var-
ious domains, and in particular in medical datasets [60]. The
dominance of majority class instances often causes biased
performance of the learning algorithms due to the objective
to maximise the overall prediction accuracy. A high misclas-
sification error on the minority class will occur as a result.
The situation becomes more concerning when the minority
class is the class of interest with a high error cost, wherein
in this case, the minority class is realised as the positive
class whereas the majority class is referred to as the negative
class. This circumstance is often seen in the medical domain
where the availability of the positive class data is limited. For
example, consider a dataset that contains thousands of records
where each represents patient clinical characteristics (input
features) and the diagnoses (outcome/class), and only 1% of
the record is labelled/diagnosed with the particular disease

VOLUME 10, 2022
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FIGURE 1. Data class-imbalance and application of data resampling, a) original dataset b) undersampling c) undersampling from the overlapping region

and d) oversampling.

of interest. In such a scenario, the positive class will be
under-represented in the dataset, and hence would be difficult
to detect by a learning algorithm.

Antimicrobial resistance datasets as well often have the
class-imbalance problem where commonly infective agents
susceptible to antibiotics dominate the dataset when com-
pared to resistant infections [22], [61], [62]. Recent litera-
ture confirms that the imbalanced class distribution in AMR
datasets negatively affects the performance of machine learn-
ing algorithms [20], [22]. In [20], Martinez-Agiiero et al.
used machine learning to study six different bacterial species
and their resistance/sensitivity to common antibiotics drugs.
The study was carried out using more than 10,000 obser-
vations associated with antibiograms done for positive cul-
tures. While they reported relatively good predictive power
in relation to resistance of a certain bacterial species to a
particular antibiotic drug, the authors noted that machine
learning performs poorly in predicting antibiotic resistance
profiles that are least represented in the dataset, for instance,
resistance to polymixines.

Various methods to mitigate the impact of the class-
imbalance problem on the performance of machine learn-
ing algorithms have been described. As mentioned above,
one of them is data resampling, which is widely used in
the field [54]. Data resampling consists of oversampling
and undersampling. The former involves creating synthetic
minority-class samples to improve their presence in the
dataset whereas the latter is the practice of reducing majority-
class samples. A typical example is illustrated in Figure 1,
which represents a class-imbalanced dataset, where the num-
ber of negative instances is significantly in excess of the
number of positive instances, and the dataset after being
undersampled (c) and oversampled (d). Maguire et al. [62]
identified the problem of class imbalance in predicting AMR
phenotypic resistance from genomic data. Due to such an
issue, only a subset of antibiotics with a reasonable balance
of resistance was selected for the experiments, and SMOTE
[63], a well-known, long-established oversampling method
was applied to create a more balanced training data. Similarly,
in [64], Chowdhury et al. adopted existing undersampling and

VOLUME 10, 2022

oversampling methods to handle a class imbalance in predict-
ing AMR protein sequences for Gram-negative bacteria using
machine learning and achieved high accuracy.

Other approaches to deal with class-imbalanced datasets
include algorithm-level methods and ensemble-based meth-
ods. Algorithm-level methods are related to modifying exist-
ing learning algorithms to emphasise the learning more of the
minority class. A typical example of these is cost-sensitive
methods where a larger weight (cost) is associated with
misclassification of positive instances [65]. Ensemble-based
methods are combinations of data-level and algorithm-level
techniques. Hence, they will carry the benefits of both
approaches. In an AMR-related problem, Kavvas et al. [66]
proposed an ensemble SVM with adjusted class weight to
account for the imbalance of resistant and susceptible strains
in identifying signatures of AMR evolution to 13 antibiotics.
In [61], Hyun et al. followed a similar approach by using
ensemble SVM with random oversampling and undersam-
pling to improve the performance in predicting AMR deter-
minants for microbial pathogens. Similarly, Van et al. [67]
presented the use of random oversampling with XGBoost,
which is gradient boosted decision trees, to deliver fast esti-
mations of the antibiogram for Gram-negative bacteria with
highly imbalanced data.

It can be argued that most of the methods presented in
the past decade for handling the class-imbalance problem are
largely based on data sampling methods or its variants, e.g.
random oversampling, random oversampling, cluster-based
data sampling, and others [54]. Most of these data-sampling
methods mainly rely on reducing the number of majority class
instances, increasing the number of minority class instances,
or a combination of both. However, in medical-related data,
undersampling methods may cause information loss, and so
reduce the overall model’s accuracy [56].

New oversampling/ data augmentation methods appeared
recently in the literature that uses Generative Adversarial
Neural Networks (GANs) to synthesize data and improve
the learning outcomes. GANs were initially introduced by
J. Goodfellow in 2014 [68] and ever since has been success-
fully applied to generate data, in particular images and videos.
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A typical example is presented in [69] where the authors used
GANSs-based method to generate minority class instances
and handle the class imbalance. The key advantage of using
GANs-based methods is that more diverse data instances can
be obtained, unlike traditional data synthesis methods.

For additional literature on potential strategies for handling
class imbalance in any future work on imbalanced AMR-
related datasets, the reader is referred to previous studies
[70]-[72] and to [54] for a comprehensive and recent review
on class-imbalance and methods to handle it.

