


Abstract— Removing background noise from acoustic obser-

vations to obtain clean signals is an important research 

topic regarding numerous real acoustic applications. Owing 

to their strong model capacity in function mapping, deep 

neural network-based algorithms have been successfully 

applied in target signal enhancement in acoustic applica-

tions. As most target signals carry semantic information en-

coded in a hierarchal structure in short- and long-term con-

texts, noise may distort such structures nonuniformly. In 

most deep neural network-based algorithms, such local and 

global effects are not explicitly considered in a modeling ar-

chitecture for signal enhancement. In this paper, we pro-

pose a temporal attentive-pooling (TAP) mechanism com-

bined with a conventional convolutional recurrent neural 

network (CRNN) model, called TAP-CRNN, which explic-

itly considers both global and local information for acoustic 

signal enhancement (ASE). In the TAP-CRNN model, we 

first use a convolution layer to extract local information 

from acoustic signals and a recurrent neural network 

(RNN) architecture to characterize temporal contextual in-

formation. Second, we exploit a novel attention mechanism 

to contextually process salient regions of noisy signals. We 

evaluate the proposed ASE system using an infant cry da-

taset. The experimental results confirm the effectiveness of 

the proposed TAP-CRNN, compared with related deep neu-

ral network models, and demonstrate that the proposed 

TAP-CRNN can more effectively reduce noise components 

from infant cry signals with unseen background noises at 

different signal-to-noise levels. 

 

Impact Statement — Recently proposed deep learning solutions 

have proven useful in overcoming certain limitations of con-

ventional acoustic signal enhancement (ASE) tasks. However, 

the performance of these approaches under real acoustic condi-

tions is not always satisfactory. In this study, we investigated 

the use of attention models for ASE. To the best of our 

knowledge, this is the first attempt to successfully employ a 

convolutional recurrent neural network (CRNN) with a tem-

poral attentive pooling (TAP) algorithm for the ASE task. The 

proposed TAP-CRNN framework can practically benefit the as-

sistive communication technology industry, such as the manu-

facture of hearing aid devices for the elderly and students. In 

addition, the derived algorithm can benefit other signal pro-

cessing applications, such as soundscape information retrieval, 

sound environment analysis in smart homes, and automatic 

speech/speaker/language recognition systems. 

 

 

Index Terms— Acoustic signal enhancement, convolutional 

neural networks, recurrent neural networks, bidirectional 

long-short term memory. 

I. INTRODUCTION 

THE goal of acoustic signal enhancement (ASE) is to sup-

press the interfering noise signals by minimizing unwanted dis-

tortions and transforming noisy input signals into desired clean 

signals. Acoustic signals are often distorted owing to additive 

and convolutional noise, or recording device constraints, which 

limit the performance of real-world applications, such as sound-

scape information retrieval [1-3], sound environment analysis 

in a smart home [4-6], physiological sound recognition [7-10], 

speaker recognition and verification [11-14], automatic speech 

recognition (ASR) [15-18], hearing aids [19, 20], and cochlear 

implants [21, 22]. Several ASE approaches have been proposed 

in the literature to alleviate background noise problems. How-

ever, enhancing the performance of ASE in real-world acoustic 

environments remains a challenging task. Traditionally, we as-

sume that the target signals and noise follow specific distribu-

tions, and thus, a gain function can be estimated to attenuate the 

noise components. Notable examples include the minimum-

mean square error (MMSE) based algorithm [23-25], and the 

Wiener filter [26]. For such approaches, a noise estimation 

method is usually required to compute the statistics of the noise 

signals. Well-known noise estimation approaches include min-

imum statistics (MS) [27], minima controlled recursive averag-

ing (MCRA) [28], and improved MCRA [29]. 

Another group of traditional ASE algorithms is the subspace-

based techniques that split a noisy acoustic signal into two sub-

spaces, one for the clean acoustic signal and another for the 

noise comments, and subsequently, suppress the noise to recon-

struct a clean acoustic signal. A notable subspace technique is 

based on singular value decomposition (SVD) [30]. The third 

group of traditional ASE approaches is known as model-based 

techniques that derive a mathematical model based on human 

speech production and predict model parameters to perform 

noise reduction. Successful examples include the harmonic 

model [31, 32], linear prediction (LP) model [33-35], and hid-

den Markov model (HMM) [36, 37]. Later, matrix decomposi-

tion-based methods such as nonnegative matrix factorization 
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(NMF) [38, 39] and sparse coding were proposed [40, 41] for 

ASE. These approaches prepare dictionaries of the target sig-

nals and noise during the training stage.  The noisy signals are 

decomposed in the online stage; then, the clean signals can be 

reconstructed based on the prepared matrices with the corre-

sponding activation metrics.  

