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Abstract

Vehicular Sensor Networks (VSN) introduced a new paradigm for modern transportation systems by improving traffic man-
agement and comfort. However, the increasing adoption of smart sensing technologies with the Internet of Things (IoT) made
VSN a high-value target for cybercriminals. In recent years, Machine Learning (ML) and Deep Learning (DL) techniques
attracted the research community to develop security solutions for IoT networks. Traditional ML and DL approaches that
operate with data stored on a centralized server raise major privacy problems for user data. On the other hand, the resource-
constrained nature of a smart sensing network demands lightweight security solutions. To address these issues, this article
proposes a Federated Learning (FL)-based attack detection framework for VSN. The proposed scheme utilizes a group of
Gated Recurrent Units (GRU) with a Random Forest (RF)-based ensembler unit. The effectiveness of the suggested frame-
work is investigated through multiple performance metrics. Experimental findings indicate that the proposed FL approach
successfully detected the cyberattacks in VSN with the highest accuracy of 99.52%. The other performance scores, precision,

recall, and F1 are attained as 99.77%, 99.54%, and 99.65%, respectively.
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Introduction

The rapid advancements in vehicular technologies intro-
duced a number of innovative and intelligent sensors for
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deployment in modern vehicles [1]. These sensors help the
drivers to recognize traffic and road signs efficiently, mon-
itor the roadways, reduce collision risks, and provide an
accurate estimation of the distance between the vehicle and
surrounding objects [2]. Vehicular Sensor Networks (VSN)
offer a smart channel to establish communication between
vehicular sensors and Roadside Units (RSUs). The rapid
growth of VSN, the complexity of the architecture, the diver-
sity of communication, and the high mobility of vehicles
make these networks vulnerable to several cyberattacks [3].
These attacks can vary according to the deployed sensing
technologies in VSN. The cyberattacks in VSN can be cate-
gorized into inter-vehicle attacks and intra-vehicles attacks.
The inter-vehicle attacks mainly target the communication
among vehicles and RSUs, and intra-vehicle attacks aim to
destroy the communication among smart devices within a
vehicle. Inter-vehicle attacks are usually considered to be
more dangerous as compared to intra-vehicle attacks [4].
To mitigate these cyberattacks, an Intrusion Detection
System (IDS) is one of the most popular and effective secu-
rity approaches that prevent multiple types of cyberattacks
in VSNs [5]. Through the communication of smart sensors
with RSUs and other vehicles, IDS provides a powerful
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monitoring capacity to recognize suspicious activities and
information sharing [6]. In this context, Machine Learn-
ing (ML) and Deep Learning (DL) techniques utilized with
massive sensor datasets can produce promising results [7,8].
These techniques have been extensively used for the devel-
opment of IDSs for VSNs [9]. Here, we present some latest
studies leveraging ML/DL approaches for attack detection
in VSNs. Zhang et al. [10] introduced a privacy-preserving
ML-based collaborative IDS for vehicular ad-hoc networks
(VANET). The suggested scheme deploys the alternating
direction framework of multipliers to a class of empirical risk
minimization problems for intrusion detection in a vehicular
network. Researchers investigated their model by conduct-
ing extensive experiments on the NSL-KDD dataset. Alladi
et al. [11] presented an Artificial Intelligence (Al)-based
IDS for vehicular networks. The proposed model includes
Deep Learning Engines (DLEs) for detecting and classifying
cyberattacks in road traffic. The authors in this work deployed
these DLEs on multi-access edge computing servers. The
experimental findings demonstrated the effectiveness of the
proposed framework. Dealing with a massive amount of
constantly growing vehicular data is a critical challenge
for IDSs. In this context, Bangui et al. [12] developed a
Random Forest (RF) algorithm and a posterior detection-
based model to improve the attack detection efficiency of
IDSs. The obtained results indicated that the proposed model
significantly enhanced the cyberattack detection accuracy
compared to classical IDSs. Rajaetal. [13] proposed a secure
and private collaborative IDS to mitigate the security con-
cerns in VANETS. In the proposed scheme, a distributed ML
model utilized the potential of intra-vehicle collaboration in
the learning process to enhance the scalability, accuracy,
and efficiency of the proposed IDS. The performance of
the suggested approach was also compared with several ML
classifiers. The simulation results showed that the suggested
scheme outperformed the existing proposed methods. Ashraf
et al. [14] presented a DL-based IDS for Intelligent Trans-
portation Systems (ITS). The authors in this work deployed
a Long Short-Term Memory (LSTM) autoencoder algorithm
to recognize the malicious activities in vehicular networks.
The suggested scheme was evaluated using the UNSW-NB 15
dataset. The experimental results proved the higher attack
detection efficiency of the proposed scheme compared to
eight well-known ML-based IDSs.