2) LEARNING METHODS

The fundamental element required for building a machine
learning solution that follows the pre-processing and prepa-
ration of the dataset, is the choice of an appropriate model
to fit the data. There is a wide range of machine learning
algorithms [73] and no one recipe fits all types of data.
The choice of a particular algorithm is often informed by
several factors, such as the type, size, and complexity of
the data. For example, linearly separable data can be easily
handled by a simple regression model. For more complex and
non-linear datasets Support Vector Machines (SVM) [74],
Ensemble-based methods such as Random Forests (RF) [75],
Artificial Neural Networks (ANN) [76], Deep Learning (DL)
[[44], provide better alternatives. For a systematic review of
machine learning methods used in AMR datasets captured
using mass spectrometry, the reader is referred to [77] which
also provides a gentle introduction to these models. Despite
the superior performance of complex models such as ANN,
SVM, RF, simple methods such as logistic regression (LR),
and decision trees (DT) are still common in AMR and other
health applications [3], [20], [22], [78], [79] because of their
easier interpretation (explainable models). Other common
methods include Naive Bayes (NB), which is based on Bayes’
theorem [73].

Ensemble methods such as RF and Gradient Boosting
showed superior performance over other traditional machine
learning methods [80]. These methods are constructed based
on training and combining more than one machine learning
model (e.g. SVM, Logistic Regression, Decision Tree, .. .).
Results of these different models are then aggregated to
obtain the final prediction [75].

The performance of the ensemble-based method largely
depends on the model’s diversity. The models within an
ensemble need to be diverse enough and independent from
one another. One simple approach is to train more than one
learning algorithm (e.g. SVM, ANN, LR, etc...) and aggre-
gate the predictions of each model. However, the most com-
monly used approach to diversify the ensemble is to train the
same algorithm (e.g. a Decision Tree) using different subsets
of data (diverse subsets sampled from the training set) [81].
This is often achieved by a simple data sampling method with
replacement called Bootstrap aggregating (Bagging). As can
be seen in Figure 2, using Bagging, we can obtain diverse
subsets, where certain instances can be sampled more than
one time for the same model.
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FIGURE 2. Sampling with replacement and ensemble learning.

Random Forest, developed by Leo Breiman in 2001 [75],
is the most common ensemble and has gained significant
interest by the machine learning research community due to
its performance across different complex datasets from vari-
ous domains. In one of the largest experimental studies and
when comparing almost 180 different machine learning algo-
rithms using 121 different datasets from the public domain,
RF ranked top, followed by SVM with Gaussian Kernel, and
Gradient Boosting [45]. RF generates a diversified and good
performing ensemble using two different strategies:

« First, Bagging that applies sampling with replacement to
the original training set is carried out to construct each
tree in the ensemble as can be seen in Figure 2. Using
this sampling method, it can be proved statistically that
only 63% unique instances/ observations appear in the
training set and the rest are repeated [75].

o Then, at each node split, only one subset of features
is drawn randomly to assess the goodness of each fea-
ture/attribute.

A key advantage of using RF over other methods is that
it requires minimum parameters tunning. In fact, only two
parameters need to be set, namely, the number of trees and
number of features assessed for the goodness of split at each
node in the tree. The number of trees is often set between
100 to 500, while the number of features can be either set
experimentally [57] or to (/F or log, F') where F is the total
number of features in the dataset.

Because of its superior performance and ease of implemen-
tation, RF has been widely used across a whole range of appli-
cations in life sciences [58], [82], medical diagnosis [83], oil
and gas [84], and others including its use for antimicrobial
resistance prediction [3], [20] as shown in Table 1 and in the
following section.

3) EVALUATION
Various methods are used to evaluate the performance of
machine learning models. These methods are designed to
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TABLE 1. Common ML methods used in AMR.

Work Method Data size Data types Year
Feretzakis et al. [36] Ensembles (Stacking, Boosting, ...) 11496 instances susceptibility and demographic 2021
Rawson et al. [85] SVM, NB, ANN 1186 patients demographic, microbiology, blood cultures 2021
Feretzakis et al. [21] RE, DT, LR 2307 instances susceptibility and demographic 2020
Moran et al. [86] Extreme Gradient Boosting 9352 Patients urine, blood, demographic data 2020
Chowdhury et al. [87] Support Vector Regression - movement, demographic & billing data 2020
Martinez-Agiiero et al. [20] LR, KNN, RF 2630 patients clinical and demographic data 2019
Cénovas-Segura et al. [22] LR 1393 positive Enterococci cultures  cultures and demographic data 2019
Yelin et al. [78] Gradient Boosting, LR 315,047 urine cultures and patients data 2019
Oonsivilai et al. [3] RF 243 patients blood stream infections 2018
Kulshrestha et al. [88] Association Rules - patients data 2018
Vazquez-Guillamet et al. [79] LR, DT 1618 patients patients data with sepsis 2017
Wang et al. [89] Regression Models 9000 Instances clinical and demographic data 2017
Chow et al. [90] Decision Support System 1886 patients antimicrobial prescriptions 2015
Papageorgiou and Elpiniki [91]  Heuristics / Rule-based - urine tract infection data 2012
Puuronen et al. [23] Ensembles and Features Selection 4000 patients sensitivity tests and patients data 2008

assess model performances on unseen data observations. Typ-
ical methods include holdout and cross validation. Addi-
tionally, different evaluation metrics are commonly used
in this context to measure the performance of the model
(e.g. accuracy).