Recently, deep learning (DL)-based approaches have 

emerged and greatly succeeded in ASE applications. In DL-

based architectures, a nonlinear mapping function is estimated 

to transform noisy acoustic signals to clean ones. For example, 

in [42], a weighted neural-network-based architecture was pro-

posed for an online ASE system. The proposed system utilized 

a recurrent neural network (RNN) to enhance short-time Fou-

rier transform (STFT) spectra in a frame-by-frame manner. Fur-

thermore, the authors proposed two additional objectives to en-

able separately controlling the importance of acoustic signal 

distortion and noise reduction. A deep neural network (DNN) 

architecture was also employed by Zhong et al. [43] for single- 

and multi-channel ASE and ASR to predict the real and imagi-

nary components of a signal using noisy and reverberant signals. 

The proposed framework exhibited good performance in terms 

of speech quality, intelligibility, and word error rate (WER). 

Similarly, in [44], a compressed DNN was proposed to conduct 

real-time ASE and meet the low-latency requirements without 

compromising the quality and intelligibility of the enhanced 

signal. Apart from conventional single-stage DL-based models, 

two-stage temporal convolutional modules (TCMs) have been 

utilized by Li et al. [45] to deal with low signal-to-noise ratios 

(SNRs). More specifically, the magnitude is estimated in the 

first stage, which is then combined with the noisy phase to pro-

vide a complex spectrum estimation. A secondary network is 

used as the post-processing module in the second stage to im-

prove the previous estimation, where the residual noise is fur-

ther suppressed, and the phase information is successfully mod-

ified. In the second step, the global residual connection ap-

proach is used to increase the training convergence rate. Alt-

hough deep neural architectures have shown great success for 

ASE applications, there are still rooms to further improve their 

achievable performance. A notable one is to further utilize the 

temporal information of the target and noise signals. In most 

ASE systems, average pooling or max-pooling is used for tem-

poral feature aggregation. However, determining what features 

from which temporal regions contribute to ASE serves as an 

important factor and should be more effectively utilized.  

Attention mechanisms have recently been adopted for acous-

tic signal processing tasks and have shown excellent perfor-

mance through selectively focusing on the segments of the tar-

get signal. The attention model can identify salient regions in 

acoustic signals to achieve effective performance for classifica-

tion and regression tasks. In [46], the authors adopted a dy-

namic attention method with recursive learning for ASE appli-

cations. In [47], the authors proposed a multi-task learning strat-

egy along with a multi-head self-attention framework to ana-

lyze the dependencies between speech and noise signals. In 

[48], the authors investigated a multi-head attention network to 

estimate linear prediction coefficients (LPC) for clean and 

noisy speech signals. In [49-52], the authors employed convo-

lutional neural network (CNN)- and generative adversarial net-

work (GAN)-based architectures with attention mechanisms for 

end-to-end ASE applications.  

In [53, 54], the authors utilized convolutional recurrent neu-

ral network (CRNN) based data-driven models to exploit local 

structures in both frequency and temporal domains and demon-

strated exceptional generalization performance compared to ex-

isting DL methods. Inspired by CRNN, where the features are 

exploited in both frequency and temporal domains, we propose 

a CRNN with a temporal attentive pooling (TAP) algorithm 

(aptly termed TAP-CRNN) for the ASE task. In the proposed 

TAP-CRNN, the convolutional layers extract representative 

acoustic features and RNN characterizes the long-term tem-

poral information. Meanwhile, the temporal attention mecha-

nism allocates significant segments to effectively train the en-

hancement model. The developed TAP-CRNN system was 

evaluated with an infant cry enhancement (ICE) task. For com-

parison purposes, we tested the performance of four existing ar-

tificial neural network (NN) models, DNN, CNN, RNN (long 

short-term memory (LSTM)), and CRNN. Experimental results 

first show that the proposed TAP-CRNN can yield better per-

formance than deep neural network models in terms of standard 

ASE evaluation metrics. Moreover, it is verified that TAP-

CRNN can effectively enhance a downstream task (infant cry 

detection) in a noisy condition.  

The main contributions of this study are as follows: (i) a 

novel attention algorithm (TAP) is proposed to provide an at-

tention mechanism on top of the existing CRNN framework for 

the ASE task. (ii) the proposed TAP-CRNN provided good dis-

criminative power for target signal restoration and noise reduc-

tion compared to CRNN, and (iii) TAP-CRNN demonstrated 

superior performance compared to CRNN in terms of four 

standardized metrics, namely, signal to interference ratio (SIR), 

signal to artifacts ratio (SAR), segmental SNR (SSNR), and sig-

nal distortion ratio (SDR), for the ASE task. The remainder of 

this paper is organized as follows. Section II provides a litera-

ture review. Section III discusses the CRNN architecture and 

the TAP algorithm. The experimental setup and findings are 

presented in section IV. Finally, section V draws conclusions 

regarding our research.  

II. RELATED  
 

This section first introduces conventional DL-based neural net-

work models for the ASE task. Next, we briefly discuss the 

CRNN model followed by the proposed TAP algorithm.  