Limitations of existing studies

Several improvements have been made to enhance the IDSs
for vehicular networks in the studies mentioned above.
However, traditional ML-based IDSs face several inher-
ent challenges in modern vehicle security applications, as
described below [15]:
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— Large volumes of data must be sent from sensors to
a distant server, which necessitates additional network
traffic encoding and transmission time. Consequently,
low bandwidth may result in poor data transmission effi-
ciency. Furthermore, cloud servers are frequently located
distant from sensors, requiring data to transit via several
edge nodes. As a result of the long-distance data trans-
mission, a VSN with multiple sensor nodes is unable
to achieve real-time and high Quality of Service (QoS)
expectations. As a result, the typical cloud-based archi-
tecture used with the traditional-based IDSs is unsuitable
for meeting the aforementioned objectives.

— In the traditional centralized model-training systems,
clients communicate their datasets to the cloud server
via various communication network links. As a result,
wireless communications and core network connections
between clients and servers have a significant impact
on DL model training and resulting decisions. Conse-
quently, even when the network is down, the connection
must be reasonably robust. However, due to the unpre-
dictable wireless connection between the client and
server, a centralized design confronts system perfor-
mance deterioration and probable failures, which can
have a substantial impact on the model training and its
inferences.

— Since clients must exchange their raw data with other
parties, such as cloud or edge servers, to train a model,
traditional centralized ML-based IDSs are prone to sen-
sitive data privacy violations and attackers. To address
this issue, a tailored set of controls and methodologies
identifying the relative relevance of datasets, their sen-
sitivity, compliance requirements, and the application of
suitable measures to secure these resources is necessary.
These solutions are conceivable, but they necessitate the
incorporation of additional resources to the traditional
ML-based IDSs, as well as a higher computational cost.

— As data owners become more worried about their privacy,
administrative regulations must be implemented to limit
data collection to those that are participating in the pro-
cessing and have been granted explicit approval from the
owners. The traditional centralized model-training archi-
tecture cannot provide privacy legislation, since clients
must submit raw data to the server for model training.

Motivation

The paradigm of federated learning (FL) was proposed by
Google researchers in 2016 as a viable alternative for tack-
ling communication costs, data privacy, and regulatory issues
[15]. An FL approach is a distributed ML approach in which
models are trained on end devices without sharing their local
datasets under centralized management. This protects data
privacy during the training phase. An edge server or cloud
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server collects the learned parameters on a regular basis to
construct and update a newer, more accurate model, which is
then delivered back to the edge devices for local training. The
FL training process is divided into five steps [15]. The FL
server first selects an ML model to be trained locally on each
client node. Second, at random or using appropriate selection
techniques, a subset of current client nodes is picked. Third,
the server transmits the initial global model to the client nodes
that are selected. Clients download the model’s current global
parameters and train the model locally. In the fourth phase,
each client node transmits changes to the server. Finally,
without accessing any clients’ data, the FL server gets the
changes and aggregates them using aggregation algorithms
to produce a new global model. In every round, the FL server
orchestrates the training process and sends the global model
changes to the selected client nodes. The process is repeated
until the desired quality performance is attained.

FL can be an appropriate choice to address the issues
encountered with the traditional ML-based IDSs. FL is one
of the most adaptable techniques that allow the training of
ML algorithms on edge devices [16]. FL approach enables
multiple participants to develop robust and efficient ML mod-
els without data sharing. Because this strategy preserves the
privacy of user data, it is regarded as a better option than
non-FL approaches [17]. There are several advantages of FL
algorithms. First, FL facilitates the edge devices to learn from
predictive models and maintain the training dataset instead of
storing it on a centralized server [18]. Second, it saves the data
locally on customized service, ensuring data security man-
agement. Third, it offers the real-time up-gradation of ML
models, because the data are available on edge devices. This
feature reduces time consumption, and data can be accessed
without contacting the centralized server. Fourth, it is highly
suitable for deployments on resource-constrained hardware
because of its low complexity and distributed nature [18].

Major contributions

This article proposes a novel federated learning-based archi-
tecture for cyberattack detection in the VSN. This framework
enables the on-device training of the proposed attack detec-
tion model for VSN. The major contributions of this study
are summarized in the following points.