a: HOLDOUT

One of the most common ways to gain insight on how well a
supervised machine learning model can generalise to unseen
examples/ data observations is by splitting the whole dataset
into two sets: training and testing sets. The training set is used
to train the model to best fit the data, while the testing set
is used to assess the performance and quality of the trained
model. Having a testing set that has not been seen or used
during the training process provides a good estimate of the
performance of the model on new data instances/ unseen
examples model [73]. This practice continues to be the most
common approach to evaluate a model’s performance.

The training process can include experimenting with dif-
ferent parameter settings, comparing different models, and
applying different pre-processing steps such as feature selec-
tion, dimension reductions, and others to improve perfor-
mance. Such a process is known as model selection. One of
the common errors that occur during this process is the reuse
of the testing set, which can lead to model overfitting. This is
a very common problem in machine learning, and overfitting
happens when the model performs well on the training data,
and its performance drops significantly on the testing/ unseen
data. Wide range of methods available in the literature to han-
dle this problem, including regularisation, data augmentation,
early stopping of the training process, and others [92].

A safer approach is to split the data into three different
datasets, namely training, validation, and testing sets. The
advantage of such a split is that the training and model
selection process is entirely separated from observations in
the testing set. However, this approach is often dependent on
the availability of sufficiently large datasets.

b: K-FOLD CROSS-VALIDATION
One of the main disadvantages of the hold-out method is
its sensitivity to the way the dataset is partitioned. In other
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words, the model will be biased toward the way the training
and validation sets are partitioned, and its performance will
vary accordingly. When the dataset is limited, then a small
validation set won’t provide a good estimate for the model’s
performance. Therefore, one solution to such scenario is to
use K-fold cross-validation. The K-fold cross validation, also
known as repeated K-fold cross validation, is another com-
mon approach to split the data. Here, the dataset is randomly
split into k folds where k-7 folds are used for training the
model, and the other one is used for testing. The procedure
is then repeated k times, resulting in k different models, and
an average performance of all the models is then calculated.
This approach provides better estimates of model’s perfor-
mance on unseen data observations. A major drawback of
this approach is the need for more computing power, as the
number of training runs that must be carried out increases by
a factor of K [43].

¢: STRATIFIED K-FOLD CROSS-VALIDATION

A widely-used variant of K-fold cross-validation is stratified
K-fold cross-validation. The splitting procedure is similar
to the repeated K-fold cross-validation except that the class
distribution of the dataset is preserved in the splits. That
is, each fold will have the same proportions of samples in
each class as in the original dataset. Hence, the stratified
K-fold cross validation will be more a suitable method for
classification tasks with imbalanced class distributions [93].

d: LEAVE-ONE-OUT CROSS-VALIDATION

Another common cross-validation technique is leave-one-out
cross-validation (LOOCYV). LOOCYV is basically a config-
uration of K-fold cross-validation where K is equal to the
number of instances in the dataset. In each fold, one instance
is left out as the testing instance while all other instances
are used for training the model. The performance of the
model is then calculated from the average performance off
all folds. LOOCYV produces a reliable and unbiased estimate
of model performance; however, it is computationally expen-
sive. Hence, it will be a good choice when the dataset is not
too large or a strict model estimation is required.
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e: JACKKNIFE CROSS-VALIDATION

The process of Jackknife cross-validation is similar to
LOOCV. The only difference is that in Jackknife cross-
validation, in each fold, the model is evaluated based on the
kept samples, not the left-out sample. The method is simple,
but computationally expensive and may not be suitable for
large datasets.

It should be pointed out that all these validation methods
aim at providing an accurate and non-biased estimate of the
model’s performance on unseen data, and the choice of which
validation method to use is largely depending on the problem
and the size of data. A technical discussion on different
model’s validation methods can be found at [94].

f: EVALUATION METRICS

Various evaluation metrics are used for evaluating ML
model’s performance. The most obvious and common one
is accuracy, which can be simply defined as the number of
correctly classified examples divided by the total number of
examples in the testing set and is defined as in Equation 2

TP + TN .
accuracy =
Y= TPLFN + 1IN + FP

where TP denotes a True Positive instance, for example,
adata instance representing a bacterial species that is resistant
to particular antibiotic, while TN denotes a True Negative
instance (bacterial species sensitive to a particular antibiotic).
However, for modelling of datasets with imbalanced class
distribution, such as AMR-related data, accuracy can be a
misleading metric, and other metrics are used to provide a
better estimation of the model performance [95]-[98].