 

A. Deep Learning Models for ASE  

In a DL-based ASE system, a deep neural network model, 
such as DNN, CNN, or RNN, is used as a mapping function that 

aims to transform noisy acoustic signals into enhanced ones. In 

many ASE systems, the noisy and clean acoustic signals are 

first transformed into spectral features via a short-time Fourier 

transform (STFT) for frame-based processing. Then additional 

processes, such as taking amplitude, logarithm, and band-pass 

filtering, are applied to the spectral features. The goal of the 

ASE system is to minimize the reconstruction error between the 

estimated and clean acoustic signals. In the testing stage, the 

spectral features are fed into the trained ASE model to obtain 

enhanced spectral features. Finally, the enhanced spectral along 

with the phase of the original noisy acoustic are converted to 

the time domain through inverse STFT (ISTFT). 



Recent ASE approaches focus on three directions to improve 

performance.  The first direction is to use more suitable objec-

tive functions to train the neural network models. Traditionally, 

L2 and L1 distances between the enhanced and clean reference 

signals are used as objective functions. However, several prior 

works have shown that the L2 and L1 distances may not be op-

timal choices. Because ASE is generally used as a pre-pro-

cessing task, when training the model, we should consider ena-

bling the downstream task to achieve better performance. For 

example, in assistive speaking applications, it is important to 

consider quality and intelligibility. Therefore, speech quality- 

or intelligibility-oriented objective functions should be adopted. 

Accordingly, Fu et al. proposed to directly optimize a neural 

network model with a speech-intelligibility-based objective 

function, namely short-time objective intelligibility (STOI) [55, 

56]. In [57], a reinforcement learning approach was adopted to 

optimize the model parameters based on the speech quality in-

dex, namely the perceptual evaluation of speech quality (PESQ). 

Another study derived an objective function that approximated 

the PESQ function to train the enhancement model [58]. More 

recently, MetricGAN [59, 60] was proposed to adopt a genera-

tive adversarial network to enforce the enhancement model to 

achieve desirable metric scores. The second direction is to use 

a better model architecture. Examples of successful approaches 

include models with complex parameters [61-63], ensemble 

learning [64-66], dual path [67-69], and dual branch [70] archi-

tectures. The third direction is to incorporate complementary 

information from other modalities into ASE applications. Ef-

fective modalities include visual data [71-74], bone-conductive 

speech [75], and text information [76, 77].  

 

 

Fig. 1. CRNN-based ASE framework. 
 

 

III. THE PROPOSED ASE SYSTEM 

Figure 2 presents an overview of the proposed TAP-CRNN-

based ASE framework. The proposed framework has an addi-

tional TAP mechanism compared to the CRNN-based ASE 

framework. The pseudocode is presented in Algorithm I. The 

proposed TAP-CRNN system first converts time-domain noisy 

signals to log power spectral (LPS) features. Then, the LPS fea-

tures are processed by the ASE module to suppress noise com-

ponents and accordingly enhance the acoustic signals. Com-

pared to the CRNN-based system, the TAP algorithm computes 

the attentive contexts from the output of the CRNN, which is 

then fed to the individual fully connected layers to obtain en-

hanced acoustic features. Finally, the enhanced LPS features 

along with the phase information are converted back to time-

domain signals using ISTFT. 

In the proposed model, the first part is the conventional CNN 

that takes the LPS as an input to extract spatial-temporal infor-

mation. Given a sequence of input vectors, 𝑿 =
 {𝒙(1), . . , 𝒙(𝑇)} (with T frames), the respective outputs of the 

CNN and RNN blocks can be expressed as: 
 

 𝒀 = {𝒚(1), . . , 𝒚(𝑇)}, 
𝑯 = {𝒉(1), . . , 𝒉(𝑇)}, 

 

(1) 

 

 

 

Fig. 2. The proposed TAP-CRNN-based ASE system. 

 

Subsequently, a bidirectional LSTM (BLSTM) is used to ex-

plore forward and backward temporal contextual information 

and extract global feature representations. During this stage, the 

output of the ASE module is fed to the TAP algorithm to obtain 

attentive context information. The attentive context infor-

mation is then combined with the CRNN’s output for calculat-

ing enhanced acoustic and noise signals. The combined input, 

that is, the CRNN output with attentive context, is further pro-

cessed by the fully connected layers (DNN) to obtain the en-

hanced acoustic and noise LPS features.  

During the online stage, we first calculate the LPS features 

and phase components of the input noisy acoustic signals. The 

noisy LPS features are subsequently processed by the CRNN 

model parameters. Then, the CRNN output is processed by the 

TAP algorithm to obtain the attentive context of the enhanced 

spectral features. The enhanced spectral features are forwarded 



to the fully connected layers for further processing. Finally, the 

corresponding enhanced LPS features are converted back to 

time-domain enhanced signal and noise signals using ISTFT, 

as demonstrated in Fig. 2. 