1. This article presents an overview of the widely used sens-
ing technologies and potential cyberattacks in VSNs.

2. A Federated learning (FL)-based technique is proposed
for cyberattack detection in VSN. In the proposed approach,
a group of Gated Recurrent Units (GRUs) with an ensem-
bler unit are deployed to ensure higher attack detection
accuracy in VSN.

3. Extensive experiments on a newly generated dataset “Car
Hacking: Attack & Defense Challenge 2020 Dataset” are
conducted to train the proposed algorithm.

4. The effectiveness of the suggested technique is analyzed
using several performance metrics, including accuracy,
precision, recall, F1 score, and training time.

The remainder of this article is organized as follows.
“Cyberattacks in Vehicular Sensor Networks” investigates
the widely used sensing technologies and cyberattacks in
VSN. “Proposed Federated Learning Framework™ describes
the proposed framework along with the mathematical back-
ground of the utilized algorithm. “Experiments and Results”
comprises implementation platform details, dataset descrip-
tion, and experimental findings discussion. Finally, a brief
conclusion with future research directions is presented in
“Conclusion”.

Cyberattacks in vehicular sensor networks

The VSN contains a number of vehicle sensors that moni-
tor and measure physical parameters related to the vehicle
and its environment. These sensors facilitate smooth drive
operations and enhance the driver’s comfort [19]. Some com-
monly used sensors of smart vehicles are presented in Fig.
1. All these sensors are made up of advanced electronics
and communication technologies. Because of the resource-
constrained nature of these sensors, robust and complex
security algorithms cannot be directly deployed. There-
fore, these sensors are vulnerable to several cyberattacks, as
presented in Table 1. The description of some common cyber-
attacks in VSNs is presented in Table 2. The most prominent
vehicular sensing technologies and their security challenges
are discussed in the following subsections.
Environmental sensors

These sensors monitor and measure the physical quantities
related to vehicular surroundings. The prominent examples
of these sensors are camera, Global Positioning System
(GPS), ultrasonic sensor, Light image Detection and Ranging

Camera

Inertial @

Sensor

GPS %\{{Q

Ultrasonic Sensor

TPMS

Magnetic
Encoder

Fig.1 Commonly used sensors in smart vehicles
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Table 1 Commonly used sensors in VSN and relevant cyberattacks

Sensor Sensor use in vehicles Cyberattacks
Camera Detection of traffic signs, improvement in night Blinding and auto-control
vision, estimation of collision risks, and parking
assistance
GPS Navigation and anti-theft purposes Jamming, spoofing, and blackhole

Ultrasonic sensors

LiDAR

Radar

Inertial sensors

Magnetic encoders

Low-speed maneuvers

Collision avoidance system and adaptive cruise
control

Adaptive cruise control and lane change assistant

Information about the vehicle’s acceleration and
orientation

Measurement of vehicle’s speed and angular position

Sensor interference, blind spot exploitation,
cloaking, physical tampering, and acoustic
cancellation

Denial of Service (DoS), replay, spoofing, jamming,
and blinding

Jamming and spoofing

Spoofing and acoustic cancellation

Disruptive attacks and spoofing

TPMS Monitoring of tire air pressure

Spoofing, eavesdropping, and reverse-engineering

Table 2 Description of cyberattacks in VSNs

Attack Description

DoS A DoS attack is a sort of cyberattack in which a malicious actor attempts to disable the regular operation of a device to make

it unavailable to its intended users

Jamming Jamming attacks are a subset of denial-of-service attacks in which hostile nodes disrupt legitimate communication by
interfering with networks

Spoofing Spoofing, in the context of cybersecurity, occurs when someone or something impersonates another entity to win our trust,
obtain access to our systems, steal data, steal money, or distribute malware

Acoustic Acoustic is a type of side-channel attack that exploits sounds emitted by computers or smart devices

Eavesdropping Eavesdropping is a technique in which an attacker listens passively to network conversations to get private information such
as node identifying numbers, routing changes, or application-sensitive data

Blackhole A blackhole attack occurs when a router deletes all messages that it is supposed to forward. A router can be set improperly
to give a zero-cost route to every destination on the Internet on rare occasions

Cloaking Malicious websites frequently impersonate well-known businesses to house malware and conduct social engineering attacks
to obtain user credentials. Certain types of websites frequently seek to conceal hazardous information from search engine
crawlers while displaying it to users/client browsers, a practice known as cloaking

Replay A replay attack occurs when a hacker eavesdrops on a secure network connection, intercepts it, and then fraudulently delays

or resends it to trick the receiver into doing what the hacker wants

(LiDAR), and Radio Detection and Ranging (Radar) systems.
This section discusses the sensors mentioned above and their
vulnerabilities to cyberattacks.