In AMR-related datasets, where the data are often hugely
imbalanced [20], [22], it is crucial to assess the model per-
formance in terms of detecting the class of interest (pre-
diction of resistance of a certain bacterial species to an
antibiotic). Therefore, in addition to accuracy, metrics that
are often reported in AMR-related datasets are sensitivity,
often referred to as the True Positive Rate (TPR) or recall
as defined in Equation 3, and specificity which captures the
True Negative Rate as defined in Equation 4

o TP 3
sensitivity = TP+ FN

ificity = ol “)
specificity = IN T FP

Balanced accuracy (Equation. 5) and G-mean (Equation 6)
are also common metrics to evaluate model’s performance,
where balanced accuracy is the arithmetic mean of the accu-
racy over each class in the dataset [99]-[102], while the
G-mean represents the geometric mean of sensitivity and
specificity.

balanced accuracy = Sensiivity —; specificity o)

G — mean = \/speciﬁ'city * sensitivity  (6)

Area Under the Curve (AUC), harmonic mean (F1-score)
(Equation 7) and other metrics that aim to capture the overall
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performance of the model across all classes are often used in
AMR-related studies as explained in Section III-B. F1-score
or F measure/ score is a common metric for assessment of the
model performance in medical datasets by combining both
precision and recall of the model into one measurement:

precision X recall
Fi =2x — (7
precision + recall

It should be noted that the formulas above (e.g.
Equations 2, 3, 4, . ..) are often multiplied by 100 to obtain
results in percentage format. For additional discussion of
these various metrics the reader is referred to [54].

B. DEMOGRAPHIC AND CLINICAL DATA
Standard practices to detect AMR are based on a microbi-
ological culture of clinical samples performed in dedicated
diagnostic laboratories which require up to 72 hours [103].
Using standard laboratory methods this time for identifying
the bacterium causing an infection as well as the antibiotic
required to treat can be reduced 24 hours. A reduction of this
time frame is critical for the detection of multidrug-resistant
infections requiring patient isolation and for clinicians to
minimize empirical prescribing and initiate targeted antimi-
crobial therapy as quickly as possible [20]. Machine learning
[43] provides a promising solution for an accurate prediction
tool to inform the physician’s decision-making process. How-
ever, a recent systematic review [104] confirmed the clear
gap between the availability of large volumes of structured
and unstructured data to train predictive models, and the
use of predictive modelling to support clinical decisions for
antibiotics prescription and antimicrobial management [3].
It also confirmed the urgent need for the development of an
evidence-based framework for informing and reporting clin-
ical decision support systems for antimicrobial management.
Recent literature shows several attempts to utilise data for
building machine learning algorithms to improve antibiotic
prescribing practices. A recent study [3] shows that using
“off-the-shelf” machine learning algorithms trained on a rel-
atively small patient dataset (243 patients with blood stream
infections) can provide an informed prediction on antibiotic
susceptibilities to guide antibiotic prescribing practices. It has
been widely reported that most machine learning algorithms
outperform the commonly used logistic regression models.
Random Forest [75] ranked top in comparative studies.
Interestingly, the results showed that input features such as
time (from admission to blood culture), patient age, and
how the infection was acquired (hospital vs community)
were the most important covariates for predicting suscep-
tibility. It should be noted that such information can eas-
ily be recorded if not already available at most points of
care. Despite the relatively small dataset used in the exper-
iments, this study [3] shows clearly that good results can be
obtained with a fairly straightforward application of a suite
of machine learning algorithms. In other words, no exten-
sive data pre-processing features engineering, or algorithmic
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modification/ optimisation were carried out, which shows
clearly the potential use of machine learning in this context.

Feretzakis et al. developed a clinical decision support tool
to predict antimicrobial resistance and inform the appropri-
ate choice of antibiotic treatment [36]. A dataset of 11,496
instances representing 499 patients was used in the devel-
opment of different Ensemble-based learning methods. The
dataset contains the previous susceptibility testing such as
Gram stain, susceptibility results, and with some patients,
demographic information including age and sex, and accu-
racy ranging between 75.5% to 76.9% was reported using
stacked ensemble-based method. Unlike the majority-voting
approach in bagging (e.g. RF), stacked ensemble constructs
the ensemble by training the model to perform the aggrega-
tion of the predictions of the different models [105]. It should
be pointed out that these results were achieved without con-
sidering the patient’s clinical information, such as the source
of infection, presence of active infection, and other factors.
Furthermore, the authors had to apply oversampling methods
using variants of SMOTE to handle the class-imbalance in the
dataset.

Martinez-Agiiero et al. [20] used clinical and demo-
graphic data as well as data from cultures and antibiograms to
develop machine learning models to identify antibiotic resis-
tance profiles of bacteria isolated from patients in intensive
care units. The authors explored several machine learning
algorithms including Logistic Regression, k-Nearest Neigh-
bour (KNN), and RF. A dataset representing information
of 2630 patients was used in the study to determine the
resistance of Pseudomonas to six families of antimicrobials:
Aminoglycosides (AMG), Carbapenemics (CAR), Fourth-
generation Cephalosporins (CF4), Broad-spectrum antibi-
otics (PAP), Polymixines (POL) and Quinolones (QUI).
Promising results were shown in terms of accuracy reaching
90% in some cases (QUI), and FI-score ranging between
58% and 90%. The authors reported various pre-processing
steps before applying machine learning algorithms. These
include features selections and engineering to reduce the
number of features in the data, and the handling of class
imbalance using undersampling-based methods, aiming at
reducing the number of majority class instances in the
dataset. It is worth pointing out that, undersampling methods,
although easy to implement and can lead to better results in
some domains, often cause information loss, and may result
in reducing the overall accuracy of the model [54], [56],
especially in medical-related data.