A. Temporal Attentive Pooling Algorithm 

In this section, we describe the TAP mechanism in detail. 

The goal of the TAP mechanism is to introduce attention blocks 

to the CRNN output by focusing on the salient regions. To max-

imize the performance of the TAP mechanism, we employed 

two alternative attention approaches: local and global. The 

model focuses equally on all regions as part of the global atten-

tion. However, when generating an enhanced acoustic signal, 

the model focuses only on limited local regions. The purpose 

of global attention is to consider all CNN outputs, as well as 

the RNN’s temporal summarization outputs. A previous study 

confirmed the benefits of local and global attention integrations 

on a heart sound classification (regression) task [8]. In this 

study, the local and global attention integrations on an ASE (re-

gression) task is investigated for the first time. The CRNN with 

a TAP mechanism is presented in Fig. 3. We use a simple con-

catenated layer to create the global attentive vector c(t) for TAP 

by integrating information obtained from the CNN's output 

𝒚(𝑡) and RNN's output as follows:  
 

 𝒄(𝑡) = [
𝑾𝑐𝒚(𝑡) 
 𝑾𝑟𝒉(𝑇)

  ]. (2) 
 

where 𝒉(𝑡) is the temporal sequence, 𝑾𝑐 ∈ 𝑅𝑐𝑐×𝑐𝑛𝑛𝑑𝑖𝑚 , and 

𝑾𝑟 ∈ 𝑅𝑐𝑟×𝑟𝑛𝑛𝑑𝑖𝑚  are the matrices used to reduce 𝒚(𝑡)  and 

𝒉(𝑇) dimension; 𝑐𝑛𝑛𝑑𝑖𝑚 and 𝑟𝑛𝑛𝑑𝑖𝑚 are the dimensions of the 

convolutional and LSTM layers, respectively. 𝑐𝑐 and 𝑐𝑟 are the 

dimensions for convolutional and LSTM parts in 𝒄(𝑡), respec-

tively. 

The global attentive vector 𝒄(𝑡) is subsequently fed to the 

softmax layer to produce global attention weights 𝛼(𝑡) (scalar), 

which is expressed as:  
 

𝛼(𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒖𝑇𝑡𝑎𝑛ℎ (𝒄(𝑡) + 𝒃𝑔𝑙𝑜𝑏𝑎𝑙) ). (3) 

Here, 𝒖 ∈ 𝑅(𝑐𝑐+𝑐𝑟)×1 is the vector used to calculate the global 

attention weight matrix shared by all time steps and 𝒃𝑔𝑙𝑜𝑏𝑎𝑙 ∈

𝑅(𝑐𝑐+𝑐𝑟)×1  is the global bias matrix. The global attention 

weights are used to weight the local features obtained from the 

CNN at each time step as follows: 
 

𝒆(𝑡) = 𝛼(𝑡) 𝒚(𝑡). (4) 

 

Apart from global attention, we employed local attention to re-

fine the feature extraction, which is calculated as: 
 

𝛽(𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒗𝑇𝑡𝑎𝑛ℎ (𝑾𝑙𝑜𝑐𝑎𝑙𝒆(𝑡) +  𝒃𝑙𝑜𝑐𝑎𝑙)),    (5) 

where 𝑾𝑙𝑜𝑐𝑎𝑙 ∈ 𝑅𝑙×𝑐𝑛𝑛𝑑𝑖𝑚 , 𝒃𝑙𝑜𝑐𝑎𝑙 ∈ 𝑅𝑙×1, and 𝒗 ∈ 𝑅𝑙×1 are the 

matrices used to calculate the local attention weight. These 

weights for local attention are used as feature weights as fol-

lows: 

 

 𝒇(𝑡) =  𝛼(𝑡)𝛽(𝑡) 𝒚(𝑡). (6) 

Here, 𝛽(𝑡) denotes the local attention output weight vector. The 

final attentive context is calculated as an average of the 

weighted outputs and concatenated with the RNN’s output 

𝒉(𝑇)  as follows:  

  

�̂� = [
 
1

𝑇
∑ 𝛼(𝑡)𝛽(𝑡)𝒚(𝑡)

𝑇

𝑡=1

𝑾𝑔𝒉(𝑇)

] 

 

(7) 

 

where 𝑾𝑔 ∈ 𝑅𝑟𝑛𝑛𝑑𝑖𝑚×𝑟𝑛𝑛𝑑𝑖𝑚  are the parameter matrices used 

to concatenate these two vectors. Next, we concatenate the at-

tentive context �̂�(𝑡) of the enhanced clean signal with the out-

put of the CRNN 𝒉(𝑡) as the input r(t) of the output layers as 

follows:   
 

 
𝒓(𝑡) = [

�̂� 
 𝒉(𝑡)

  ] . 
(8) 

 

 

Fig. 3. The TAP-CRNN model architecture. 