Camera

These are the commonly used sensors in autonomous vehi-
cles to identify their surroundings. These sensors are pri-
marily utilized to identify traffic and road signs, monitor the
nearby obstacles, and help to avoid collisions while parking.
The major cyberattacks against these sensors include blind-
ing and auto-control attacks [20].

GPS

It is an essential system of autonomous vehicles that facili-
tates the identification of geographic locations. GPS satellites
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transmit the navigation signals to the on-ground receivers.
Receivers determine the vehicle’s current location by com-
puting their distance to at least four different satellites.
GPS communication is vulnerable to jamming, spoofing, and
blackhole attacks [21].

Ultrasonic sensor

This sensor is used to detect a short-range obstacle and also
calculate its distance to the vehicle. This sensor transmits
an ultrasonic signal towards the nearby objects. The delay
between the transmission and reception of the signal is uti-
lized to compute the precise distance of the vehicle from an
obstacle when the signal reflects back from the object. Ultra-
sonic sensors are generally vulnerable to sensor interference,
blind spot exploitation, cloaking, physical tampering, and
acoustic cancellation attacks [22].
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LiDAR

It generates a 3D map of vehicle surroundings using laser
scanning techniques. LIDAR can generate a map of the vehi-
cle’s surroundings by transmitting out laser pulses in the
scanning process. When these pulses are reflected, LiDAR
calculates vehicles’ distances to surrounding objects. The
prominent cyberattacks on the LiDAR system are Denial
of Service (DoS), spoofing, replay, jamming, and blinding
attacks [23].

Radar

It transmits electromagnetic signals and measures the dis-
tance of nearby objects to vehicles. These sensors determine
the distance by calculating the time elapsed from the trans-
mission of a signal to the detection by radar receivers. Most
of the radar systems operate within the millimeter-wave fre-
quency band. A short-range radar sensor helps the driver to
identify obstacles while parking. Medium-range radars are
used in lane change assistance mechanisms, and long-range
radars are mostly used in adaptive cruise control. These sen-
sors are usually vulnerable to jamming and spoofing attacks
[24].

Vehicle dynamics sensors

Vehicle dynamic sensors provide the measurements of the
vehicle’s state. These sensors include inertial sensors, mag-
netic encoders, and tire pressure monitoring systems. In the
following subsections, we discuss the sensors mentioned
above and their vulnerabilities to cyberattacks.

Inertial sensors

These sensors contain accelerometers and gyroscope sen-
sors. Accelerometer measures the acceleration of the moving
objects. Gyroscope sensors calculate the rate of rotation
regarding a specific axis. The major cyberattacks on inertial
sensors are spoofing and acoustic attacks [25].

Magnetic encoders

The magnetic encoder calculates the angular velocity of vehi-
cle gear. This sensor can measure the wheel’s rotational speed
using hall effect sensors. Also, it is frequently used with
anti-lock braking systems. The magnetic encoder can also
be indirectly used with a tire pressure monitoring system to
determine the rotational speeds and estimate the difference
in pressure values. These sensors are generally vulnerable to
disruptive and spoofing attacks [26].

Tire pressure monitoring systems

The tire pressure monitoring system contains four pressure
sensors and an Electronics Control Unit (ECU). ECU col-
lects the information from pressure sensors and transmits it
to the vehicle’s central control unit, along with sensor ID
and pressure and temperature measurements. Tire pressure
monitoring systems are mainly vulnerable to spoofing, eaves-
dropping, and reverse-engineering attacks [27].

Proposed federated learning framework

This section presents the adopted ML model and the modules
of the proposed framework.

Gated recurrent unit (GRU)

GRU is one of the most popular variants of the recurrent
neural network (RNN) [28]. It is also regarded as a sim-
pler version of Long Short-Term Memory (LSTM) because
of its lower resources and computational requirements [29].
The proposed cyberattack detection approach is built using
the GRU neural network, which takes into consideration
the temporal relationship between traffic samples, which is
an essential classification feature that allows improving the
model’s overall detection capability and speed [30]. GRU can
also predict time series data and detect unknowable attack
patterns [30].