Similarly, Feretzakis ef al. [21] used demographic infor-
mation and Gram-stain data, and other clinical patients char-
acterising features to inform the choice of antibiotics in
intensive care units. A dataset representing patients admitted
to the intensive care units in a Greek hospital was created
over a period of two years. Features such as age, gender,
sample type, and Gram stain were used as predictors of
antimicrobial susceptibility. Using a dataset of 2307 instances
and an open-source java-based framework [106], the authors
built an experimental framework utilising different methods
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including RF, Decision Trees, SVM, KNN and Multilayer
Perceptron (MLP). MLP and Decision Trees achieved top
performance in terms of F'1 —Score, while RF ranked top with
respect to area under the curve (ROC). It should be pointed
out that the authors in this work used data from the micro-
biology laboratory that already exists in the hospital, and
were able to achieve results that allow anticipation of culture
sensitivity results from the labs. These results again suggest
that readily available clinical and antimicrobial susceptibility
data can be used to predict resistance and provide a decision
support tool to clinicians. This approach is clearly much less
resource-consuming than machine learning and deep learning
methods that employ genome-based data [39]-[41], [107]
which proved to be very accurate, yet expensive and more
difficult to implement.

Canovas-Segura et al. [22] used a range of machine learn-
ing algorithms to build predictive models for antimicro-
bial resistance using different learning algorithms including
Logistic Regression, Decision Trees and Rule-based models,
implemented using the caret-package in R [108]. The motiva-
tion behind these choices, is the use of models that can be eas-
ily interpreted, unlike RF, MLP, and other more complicated
models. In implementing the Logistic Regression, the authors
used a regularisation approach (Least Absolute Shrinkage and
Selection Operator) to account for overfitting and improve the
model’s generalisation. A dataset representing 1393 positive
Enterococci cultures was used for evaluation purposes. Sim-
ilar to other health-related datasets, the dataset used in this
experiment was imbalanced, and the authors applied random
oversampling to obtain a balanced dataset. The authors also
used a sliding window technique to account for possible con-
cept drift (i.e. considering more recent examples to be more
relevant). Using Area Under the Curve (AUC) to evaluate the
models, Logistic Regression and oversampling with sliding
window achieved the best results of 0.79.

In [88], the authors built a model to predict the antimicro-
bial susceptibility of clinical bacterial isolates. Due to the
lack of historical data, they used the results of the antibi-
otic susceptibility test for evaluation and utilised association
rules to perform the predictions. Relatively high accuracy
was reported (between 85% to 90%) but no details of the
dataset (for example the size of the data, class distribution)
and no evaluation metrics other than accuracy were provided.
Furthermore, association rules, and as the name suggests
are rule-based mining methods, that may not generalise on
unseen examples in this context, unlike other complex mod-
els, for example, ensemble-based methods.

Concept drift is an inherently challenging problem,
in particular when handling and analysing streaming or
non-stationary data [109], where data may evolve or change
over time. Puuronen efal. [23] used Ensemble Learning
methods with local features selection to predict the sensitivity
of a pathogen to an antibiotic based on data about the antibi-
otic, the isolated pathogen, and the demographic and clinical
features of the patient. To evaluate the proposed methods,
data collected over a period of two years (2002 to 2004)
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representing more than 4000 patients were used. Each record
of the data represents one antimicrobial susceptibility test
which includes the isolated pathogen, the antibiotic panel
used in the test, and the result of the test (sensitive, resistant).
Demographic features (sex, age) and clinical information
such as department, days spent in the ICU, days at the hos-
pital, were used to build the predictive model. The proposed
methods were implemented using an open-source Java plat-
form [106] and the results show that features selection can
improve the performance of ensemble learning in this context.
It should be noted, however, that a period of two years (period
of the study), may not pose a challenge in terms of concept
drift, and therefore studies over longer periods are needed.

To overcome the problem of ’empirical’ antimicro-
bial treatment, in the absence of susceptibility testing,
Yelling et al. [78] used demographic data (age, gender, home
residence), date of sampling, past urine culture results, and
patients history of drug purchases to build a predictive
model using Gradient Boosting and Logistic Regression.
A dataset of more than 700,000 records representing 315,
047 patients were used for evaluation purposes. Findings
showed strong associations of AMR with demographic infor-
mation of patients, past urine culture, and their history of drug
purchase.

Elpiniki [91] proposed a fuzzy-based method for recom-
mending appropriate antibiotic treatment for uncomplicated
urinary tract infections. A set of heuristics (hard-coded rules)
based on clinical data was used to build the system. Typical
rules used in this work include conditions of patient’s age and
their allergy to a particular drug. The overall accuracy of 86%
was reported. However, the hard-coded rules used and the
size of the dataset (38 patients) make it difficult to assess the
model performance across unseen and more diverse patient
datasets.

