Query Language for Prometheus

Cédric Raguenaud, Jessie Kennedy, Peter J. Barclay

Database and Object Systems Group
School of Computing
Napier University
219 Colinton Road
Edinburgh EH14 1DJ
United Kingdom
{cedric, jessie, pete}@dcs.napier.ac.uk

Abstract:

This document presents the query language developed fordhmetheus database [RKB99].
This language is based on graphs and provides the user mitars to define the data to be
extracted from the database and its manipulation. The langeage&es the definition of
patterns that can be matched against the set of datalde in the database and return
instances.

1. Introduction

We have defined in [RKB99] a database model based on gaadithat puts the emphasis on
relationships. This model was designed to support the Promsetieonomic model [PK99]
and provide taxonomists with means of manipulating taxonomic datarally and
effectively. Since taxonomists are not computing specalibe choice of graphs also has the
advantage of being naturally represented graphically easily coupled with a graphical
programming language (e.g. [PL94], [RK97]).

First we define briefly the Prometheus model in section 2) the explain the operations
necessary on graphs in section 3. In section 4 we deshelsructure and the properties of
our patterns and in section 5 we build a database examgplghaw how it works. Finally we
conclude in section 6.

2. The Prometheus model

The Prometheus model is based on directed graphs. Fidéfime a generic graph and then
we explain how it is derived in order to create our model.

2.1. Generic graph

A graph is constituted of nodes and arcs. Nodes representdoasiepts such as numbers or
the core of a complex object such as an NT (as shovigure 1 in a simplified form), and
arcs are directed edges that bind two nodes by a nanstmship (the label of the arc
carries the name of the relationship). Both nodes andaaectabelled and their labels are
unique. This label serves as unique identifier. The nodeenvaée arc starts is called the
source of the arc, and the node where the arc ends is dadleéstination of the arc.

name :
NT —— | Epithet

=,

Figure 1: Example of graph

Type

In this example, an NT node is involved in two relationships (represented by arcs), one with
an Epithet node, and one with a Type node.

More formally:

A directed graph Gis G = (N, A |abel, source, dest) where N
is a set of nodes, and A is a set of arcs. A node n O Nis
identified by its label nl O (NL O L) which is unique in all
el ements of the graph. A directed edge or arc a OO A is defined
by (sl, el, dl), where sl, dl O N, al O (AL O L) is a unique
|abel in all elements of the graph. sl is called the source of
the arc, and dl is called the destination. W also have NL n
AL =0 and N n A =0. W define three operations: |abel(0): o
O(NOA - L, which returns the |label of an object o O (N O
A); source(a): a OA - nl ON which returns the |abel source
for the arc a O A dest(a): a O A - nl ONL which returns the
| abel destination for the arc a O A

Like in classical graph theory, we say that two nodes n;, n;
related by an arc ai(ni, np;) are adjacent, and that the arc a;
is incident fromn; and incident to n,. The sum of the nunber
of arcs incident from (positive degree, noted pos d(n;)) and to
(negative degree, noted neg d(n;)) a given node is called the
degree of that node.

These are the basic structures understood by the database, and
all other concepts are derived fromthem

Nodes are of two kinds: atomic nodes and complex nodes. Nualelsatve a purely negative
degree are called atomic nodes. They are complex nodes othefidsnic nodes are used to
represent basic concepts such as numbers or charactgs.sini that case, their label is called
the value of the nodeHence, the positive degree of an atonic node is

al ways zero, i.e. if n; is an atom c node, pos d(n;) = O.

We used indirect references to nodes using labels becauseldbets, in addition to being
the values of atomic nodes, fulfil also the function of uniigeeatifiers. Our system does not
support object identity in the sense of object-orientédhdeses.

2.2. Model

Our graphs must first be extended to represent some mordesodgta, such as complex
objects. Thus we first divide both nodes and arcs iifferdnt categories: we define atomic
nodes (which have no outgoing arcs) and composite nodésniilat have outgoing arcs),

simple arcs and multiple arcs, associations and ggtoms (which are subject to
interpretation by the database engine. In fact, we define s&tayf entities.

This definition of graphs is extended in order to capture types instances. Types are
necessary for guiding the user in its interaction withdatbase. Although the database is
designed for supporting taxonomic work and this work is Isirfyee of constraints, specific
areas of taxonomic work require the application of the nomemelacode. Therefore, our
data must follow a schema and implement integrity ch@ck. graphs are therefore directed
and typed. A type for a node means that all instantése type must be involved at most in
the same relationships as their type. For an arce#@ns that it originates and ends in node
instances of the type that its type groups together. Arggteicts the data that can be input in
the database and is the first step towards integritgkitig In addition, we introduce the
concept of synonymy at type and instance level. At type leyebnymy allows a grouping
of types under a common meaning, but unlike in an objecttedeznvironment, it does not
imply the sharing of structure or behaviour. A synonym of $y@@éso called union type, only
means that all types grouped under it can be involved andiftly in some relationships. At
instance level, a synonym means that the instances groungeed it represent the same real
world object, although they may contain different valuk is extremely useful to represent
databases of persons that might have their name spdiiectulily, but are still the same real
world person.