The basic architecture of GRUs contains multiple gates
that observe the information flow and regulate the learning
process. The gates act as switches that help retain long- and
short-term information in the network. Intrusion detection,
speech synthesis, speech recognition, and text generation are
some real-world deployments of GRUs [31]. The basic archi-
tecture of GRU is presented in Fig. 2. The main units of GRUs
are discussed in the following.

Sigmoid function

The sigmoid function defines a way to decide which informa-
tion should be kept or discarded. It generates scores between
0 and 1. If the score is near 0, it enables the network to dis-
card the information. In the case of o = 1, it indicates that
this information should be retained for future purposes.

Hyperbolic tangent function

This activation function is also referred to simply as the tanh
that produces the numbers between —1 and +1. The function
accepts any real value as input and generates outputs from —1
to 1. The tanh function is often employed in hidden layers,
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Fig.2 Basic architecture of GRU

since its average value makes the training process easier for
the subsequent layers.

Gates of GRUs

In GRUs, the inputs to each memory cell are concatenated to
form a single value, and the architecture works better with
only two gates, named reset and update gates. GRUs require
less training time and are computationally inexpensive.

(i) Reset gate: If the information is not beneficial for future
aspects in terms of (1), then this gate discards the information

St =0 (Ws [c,_l, u,]) . (1)

Here, s; determines the sigmoid layer results for the
present memory cell, Wy is the weight of s, c;_1 represents
the information from the previous cell, and u; indicates the
input for the present cell, respectively.

(i1) Update gate: GRUs employ a single gate referred to as
an update gate. It decides whether the information from the
current state should be kept or discarded using Egs. (2)-(4)

Yt =0 (Wy [lelv ut]) 2
61 = tanh (W [S[ *Ct—1, u[]) (3)
Ct:(l_yt*ct—l+yt*ét)- 4)

Here, y; is sigmoid layer result, ¢; is the vector generated
by the ranh layer, and c;_ represents previous cell’s state.

We use five different input and window sizes for each GRU
in the proposed approach. The selection of the appropriate
window size is a critical task because of the varying range
of data for each window size. The window size contributes
to optimizing the ML model performance. The window size
increases the training time, because the information reten-
tion time increases in each memory cell. The same goes for
the selection of hyperparameters. There are no strict rules to
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determine the optimal relationship between window size and
model performance. Same as the hyperparameters selection,
there are no hard and fast rules to determine the optimum
relationship between window size and model performance.

Cyberattack detection framework

In this work, a novel FL-based scheme is proposed for cyber-
attack detection in the VSNs. A high-level architecture of
the proposed scheme is presented in Fig. 3. The proposed
framework contains several modules including virtual IoT
prototypes that represent the edge IoT devices and sensors in
VSN, a local learning model for each virtual prototype, FL
averaging module with a centralized server, a global model
for defined window sizes, and an ensembler unit. A detailed
description of the aforementioned modules is presented in
the following.

Virtual prototypes

A replica model of VSN is built up by creating virtual proto-
types. First virtual prototypes f1, are created for the selected
n number of edge devices. In the second stage, some dedi-
cated prototypes fl,yg are created that enable the sharing
of model parameters of trained ML algorithm among edge
devices and the centralized FL server. The used datasets are
divided into n blocks, and each one is shared with f1,,.

Preprocessing

Data preprocessing is an important stage for the optimum
training of ML/DL models. It makes the captured data best
suitable for the input of the neural network. The captured data
are first converted to CSV files in the proposed scheme. Then,
unnecessary features that do not significantly contribute to
the training process are eliminated. Finally, the processed
data are split into n blocks and distributed between the virtual
prototypes f1, of edge devices.

FL training

The training procedure is carried out asynchronously. Each
client node executes the learning algorithm with its copy of
the dataset and shares the weights of the trained local model
with fl,,, aggregating instance. In this study, 5 GRUs are
used with different hyperparameters. The training process of
the FL paradigm is detailed in Table 3.