 

Subsequently, we obtain two r(t) values using TAP for sepa-

rated noise and enhanced acoustic sound, respectively. The out-

put layers are fully connected layers, where the relationship be-

tween the input r(t) and output of the first hidden layer can be 

expressed as: 
 

𝑎1(𝑡) = 𝜎(𝑾1𝒓(𝑡) + 𝒃1). (9) 

 

Here, 𝜎(.) is the activation function, 𝑾1is the input weight vec-

tor, and 𝒃1 is the bias vector of the first hidden layer. Similarly, 

the relationship for the q-th hidden layer can be expressed as: 
 



𝒂𝑞(𝑡) = 𝜎(𝑾𝑞 𝒂𝑞−1(𝑡) + 𝒃𝑞), q =2,…,Q, (10) 

 

where Q represents the total number of neurons in the output 

layer. As a result, the link between the regression and output 

layers can be formulated as follows: 
 

 𝒐(𝑡) = 𝐺(𝒂𝑄(𝑡)) (11) 
 

where G(.) is a linear function, and 𝒐(𝑡) ∈ 𝑅𝑙𝑝𝑠𝑑𝑖𝑚×1, t= 1,…,T.   

 

Algorithm: TAP-CRNN 

Input: Noisy acoustic signal sequence 𝑿  {𝒙(1), . . , 𝒙(𝑇)}, 

where 𝒙(𝑡) ∈ 𝑅257×1. 

Output: Separated target signal 𝑶𝐸  =  {𝒐𝐸(1), . . , 𝒐𝐸(𝑇)} and 

Separated noise signal 𝑶𝑁  =  {𝒐𝑁(1), . . , 𝒐𝑁(𝑇)}, where 

𝒐𝐸(𝑡) ∈ 𝑅257×1 and 𝒐𝑁(𝑡) ∈ 𝑅257×1. 

1: for t = 1 to 𝑇 do 

2:        𝒚(𝑡) = convolution(𝒙(𝑡)) 

3:        h(𝑡) = lstm(𝒚(𝑡)) 

4: end for 

5:  

6: 𝒀 =  {𝒚(1), . . , 𝒚(𝑇)} 

7: 𝑯 =  {𝒉(1), . . , 𝒉(𝑇)} 

Calculate global attentive weight 𝛼(𝑡) 

8: 𝛼(𝑡) = GAT_Attention ([𝒚(𝑡), 𝒉(𝑇)]) 
9: for t = 1 to 𝑇 do 

10:        𝒆(𝑡) = 𝛼(𝑡) ∙ 𝒚(𝑡) 

11: end for 

12:  
13: 𝑬 =  {𝒆(1), . . , 𝒆(𝑇)} 

Calculate local attentive weight 𝛽(𝑡) 

14:  𝛽(𝑡) = LAT_Attention ([e(𝑡)]) 
15:  
16: for t = 1 to 𝑇 do 

17:        𝒇(𝑡) = 𝛽(𝑡) ∙ 𝒆(𝑡) 

18: end for 

19:  

20: Attentive feature: �̂� =[
∑ 𝒇(𝑡)𝑇

𝑡=1

 𝑾𝑔𝒉(𝑇)
  ], 

21:  
22: for t = 1 to 𝑇 do 

23:        𝒓(𝑡) = [
�̂� 

 𝒉(𝑡)
  ] 

24:        𝒐𝐸(𝑡) = FullyConnected_layer(𝒓(𝑡)) 

25:         𝒐𝑁(𝑡) = FullyConnected_layer(𝒓(𝑡)) 

26: end for 

27: return 𝑶𝐸  and 𝑶𝑁 

________________________________________________ 

IV. EXPERIMENTS 

This section first describes the experimental setup and 

evaluation, then, describes the experimental results. In this 

study, we used infant cries as the target signals. Various noise 

types and SNＲ conditions were sampled to prepare the train-

ing and testing sets.  As stated in [78, 79], infant cries possess 

both short-and long-term context structures. The proposed 

TAP-CRNN can be suitably applied to enhance infant cry sig-

nals in noisy conditions. 

A. Experimental Setup and Evaluations 

The experiments were conducted using an infant cry dataset 

collected from five infants. For the training set, 400 infant cry 

utterances were randomly selected and corrupted with six noise 

types (babble, pink, female speech, male speech, background 

music, and cocktail party) at three SNR levels (-5 dB, 0 dB, and 

5 dB) to generate 400 (utterances) × 6 (noise types) × 3 (SNRs) 

= 7200 training utterances. Moreover, 100 infant cry utterances 

(different from those used in the training set) were selected to 

form the test set. We intentionally created a training-test mis-

match scenario, where the test utterances were formed by con-

taminating 100 clean infant cry utterances with two background 

noise signals (i.e., a fan and a piece of background music) at 

four mismatch SNR levels (i.e., -6 dB, -2 dB, 2 dB, and 6 dB) 

to generate 100 (utterances) × 2 (noise types) × 4 (SNRs) = 800 

test infant cry utterances. In this study, we used the 257-dimen-

sional LPS as the acoustic feature.  