A formal definition can be found in [RKB99].

3. Graph modification.

The operators we define here only affect the lowest gatfieodatabase. They are directly
applied on the graphs defined by the user. At this stage, weneeld to define the basic
operations required by a graph structure: adding and wigletides and arcs.

4 operations are defined on the graph database: add ndda;cadielete node, and delete arc.

Each of these operations is specialised in type atdrine operations:

- Add type node thd TN with label | 0 TNL: creates a type node;tand assigns the label
I, to it if it does not already exist.

- Add union type node tyri] TUN with label | 0 TUNL and types {t O TCN O TUN:
creates a union type node tuasssigns the label {o it if it does not already exist, and sets
the types unioned in this union type by creating necessary asgee (with a unique
computer generated name).

- Add instance node jri] IN from type node tn0J TN-TUN: creates a new instance node
conforming to the type node;tand assigns a unique computer generated label to it.

- Add type arc tald TA with label k O TAL, source ta [0 TN-TAN and destination]
TN-TSN: create a type arctassigns the labej to it if it does not already exist, and sets
the source and destination of the arc.

- Add instance arc ialJ IA from type arc ta 0 TA with source(i@) = label(in) O
source(ia) = label(in) where in, in, 00 IN: creates a new instance arg, iassigns a
unigue computer generated label to it, and sets its s@mdedestination. jamust
conform to the type arc talf in, is involved in an instance synonymy relationship, all the
instances involved in this relationship are subjected tedh®e arc addition if they do not
already exist, otherwise it is rejected as incompatible.

- Delete type node tri] TN: deletes the type node tand all type arcs from which it is the
source or the destination, i.€] ta 0 TA, ((source(ta) = label(t)) O (dest(ta) =
label(tn))) => delete(ta). All instances of the type are alwdeted, i.e.] in; O IN,
type(in) = label(tn) => delete(in). The type is actually deleted only if no other object i
the system references it.

- Delete instance node;if] IN: deletes the instance nodeg and all instance arcs from
which it is the source or the destination, i&.ia [0 1A, ((source(ia) = label(i)) O
(dest(ia) = label(if))) => delete(ia). Like for the arc addition, if;ifs involved in an
instance synonymy relationship, all the instances involvedhis telationship are
subjected to the arc deletion. The instance is actudiyedkonly if no other object in the
system references it.

- Delete type arc tall TA: deletes the type arcitaAll arc instances of this type are
deleted, i.e ia O IA, type(ia) = label(tg => delete(ia).

- Delete instance arciial IA: deletes the instance arc.idf ia; represents a concept of
aggregation (i.e. il IAA), dest(ia) must be deleted, i.€l in [IN, dest(ia) = label(in)
=> delete(in).

Each time an instance is created (be it an arcrayde), the type conformation algorithm is
applied in order to make sure that the structure createdmpatible with the schema from
which it is instantiated. If it is not, it is reject and an error is signalled to the user.

4. Queries.

In addition to these basic operations, we need a mechamirallows the user the retrieval

of data from the database and the specification of tigdagement of modifications. For the

purpose of taxonomic work, the retrieval facility of our laage must be able to extract the
extent of a type (i.e. all instances of this type), comiions of instances obeying a template
(e.g. a NT and its Author), and recursive queries @gacting a classification). Our aim is

not to create a computationally complete language for thecsake

The simplest way from a user point of view is the debnitof a pattern that will be matched
against the database and return a subgraph of it. Apattetemplate, is the representation of
the structure searched in the database.

4.1. Pattern

A pattern is a graph defined as previous graphs, but @nistituted of representative objects.
These objects represent nodes that can actually be foutieidatabase (i.e. types and
instances). Unlike type and instance graphs, a pattagncontain objects from both spaces
and are named using these objects’ labels (possiblaubecthey are unique). These
representative nodes are called structural and value nad$é€é and instance representation
respectively. However, only type arcs can be defined inp#tgern. Since the user never
controls the attribution of labels to instance arcsyauldn’'t make sense to allow him the
specification of these labels. A pattern is constituted saohel arcs. Nodes are divided into
two kinds: structural and value nodes. Structural nodes emre®des that are types and
value nodes represent nodes that are instances. Only ahefkarc exists in the database
because only types are represented.