Ensembler

It provides an effective method for combining the outputs of
the ML model to achieve a high accuracy score [32,33]. In
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Fig.3 High-level architecture of the proposed attack detection scheme for VSN

Table 3 Detailed description of the FL training process

FL Training process

Begin
Step-1 Initialize the specific window size W;
Step-2 Define virtual prototypes to represent loT edge devices f1;
Step-3 Define the model parameters G RUy;, for each window size W;
Step-4 Share the weights of the trained model with each f;
Step-5 At each fI;, the learning algorithm is executed on G RU),;, and after that, the updated weights of the trained model are
shared with flyy
Step-6 fl; serves as an accumulating unit on the centralized server and monitors the local model updates. The global ML model
G of each window size is obtained by accumulating the weights of the local model
Step-7 A copy of the global ML model is shared with each edge device
End
many cases, this is due to the well-established idea of integrat- — It reduces overfitting in decision trees and helps to
ing multiple ML models to achieve better performance results improve accuracy.
than a single ML model. In the proposed framework, we used — It can address both classification and regression prob-
Random Forest (RF) classifiers to ensemble the global ML lems.
models G,;. The RF classifier was chosen due to its numer- — It can handle both categorical and continuous data.
ous advantages, which are listed below. — It automates the replacement of missing values present

in the trained data.
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— Data normalization is not required, since RF uses a rule-
based approach.

For the inputdata U = Uy, ..., U, with n chunks, each G);
predicts the probabilities values hy, &7, ..., h, of each label
O for a given input U. The ensembler combines the proba-
bilities of G,; to formulate an ensemble prediction function
p(u). The prediction probability 4; can be calculated for the
given input data U by using (5)

hi =5
M

p(u) = argmax Z

i (MGui(U)) ®)

o=nh; (u) (6)

According to (6), the p(u) of RF obtains input from proba-
bility scores of all ML models G,; for every label. RF treats
each probability score as a vote from G,; and predicts the
label with a higher confidence score as an output.

Experiments and results

This section presents the details of the simulation platform,
dataset description, and evaluation parameters. Additionally,
it provides a discussion on the outcomes of the proposed
scheme.

Simulation platform

The proposed algorithm is implemented, and its performance
is investigated using a desktop computer that has the follow-
ing characteristics: a 11th Gen Intel®Core™ i9-11900H @
2.50GHz processor and a 32 GB RAM. An NVIDIA GeForce
RTX 3080 Ti 16 GB graphics card is used to facilitate the
smooth training process of the proposed FL scheme. The
proposed scheme is implemented and simulated in a Python-
based environment with the Keras and TensorFlow backend.

Dataset

The proposed framework is analyzed using the latest dataset
that was collected and presented by Kang et al. [34] in the
“Car Hacking: Attack & Defense Challenge” competition
that was organized in 2020. This dataset is an extended ver-
sion of the previously published “Car Hacking” dataset [35].
The competition’s goal was to improve attack and detection
techniques for the Controller Area Network (CAN), an exten-
sively utilized standard in-vehicle network. The Hyundai
Avante CN7 was the competition’s target vehicle. As a result,
the dataset consists of Avante CN7 CAN network traffic,
which includes both normal and attack messages. The fol-
lowing items are included in the dataset: (1) the initial round
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Table 4 The hyperparameters of the GRU models

Parameters GRU model

GRU 1 GRU2 GRU3 GRU4 GRUS
Learning rate  0.001 0.005 0.01 0.05 0.10
Optimizer Adam Adam Adam Adam Adam
Epochs 100 100 100 100 100
Batch size 256 512 512 128 256
Momentum 0.5 0.6 0.7 0.8 0.9
Dropout 0.01 0.05 0.01 0.0 0.05

train/test dataset and (2) the last round dataset of the host’s
attack session. This dataset includes 1,270,310 samples, in
which 1,090,312 are normal values and 179,998 are anoma-
lous values. This dataset comprises five classes: normal,
flooding, spoofing, replay, and fuzzing.

Hyperparameters

The hyperparameters are the primary parameters that define
the neural network’s structure and regulate the learning pro-
cess. In our work, the core architecture of GRUs is fixed.
Ranges of appropriate hyperparameters are found by con-
ducting extensive experiments on the “Car Hacking” dataset
with a wide range of hyperparameters to assure the best out-
comes of the proposed scheme. We selected specific ranges
of these hyperparameters through the hit-and-trial method.
This method is rigorous and has been widely employed in
numerous and various recent research proposing ML-based
solutions [36-38], since optimization algorithms and tech-
niques require an additional computational cost to be carried
out. Table 4 lists the hyperparameters that were used in each
GRU model. The subsections that follow provide a brief sum-
mary of the hyperparameters that were used.

Learning rate

This hyperparameter controls the training speed of the ML
model. The selection of an accurate learning rate is a crit-
ical task. A low learning rate can efficiently train a model,
but learning speed will be slow, and the model can also get
stuck [39]. On the other hand, a high learning rate speeds up
training, but can lead to multiple output errors. In our exper-
iments, we defined five learning rate values: 0.001, 0.005,
0.01, 0.05, and 0.10.