Moran et al. [86] used a dataset of 9352 patients with
15695 admissions collected over six years in Birmingham
city-UK to predict the presence of antibiotic resistance to
co-amoxiclav and piperacillin/tazobactam. The dataset used
contains information about urine and blood cultures, demo-
graphic and prescribing data. The authors used Extreme Gra-
dient Boosting (XGBoost), another ensemble learning-based
method [110], to build the predictive model. Comparable
results with medical staff selection of antibiotics for patients
were reported. Interestingly, the authors reported that the
model was performing better on urine cultures data com-
pared to blood cultures. AUC for piperacillin/tazobactam
and co-amoxiclav were 0.70 and 0.71, respectively, for urine
culture, while for blood cultures AUC values were 0.66 and
0.67, respectively.

Vazquez-Guillamet et al. [79] used stepwise Logistic
Regression with backward elimination and Decision Trees
to predict antimicrobial resistance in Gram-negative bac-
teria. Three types of antibiotics were considered in this
study piperacillin-tazobactam (PT), cefepime (CE), and
meropenem (ME) using a dataset representing 1618 patients
with sepsis caused by Gram-negative bacteria. The model
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achieved AUC values of 0.68, 0.63, and 0.83 for PT, CE, and
ME, respectively. The authors reported that with simple fea-
tures, decision trees provide a potential solution to distinguish
patients at low, intermediate, or high risk of resistance to
PT, CE, and ME. Clearly, the results reported are not high
but show the potential use of machine learning to inform
antibiotic prescribing and practices, and suggest that with
larger and more diverse datasets, performance comparable
to clinicians can be achieved.

Chow et al. [90] presented a study to assess the impact
of using ’Antibiotic computerised decision support systems’
(CDSSs) on antimicrobial management and prescriptions.
Methods used are based on rule-based algorithms to provide
guidance on antibiotic selection and dosing, and were devel-
oped based on hospitals antimicrobial stewardship commit-
tee. Using a dataset of 1886 patients, 25% of which received
antibiotic treatment based on CDSSs recommendation, they
showed that CDSSs reduced the mortality risk of patients
under the age of 65, and without increasing the risk for
older patients.It should be pointed out that the authors used
only first prescription for ’empirical therapy’ per patient
during the study period (between October 2011 and Septem-
ber 2021), in other words before of the infection-causing
microorganism.

To inform antimicrobial prescribing practices, the authors
of [87] proposed a machine-learning-based approach to
assess Antimicrobial Utilisation (AU). A dataset collected
from patient health records was used, where antimicrobial
information, movement data, demographic, and billing data
over a period of two years were used to build the machine
learning models. Extensive features engineering were applied
to the data. This includes removing duplicates, removing
highly correlated features, using statistical methods (e.g. chi-
squared test) to remove redundant categorical features, and
so on. Several experiments using various learning algorithms
were carried out, and Support Vector Regression and Cubic
Regression Models proved to be superior over other machine
learning methods in this context.

Wange et al. [89] used multivariate regression to under-
stand the relation between antibiotic usage and antibi-
otic resistance in hospitals using a dataset of more than
9000 isolates collected from 37 hospitals. Data used in
the regression model included antibiotic resistance indices,
hospital type, patient-days, and antibiotic types, and the
primary outcome (label) is antibiotic susceptibility. Results
showed an unexpected increase in antibiotic susceptibility for
hospital-specific antibiotic usage.

In an attempt to mitigate the risk of antimicrobial resis-
tance for COVID-19 patients, Rawson et al. [85] presented
a method to predict bacterial infection in hospitalised
COVID-19 patients. The authors used demographic and
microbiology data of 1186 patients (60% COVID-19 posi-
tive). A 10-fold stratified cross-validation used to train Gaus-
sian Naive Bayes, SVM, and ANN models. SVM and using
21 commonly available blood tests variables showed superior
performance over other models.
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Despite the relatively small size of the datasets used in the
literature and the limited number of patients (between 2000 to
10,000), it is evident that machine learning algorithms based
on demographic and clinical data provide a promising tool
to enhance antibiotic prescribing practices. In addition, it is
clear that certain features proved to be extremely useful in
building predictive models. In particular, age, gender, how
the infection were acquired, time of admission, and others.
It should be also noted, most of the clinical and demographic
data used in the work above, is readily available at hospi-
tals, or can be easily collected and recorded, which provides
unique opportunity to help address the AMR problem.

C. BACTERIAL GENOMIC DATA

In recent years, promising results were reported using bac-
terial genome-based machine learning methods, mainly due
to the increasing availability of whole-genome sequence
datasets [6]. Several methods showed promising potential as
a decision support tool for clinicians [6], [39]-[41], [111].

Zhichang et al. [6] used SVM and Set Covering Machine
(SCM) models to predict the resistance of the five drugs
(Tetracycline, Ampicillin, Sulfisoxazole, Trimethoprim, and
Enrofloxacin). Input data included genomes of the isolates
and the reference genes, and an accuracy greater than 90%
was reported on the testing sets.