To evaluate the performance of the proposed ASE system, 

we adopted two standardized evaluation metrics: segmental 

SNR (SSNR) and signal distortion ratio (SDR). The SSNR 

measures the average SNR values over short acoustic signal 

segments (15–20 ms). A higher SSNR value indicates that the 

ASE method can more effectively suppress background 

noise.  The SDR measures the distortion of the enhanced signal, 

where a lower SDR indicates less distortion in the enhanced 

signal. In contrast to standardized evaluation metrics, which fo-

cus on the enhanced acoustic signal, the background noise sig-

nals also contain important information. Thus, we also consid-

ered the ASE as a monaural source-separation task that aims to 

separate the target and background noise signals given a noisy 

signal. To evaluate such a task, we adopted two additional eval-

uation metrics, namely, SIR and SAR, to estimate the perfor-

mance. All of the ASE systems reported in this study were im-

plemented on TensorFlow, using an RMSprop optimizer with a 

learning rate of 1e–5 and a batch size of 32. The experiments 

were run on a single NVIDIA GeForce GTX 1080 Ti GPU with 

11 GB of memory. 

 

B. Evaluation of TAP mechanism  

In this section, we assessed the performance of the TAP 

mechanism by comparing the results of the TAP-CRNN and 

CRNN frameworks. We tested the performance with stationary 

(fan noise) and non-stationary noise (background music) types, 

both of which were not involved in the training data. Table I 

reports the enhancement results in terms of average SDR, SIR, 

SAR, and SSNR scores for the three noise types at four SNR 

levels (-6 dB, -2 dB, 2 dB, and 6 dB). The average scores across 

the four SNR levels are listed in the table as well. From the table, 

we can note that TAP-CRNN outperforms CRNN consistently 

over different SNR levels in all evaluation metrics, where the 

average improvement of SDR is 20.20% (from 4.31 to 5.18), 

that of SIR is 3.74% (from 21.58% to 22.39%), that of SAR is 

18.43% (from 4.55% to 5.38), and that of SSNR is 5.15% (from 

12.82 to 13.48%). These results confirmed the effectiveness of 

the TAP mechanism.  



TABLE I. PERFORMANCE COMPARISONS OF TAP-CRNN AND CRNN OVER TWO NOISE TYPES (FAN AND 

BACKGROUND MUSIC) AT FOUR SNR LEVELS. 

 CRNN TAP-CRNN 

 SDR SIR SAR SSNR SDR SIR SAR SSNR 

-6dB 3.29 18.3 3.69 11.83 4.40 19.29 4.74 12.54 

-2dB 4.30 20.9 4.55 12.43 5.10 21.56 5.34 13.00 

2dB 4.78 22.66 4.89 13.41 5.51 23.45 5.66 14.04 

6dB 4.86 24.45 5.05 13.59 5.70 25.24 5.79 14.32 

Avg. 4.31 21.58 4.55 12.82 5.18 22.39 5.38 13.48 

 

C. Comparison to Different Neural Architectures 

Next, we compared the performance of the TAP-CRNN 

framework to that of four well-known DL-based ASE frame-

works, namely, DNN, CNN, RNN, and CRNN. In the DNN 

framework, we used six fully connected layers, each having 

512 units. The CNN model had two convolutional layers, each 

having 32 filters with both kernel size of 3 and stride of 2, and 

three fully-connected layers, with each layer containing 512 

units. The RNN framework is formed by two bidirectional 

LSTM layers, each with 256 units, followed by two fully con-

nected RNN layers, each having 256 neurons. In the CRNN 

framework, the input noisy LPS features were first processed 

by the CNN at each time step and subsequently fed to the two 

layers of bidirectional LSTM, each having 128 units. The out-

put of the bidirectional LSTM is later concatenated and pro-

cessed by the two independent DNNs, each having two hidden 

layers with 128 units. TAP-CRNN has additional TAP blocks, 

as described in section 1.2. Each block of the TAP consists of 

an individual DNN, which has two feedforward layers with a 

size of 256 units. One of the two subsequent blocks of TAP is 

for ASE, where the enhanced acoustic signal is attained by the 

DNN. The other block of TAP is used to recover the noise sig-

nal. The overall architecture of the TAP-CRNN is shown in 

Fig. 2. The output of the subsequent layers of CRNN is pro-

cessed by two independent TAP blocks (DNNs) to reconstruct 

the enhanced acoustic signal by separating the noise signal.  