Optimizer

It is an algorithm used to minimize the loss function or
maximize production efficiency. Optimizers are mathemat-
ical functions that depend on model parameters such as
weights and biases. These algorithms help determine the
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change in weights to minimize errors. We used “Adam” in
our experiments, one of the most used optimizers. Adam is an
optimization algorithm that can be used instead of the classi-
cal stochastic gradient descent procedure to update network
weights iteratively based on training data. There are vari-
ous appealing advantages of adopting Adam, which are as
follows [40]:

— It is straightforward to implement.

— It is computationally efficient.

— Its memory requirements are minimal.

— Its gradients are invariant to diagonal rescaling.

— It is perfectly adapted to solve problems handling a sig-
nificant amount of data and/or parameters.

— It is appropriate for problems involving highly noisy/or
sparse gradients.

— The used hyperparameters have intuitive interpretation
and require minimal fine-tuning.

Epochs

This parameter defines one complete execution of the ML
algorithm. The appropriate selection of the number of epochs
is a critical task. With the completion of each epoch, the
model parameters of the ML model are updated. In our exper-
iments, we used 100 epochs for each GRU model.

Batch size

This hyperparameter presents the total number of samples
present in a single mini-batch. A very small batch size selec-
tion can cause a high degree of variance. On the other hand,
if the batch size is too large, it may cause overfitting effects.
In our experiments, we defined three batch sizes: 128, 256,
and 512.

Momentum

This hyperparameter establishes the direction of the next step
based on the knowledge of the previous step. It contributes to
the resistance of the ML model to oscillations. In our exper-
iments, we set a momentum range from 0.5 to 0.9.

Dropout

It is a regularization technique that approximates the number
of neurons from a neural network during the training phase.
Dropout enables the model to reduce the overfitting effects,
which can help make accurate predictions. In our experi-
ments, the considered dropout values are 0.0, 0.01, and 0.05.

Performance evaluation parameters

The effectiveness of the proposed model was investigated
through several evaluation metrics. First, the predicted out-
puts of trained algorithms were compared with real values.
Based on the comparison, True Positives (TP), False Posi-
tives (FP), True Negatives (TN), and False Negatives (FN)
were computed. TP and TN indicate the number of correct
predictions of the trained model for both attacks and normal
behaviours, respectively. FP and FN represent the incorrect
predictions of the trained model for both attacks and normal
behaviours, respectively. The parameters mentioned above
are further utilized to calculate the accuracy, precision, recall,
and F1 score.

Accuracy

This metric indicates the percentage of accurate attacks and
normal events predictions. It can be easily calculated by
dividing the number of accurate predictions by the number
of total predictions

TP+TN
TP+TN+FP+FN’

(N

Accuracy =

Precision

It expresses the proportion of accurately anticipated anoma-
lous observations compared to the total number of observa-
tions classified as anomalous

TP

Precision = ———. (8)
TP+ FP

Recall

This metric quantifies the proportion of accurately predicted
abnormal values relative to accurately predicted abnormal
observations and erroneously predicted normal observations

TP
Recall = ———. )
TP+ FN

F1 score

It is defined as the harmonic mean of the model’s precision
and recall

2 x ( Precision x Recall )
F1 Score = — . (10
Precision + Recall

Results and discussion

To evaluate the performance of the proposed algorithm,
extensive experiments were conducted on “Car Hacking:
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Attack & Defense Challenge 2020 Dataset”. The dataset was
split into training and testing datasets with a ratio of 75% and
25%, respectively. As mentioned previously, 5 GRU mod-
els were used in the proposed scheme. The hyperparameters
of these models are presented in Table 3. The performance
of GRU models is evaluated according to different window
sizes that are 1, 5, 10, 20, and 30. GRU-1 demonstrated the
highest performance at W20. This model achieved the high-
est detection accuracy of 99.28% for this window size. The
other performance scores are also greater than 99% for this
window size. For W1, W5, and W10, the performance of
GRU-1 is between 97% and 99%. Detailed results of GRU-1
performance for different window sizes are shown in Fig.4.