Similarly, Nguyen, et al. [39] used a dataset of almost
5000 non-typhoidal Salmonella genomes collected over a
period of 15 years in the US to train XGBoost model for
predicting the Minimum Inhibitory Concentration (MIC)
for 15 antibiotics and reported an average accuracy
of 95%.

Moradigaravand et al. [40] used different machine learn-
ing models to predict resistance to four different lines of
antibiotic drugs using genome sequences of Escherichia
coli strains. Results showed that decision trees and gradi-
ent boosting (ensemble-based method) consistently outper-
formed other methods with the highest accuracy on the testing
set reaching 91%.

Current evidence would suggest that machine learning
methods based on genomic data provide superior results
over approaches based on clinical data. This can be partly
attributed to the several datasets that are available in the
public domain. For example Antibiotic Resistance Genes
Database (ARDB) [51], and the Comprehensive Antibiotic
Research Database (CARD) integrates disparate molecu-
lar and sequence data [52]. A mini-review that appeared
recently [18] showed that a combination of machine learning
algorithms and lab testing not only accelerates the process
of discovering new antimicrobials but also produces accu-
rate results that outperformed traditional methods. However,
whole-genome sequencing is relatively costly and unlikely
to be available in LMICs for diagnostic purposes, unlike
demographic, clinical, and antimicrobial susceptibility data
often routinely available through hospital and laboratory
registries.
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IV. CHALLENGES & OPPORTUNITIES

The latest developments in the field of machine learning and
the availability of large volumes of structured and unstruc-
tured data to train predictive models are expected to advance
existing practices across a range of healthcare domains
including control of antimicrobial prescribing [107]. Recent
literature shows that the training of machine learning mod-
els to use readily-available information at medical facilities
such as patient demographic, clinical, and microbiological
data provide a promising and inexpensive solution to inform
antibiotic prescription practices and in turn contain the AMR
problem.

A. CHALLENGES

Despite the recent attempts to use machine learning to predict
antimicrobial resistance, the application of machine learn-
ing in this context is still limited. Existing research shows
some key barriers to taking full advantage of the significant
progress in the area of machine learning and applying it to
tackle AMR at the local and global levels. Key challenges
based on the reviewed literature be outlined as follows:

e Machine learning and deep learning methods largely
depend on data availability and data quality. Unfortu-
nately, most attempts either use limited and proprietary
datasets (not available in the public domain), or datasets
available to a particular geographic area. This makes
it difficult to benchmark and compare different meth-
ods. To accelerate research and development in this
area, datasets need to be made available to the pub-
lic domain after meeting all ethical and legal require-
ments. In particular, data related to cultures, isolates, and
corresponding demographic and clinical data. Existing
work shows promising results in informing antibiotics
prescription and management. However, the relatively
small datasets used (e.g. 38 patients [91], 243 patients
[31, 499 patients [36], ...), makes it difficult to assess
how these solutions can be generalised to unseen data. In
other words, larger, and more diverse datasets need to be
created and made available in the public domain, similar
to bacterial genomes with AMR-related datasets, were
several of these already available on the public domain
[51], [52], [107].

« The inherent problematic characteristic of the data itself,
and in particular the class imbalance or the skewed rep-
resentation of data. In AMR datasets, this is a common
problem [20], [22], and therefore such imbalance must
be handled before modelling the data to avoid biased
results. Various methods exist in the literature that rely
on data sampling methods or algorithmic modifications
can be used to improve the quality and data distribu-
tion [54]. However, it should be noted also that most data
sampling-based methods, can lead to information loss
and reduce the overall accuracy of the model. In par-
ticular, if undersampling based methods were applied
to reduce the data imbalance [56]. Data oversampling
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methods are common approaches that are also exten-
sively used to handle the imbalance by synthesising
more data instances. Methods such as SMOTE [68] or
its variants [112]. However, the flawed application of
these methods can lead to overfitting [113]. Ongoing
recording of data at the points of care can help build a
rich dataset that is more diverse and more representative
of patients’ demographic and clinical information.

o Concept drift is another challenging problem [114],
in particular when handling and analysing streaming
or non-stationary data [109]. Concept-drift means that
data evolve or change over time, a likely feature of
AMR datasets, given that bacteria develop resistance to
antimicrobials over time.Existing work showed promis-
ing results in terms of accounting of this challenge
[22], [23] using various machine learning methods.
However, data collected over longer periods of time
would provide a unique opportunity to study bacte-
ria resistance over time, as well as push the research
boundaries in a very challenging machine learning topic
(detecting concept drift)..

o The significant progress that took place in the area of
machine learning, can be largely attributed to the use of
more complex models. Some of these complex models
are even considered black boxes, especially DL-based
methods. [115]. In the medical domain, and related
applications such as AMR, explaining and understand-
ing the model’s outcome is important. Simple models
such as Logistic Regression and Decision Trees are eas-
ier to understand, and results can be easily interpreted.
Literature also shows that such methods can achieve
reasonable results with limited clinical and demographic
data [22], [79]. However, and as can be seen in Table 1,
kernel-based models such as SVM, or ensemble-based
methods such as RF, proved to be more accurate in
AMR settings, although at the expense of results under-
standing and interpretation. In other words, there is a
trade-off between performance, results understanding,
and the model’s explainability. For an extensive review
of explainability methods, the reader is referred to [116].