Figure 4 presents a summary of the average SDR, SIR, SAR, 

and SSNR scores yielded by the TAP-CRNN against four re-

lated ASE systems at different SNR levels under stationary and 

non-stationary noise conditions. For all performance evalua-

tion metrics, namely noise reduction (SSNR) and target-signal-

noise separation (SDR, SIR, and SAR), a high score indicates 

better ASE performance. As shown in Fig. 4, DNN and RNN 

exhibited similar behaviors for SDR, SRI, and SAR metrics at 

low SNR levels. Meanwhile, RNN achieved higher SDR, SAR, 

and SSNR scores compared to the DNN for higher SNR levels. 

The results suggest although DNN that uses a fully-connected 

neural architecture can well enhance acoustic signals, RNN, 

which incorporates temporal information, can more effectively 

separate noise components from the noisy input. The CNN 

models, on the other hand, have been proved to be good at 

characterizing the spatial context when performing acoustic 

enhancement [54, 55]. The results in Fig. 4 confirmed that 

CNN outperforms RNN and DNN in terms of SIR and SSNR 

while underperforming RNN in terms of SDR and SAR. The 

inconsistent results may come from different properties of 

CNN and RNN models. Finally, CRNN is designed to combine 

the advantages of CNN and RNN, where CNN captures spatial 

information and RNN models the temporal characteristics of 

speech features. For most evaluation metrics, CRNN yields 

better performance than individual CNN and RNN models 

across different SNR levels.  

The TAP mechanism is adopted to further disentangle blended 

information learned by the CRNN; in this way, CRNN may 

focus on the significant frame by adopting global and local at-

tention weights and deciding where to focus attention when 

generating the enhanced acoustic signal and noise. In Fig. 4, 

the results of TAP-CRNN demonstrated better performance as 

compared to the other ASE systems in almost all performance 

evaluation metrics. The results confirm the effectiveness of the 

TAP mechanism that further enhances the ASE capability on 

top of CRNN. Table II shows the online computation cost in 

terms of floating-point operations (FLOPs) and model com-

plexity in terms of the number of model parameters of the 

CRNN and TAP-CRNN, where FLOPs represent the compu-

tation cost of multiply and accumulate (MAC) operations. 

From the table, we note that TAP-CRNN only moderately in-

creases the computational computation cost and model com-

plexity compared to CRNN. 
 

  

(a) SDR (b) SAR 

  

(c) SIR  (d) SSNR 

Fig. 4. Evaluation results for different deep neural net-

works on the infant cry dataset. 



 

Table II. Computation cost (in terms of FLOPs) and 

model size (in terms of # parameters) of CRNN and 

TAP-CRNN. 

 FLOPs (M) #Parameters (M) 

CRNN 3.58 9.51 

TAP-CRNN 5.39 11.03 

 

D. Spectrogram Analyses 

In addition to quantitative analyses based on the evaluation 

metrics, we intend to visually compare the ASE capabilities of 

TAP-CRNN to other DL-based models. Fig. 5 displays the 

spectrogram plots of the enhanced acoustic signals achieved 

by DNN, RNN, CNN, CRNN, and TAP-CRNN. Fig. 5(a) and 

(b) demonstrate the spectrogram plots of noisy acoustic signal 

(termed as Noisy) corrupted with non-stationary noise (i.e., 

male speech) at -6 dB SNR and clean infant cry acoustic signal 

(termed as Clean) for comparison. From Fig. 5, we observe that 

all ASE models successfully suppressed the background noise  
 

  

(a) Noisy (b) Clean 

  

(c) DNN (d) RNN 

  

(e) CNN (f) CRNN 

 

 

(g) TAP-CRNN  

 

Fig. 5. Spectrogram plots of enhanced acoustic signals pro-

cessed by (c) DNN, (d) RNN, (e) CNN, (f) CRNN, and (g) 

TAP-CRNN. The unprocessed signal (a) and the correspond-

ing clean signal (b) are also presented for comparison. 

components while dealing with non-stationary noise and effec-

tively restoring the low-frequency acoustic regions at very low 

SNR levels (-6 dB), as indicated by the rectangular boxes. In 

Fig. 5(f), we can note that the CRNN effectively removed the 

background noise from the noisy signal; however, it misjudged 

the region in the rectangular box as an acoustic region, which 

shows that it has learned blended information. However, TAP-

CRNN restored the low-frequency acoustic regions shown in 

the rectangular box closer to the clean utterance spectrogram 

plot by helping the CRNN focus on the significant frame using 

the global and local attention weights when generating en-

hanced acoustic signals.  

To investigate the full effect of the TAP mechanism, Fig. 6 

demonstrates how the weights of the sequence generated by 

the TAP mechanism. The displayed visualization belongs to an 

infant cry utterance, which has been contaminated with non-

stationary noise. As shown in Fig. 6, the TAP learns align-

ments that correspond very strongly to the target acoustic sig-

nals by focusing on and paying attention to the significant 

frames. The attention mechanism correctly identifies and re-

stores the frames by discriminating noise and acoustic signal 

components through assigning high weights to the salient re-

gions or frames in noisy signals.  