The performance results of GRU-2 for different window
sizes are presented in Fig. 5. GRU-2 also achieved the high-
est performance at W20. This model achieved the highest
detection accuracy of 99.12% for this window size. All the
other performance scores are also greater than 99% for this
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window size. For W1, W5, W10, and W30, the performance
results of GRU-2 are between 97% and 98%. The GRU-3 has
demonstrated the highest attack detection performance com-
pared to any other GRU. This model achieved the highest
detection accuracy of 99.52% for W20. The other perfor-
mance scores are also greater than 99.50% for this window
size. For W1, W5, W10, and W30, the performance results of
GRU-3 are between 98% and 99.25%. Performance results
of GRU-3 for different window sizes are presented in Fig. 6.

The performance results of the GRU-4 and GRU-5 are
lower than those of all other GRUs. These models achieved
the highest attack detection accuracies of 98.23% and 98.02%
for W20, respectively. For the other window sizes, the per-
formance of both models is between 96% and 97%. The
performance results of GRU-4 and GRU-5 for different win-
dow sizes are presented in Figs. 7 and 8, respectively.

The results of the simulation proved the satisfactory per-
formance of the GRU models. The average attack detection
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Fig.6 Performance results of
GRU-3 for different window
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Fig.9 Average performance of ® Accuracy ™ Precision MRecall ®F1 Score
the proposed FL architecture
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Table 5 Performance comparison of the proposed scheme with related studies

Work Publication year Proposed scheme Accuracy
Seo et al. [35] 2018 GAN 98.00%
Ashraf et al. [14] 2020 LSTM autoencoder algorithm 99.00%
Zadid et al. [41] 2020 LSTM 87.90%
Khan et al. [42] 2021 LST™M 99.11%
Abdel-Basset et al. [43] 2021 Two anomaly detection DL models 97.82%
Song et al [44] 2021 LSTM 95.37%
Our work 2022 Federated learning scheme based on GRU and RF ensembler 99.52%
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performance of the proposed FL scheme is presented in Fig.9.
The average attack detection accuracy achieved by the pro-
posed framework is 98.83%. The other average of precision,
recall, and F1 scores reached 98.93%, 98.91%, and 98.92%,
respectively. All simulations were run for 100 epochs. The
training time of the proposed algorithms was increased with
the window sizes. A comparison of the training time for dif-
ferent window sizes is presented in Fig. 10.

To validate the performance of the proposed scheme, we
compare the results with recently published related works.
The comparison is made against the papers that worked
in the same context and used the same dataset, the “Car
Hacking” dataset. As it is demonstrated by the performance
results provided in Table 5, it is clear that our model achieves
the highest accuracy with the extended version of the same
dataset among the considered studies that rely on classical
IDS-based approaches or centralized DL models. This is jus-
tified by the fact that the models are trained independently. In
fact, the training is done collaboratively and independently
on individual participants by opting for the FL approach.
Local epochs, in particular, are defined in the learning param-
eters, and each participant trains the data by running the local
epochs. The local update is computed after a certain number
of epochs, and the participants communicate the updates to
the cloud server. The cloud server gets each participant’s
update, averages them, and then aggregates the next global
model. The participants carry out the training procedure for
the next communication round based on this global model.
The process is repeated until the necessary convergence is
reached or the communication rounds is completed. This
learning process proposed by the FL approach has proven
its effectiveness and efficiency in several case studies, in
particular, in our case study dealing with the detection of
cyberattacks in the VSN, by reducing the training time and
increasing the data accuracy.

Conclusion

This article proposes a federated learning-based framework
for efficient cyberattack detection in VSNs. The proposed
FL scheme enables the sharing of computational capabilities
with on-device training. A group of GRU models with an
ensembler unit is used to ensure high attack detection perfor-
mance. Extensive experiments were conducted on the “Car
Hacking: Attack and Defense Challenge 2020 dataset. The
performance of the proposed model was analyzed through
multiple performance metrics, including accuracy, precision,
recall, F1-score, and training time. The experimental findings
illustrated that the proposed FL scheme provides accurate and
efficient privacy-preserving attack detection in VSNs.

As future work, we plan to undertake additional in-depth
experiments in this field, using fusion- and voting-based
techniques to deliver more precise attack detection and clas-
sification outcomes. Furthermore, we intend to look into
the promising field of explainable FL [45], which refers to
strategies for providing human-readable insights into data,
variables, and decisions. Finally, future developments will
use DL models as microservices-based architecture [46—48]
to construct our suggested solution in a distributed architec-
tural style. DL as a microservice is a self-contained, locally
executable, and easily testable and maintainable software
unit that can be reused and adjusted for a wide range of
features and datasets by simply altering configuration param-
eters.
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