It should be noted that almost all of the aforementioned
challenges are related to data quality and data availability as
well as the lack of coordinated efforts between experts from
different domains (e.g. machine learning community, medical
staff, and government and regulatory bodies) make the clin-
ical application of data-driven solutions that utilise machine
learning a distant prospect. Such coordination between the
different stakeholders can also help streamline the process of
ethical approvals, patient’s privacy, and other ethical consid-
erations [117].

B. OPPORTUNITIES

The role of machine learning may prove critical in the fight
against AMR. Machine learning-based methods proved capa-
ble of significant predictive power to inform rational and
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FIGURE 3. Machine learning-driven framework.

targeted antimicrobial prescribing choices that will minimize
misuses of antibiotics. To scale up and accelerate research and
development in this area and make a contribution to address-
ing this global threat to public health, machine learning and
data-driven solutions must become incorporated in the strate-
gies underpinning Antimicrobial Stewardship programmes
across different countries.

Figure 3 shows a schematic diagram for a possible pipeline
of work that could be part of any antibiotics stewardship pro-
gramme. This includes strategies for collecting, recording and
digitising demographic, clinical, and microbiological data.
Such registries can provide a rich source for the creation of
large, diverse, and rich datasets and unique opportunities to
accelerate research and development of data-driven solutions
for AMR-informed prescription and management.

Continuous collection and recording of relevant data will
help train and deploy accurate predictive models based on
supervised machine learning algorithms. The literature so
far shows clearly that even off-the-shelf machine learn-
ing algorithms provide reasonable results. We expect an
improved performance by predictive models based on larger
and more diverse datasets. The wide range of open-access
tools that implement different advanced supervised learning
algorithms, for example, R (e.g. caret package) [108], and
Python (scikit-learn library [118]) facilitates the adoption
of such strategy in resource-limited countries by reducing
infrastructure costs associated with data collection, storage,
and machine learning solution development and deployment.

A key element to the successful implementation of such
an ambitious framework is a collaborative approach between
medical staff and machine learning specialists. As shown in
Figure 3, data collection and model training and evaluation
are followed by validation by medical staff before models
are refined and improved accordingly. Such an iterative and
collaborative approach will provide a large and accurately
labelled dataset that can be also a very rich source for pushing
the research boundaries for the application of state-of-the-art
machine learning algorithms in AMR and beyond.

V. CONCLUSION
AMR is considered one of the top ten global health threats
according to WHO. In response to this growing threat,
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resource-rich countries adopted and implemented antimicro-
bial stewardship programs to manage the use and prescription
of antibiotics. However, in LMICs where AMR rates are
the highest, very little has been done to combat AMR as a
result of unfavourable political and socio-economic factors,
widespread poverty, and inadequate resources.

Recent development in the field of machine learning and
deep learning provides a unique opportunity to improve
existing practices in relation to managing and controlling
the use of antibiotics and combating AMR. In this paper,
we presented a critical and in-depth technical review of
recent studies that used machine learning-driven solutions
to combat AMR. The review shows clearly that using off-
the-shelf learning algorithms can provide a better and more
informed approach to antibiotic prescribing. These promising
results were achieved despite the relatively small datasets
used for training the models, and the simple learning methods
that were used such as Logistic Regression and Decision
Trees.

Machine learning solutions can provide a data-driven
framework to improve antibiotic prescribing practices in
LMICs where management of AMR remains most challeng-
ing. Relevant datasets required to train machine learning
models to inform antibiotic prescribing are readily available
at most points of care (e.g. demographic and clinical infor-
mation of patients), and were not available, collection and
digitisation of such datasets is neither technically challenging
nor expensive. In addition, open-source platforms can then
be used to build and deploy such solutions. Therefore, the
application of such solutions in LMICs is relatively inexpen-
sive and provides a unique opportunity to LMICs countries to
handle such a threat.

The paper also presented and critically discussed technical
and practical barriers to the scale up the use of machine
learning-driven solutions to combat antimicrobial resistance.
These include data-related challenges such as the size and
the diversity of datasets and concept drift. We also high-
lighted potential factors hampering the clinical application
of machine learning-driven solutions and suggested a frame-
work that brings together policy/ decision-makers, medical
experts and machine learning engineers to work together
toward the integration of intelligent solutions with antibiotic
stewardship programmes.

Finally, a future direction towards more coordinated efforts
between the different stakeholders and ongoing record-
ing and monitoring of AMR-related data is presented in
this paper. Such data can be the driving force to manage
and minimise the threat of AMR, taking into considera-
tion, that existing literature shows that basic demographic
information of the patients (e.g. age, gender, residential
information, and access to sanitation facilities), along with
clinical information such as times of admission to hospitals,
lengths of stay, source of infection, antibiotic received and
others, proved to be powerful features, and even with *off-the-
shelf” machine learning algorithms, reasonable results were
achieved.
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