   

 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 

Fig. 6. (a) Spectrogram plot of a noisy signal. (b) Spectrogram 

plot of the enhanced acoustic signal. (c) Attention weights of 

TAP_E. (d) Spectrogram plot of the noise signal. (e) Attention 

weights of TAP_N (computed by 𝛼(𝑡)𝛽(𝑡)). 



E. ASE for Robust Infant Cry Detection 

We further test the ASE system using a downstream task: In-

fant Cry Detection (ICD). The ICD task aims to determine 

whether a sound segment involves an infant cry event or not. 

In this set of experiments, we used a training set from ESC-50 

[84] to establish an ICD system. The training data contained 

228 sound segments of two classes, 108 segments involved in-

fant cry events, and 120 segments involved background envi-

ronment sounds (no infant cry). The testing set included 500 

sound segments, in which 250 segments involved infant cry 

events, and 250 segments involved background sounds only 

(no infant cry event). These testing segments were contami-

nated with five types of noises (pink noise, bubble noise, 2 fe-

male mixed speech, and 1 male speech) at varying SNR levels 

(from -2dB to 2dB). Each segment was in a 1-second length. 

The ICD system was built based on Temporal Convolutional 

Residual Networks (TC-ResNet8), which had been used for the 

Google small foot-print KeyWord-Spotting (KWS) task [85]. 

Since the ICD is a detection task, typical metrics for pattern 

detection tasks were used for evaluation, including accuracy, 

precision, recall, and F1-score. Table III shows the four items 

used in the evaluations. 

 

TABLE III. Assessment Matrix.  

 Ground Truth 

Predicted Class 

TP  

(true positive) 

FP 

(false positive) 

FN  

(false negative) 

TN  

(true negative) 

 

Equations (12)–(15) show the definitions of four metrics that 

we used to evaluate the ICD performance. 

 

 Precision =
TP

TP+FP
 , (12) 

 

 Recall =
TP

TP+FN
 , (13) 

 

 F1 = 2 ∙
Precision∙Recall

Precision+Recall
,  (14) 

 

and 

 Accuracy =
TP+TN

TP+TN+FP+FN
 . (15) 

 

Among the four metrics, recall is the true positive rate, and 

precision represents the positive predictive rate. The F1-score 

is the harmonic mean of recall and precision. Accuracy reflects 

the classification results. 

    Table III shows the ICD system without ASE (Without ASE) 

and with TAP-CRNN-based ASE (With ASE) in terms of ac-

curacy, F1-score, precision, and recall. For Without ASE, the 

testing segments were directly sent to the pretrained ICD sys-

tem to test recognition; for ASE, the testing segments were first 

processed by TAP-CRNN for ASE and then sent to the pre-

trained ICD system to test recognition. From Table III, TAP-

CRNN can effectively improve the classification results under 

noisy conditions, confirming TAP-CRNN’s outstanding capa-

bility to improve the downstream ICD task. 

 

Table IV. Accuracy, F1-score, Precision, and Recall results of 

the ICD systems without ASE and with TAP-CRNN ASE. 
 Accuracy F1-score Precision Recall 

Without ASE 78.4 0.749 0.894 0.644 

With ASE 89.0 0.879 0.976 0.800 

 

V. CONCLUSION 

In this study, we investigated using attention models for 
the ASE task. To the best of our knowledge, this is the first 

attempt to employ a TAP mechanism on a CRNN for such ap-

plications. The results highlighted the unequal importance of 

the segments of each frame for ASE. The proposed TAP mech-

anism considers local and global regions of a sequence, ex-

tracts significant features from regions of the sequence, and 

extracts significant features from each frame. The global atten-

tion mechanism identifies salient parts of the sequence, 

whereas the local attention mechanism minimizes the attention 

error. Comparative experiments indicate that the TAP-CRNN 

possesses positive discriminative capabilities for target signal 

restoration and noise reduction compared to the CRNN model. 

The effectiveness of the proposed TAP-CRNN mechanism is 

demonstrated under mismatched non-stationary environments 

at severe SNRs compared to other deep-learning ASE frame-

works as well. Note that the performance of the proposed TAP-

CRNN was analyzed (trained and tested) using a relatively lim-

ited infant cry dataset. In future research, we aim to consider 

more diverse training data and different non-stationary noise 

types to further assess the performance of TAP-CRNN. More-

over, we will explore noise-aware and SNR-aware-based train-

ing for TAP-CRNN to further enhance system performance in 

real-time environments. Finally, we will build on our recent 

research [80-83] and extend the TAP-CRNN model by inves-

tigating a compressed version of TAP-CRNN to contextually 

exploit multimodal information, such as audio-visual lip-read-

ing, to meet strict latency constraints and generalized perfor-

mance requirements for next-generation multimodal hearing 

aids. 
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