A pattern graph is thus defined as graph, i.e. P = (PN, PA
PL, label, source, dest) where PN is a set of pattern nodes,

PA is a set of pattern arcs, and a set of labels PL O (TL 0O
IL).

Two kinds of pattern nodes exist: structural and val ue nodes.
A structural node psn O PSN is identified by its |label psnl O

(PSNL O TL). A value node pvn O PYNis identified by its |abel
pvnl 0O (PVNL O IL). PNL = PSNL O PVNL, PN = PSN O PVN. A
pattern arc pa 0O PA is defined by (psl, pal, pdl), where psl,
pdl O PSNL O PVNL, pal O (PAL O TAL). psl is called the source
of the arc, and pdl is called the destination. W also have
implicitly PNL n PAL = O and PN n PA = [O. W define three
operations: label(o): o O (PN O PA) - PL, which returns the
| abel of an object o O (PN O PA); source(pa): pa O PA - pnl O
PNL which returns the label source for the arc pa 0O PA

dest(pa): pa O PA - pnl O PNL which returns the [abel
destination for the arc pa.

Patterns may contain objects carrying labels that thjecluded in other patterns already
carry. This is possible because all patterns are indepéefidom the others and do not form a
single space.

We cannot allow the definition of more than one node barigigen name in a given pattern.
This is due to the way arcs are defined and the kind etblgentity supported by our model.
However, we need to be able to express queries where e @ancept may be used in
different contexts at the same time because two diffénetances are considered. Moreover,
the possibility of cycles makes the writing of patterns apéfinodes cannot be repeated. We
allow the definition of many nodes and arcs baring the same tieamks to the definition of
aliases. We simply define an alias dictionary whicbassulted whenever an element cannot
be found in an operation or an invalid type encountefédse labels must still be unique and
they provide a way to keep the uniqueness of labels in graple could have modelled
aliases as synonyms in the same way we modelled synonynypdserand for instances. This
would have produced a graph aspect at a meta-level arateaumiform system, but would
have generated a much more complicated structure forafadake (thus more complicated
for the user). We have to keep in mind that the system bwisisable by non-computing
people. Later, we do not include aliases in diagrams amuias for simplification.
Semantically we give many different virtual labels toirmgle element in the database, and
each time one of these virtual labels is used in operasowod as type or conformity
checking, the virtual label is resolved to the real label.

Type unions and instance synonyms are voluntarily excluded fiendéfinition of patterns
because they do not represent real word objects and orgg thigjects can be queried.
Moreover, there is not necessarily structural uniformitythe types participating in the
definition of the union so querying their structure is une&sgeed, if we allow the use of
synonyms in the querying, patterns would become far more cmatgd because they would
have to take in count the each possible structure meguwfithe exploration of the synonymy
group. Moreover, we assume that when a user queries thmdatdie/she already has a clear
idea of what is to be queried, therefore knows what treziegh structure is. For example,
although we have defined a taxonomic type union type previofislyser queries a structure
where it is involved, he/she knows if the result must be a Speaifne@ NT concept because
their meaning is different.

For a pattern to be valid, it has to represent alvalbgraph of the schema, possibly through
instances. It means that in order to check whethertarpas valid, it is necessary to find the
schema which it represents (by following references frotep®s to types and instances
using labels, and then possibly from instances to tyg&®).elements found this way must be
conform to the schema on which the pattern is applied.derdo check that a structural node
is conform to the schema, we first find the type thaties the same label as the structural
node, and the type of all arcs that originate from thecsiral node. Then as we did for

instance type conformation, we check that the relatipssat type level are the same than in
the pattern. We proceed in a similar way for value noebesgpt that we first start by finding
the instance which label is the same as the value nodejtshiype, and only then we can
check that the pattern node conforms to the type. The guafium checking for an arc is
made harder by the presence of types and instances sdrtigetime (i.e. the origin and the
destination of the arc may be either a representation typ@ or a representation of an
instance). Therefore, for each node at an end of thevarmust search for an instance then a
type if the node is a value node or a type if it is a strathode. Then when the type carrying
the same label as the pattern arc is found, it is posgibleheck whether it follows the
definition of that type. When all components of the pattemfarm to the definition of the
schema, the pattern is said valid.

It is obvious that our patterns can only define equality thedpresence of a conjunction of
objects in the instance graph, like it is the case irfiteelanguage defined for GOOD. This
limitation can be seen as too restrictive for some og#se database system even though it is
often enough to express many queries. We can extend thistidef of a pattern to
incorporate the notion of negativity. A negation can bwgative arc or a negative node. In
the definition of type conformity, a negative node or a tiegaarc does not make any
difference. Indeed, we only allow the querying according tcstieema of the database. The
non-existence of a node or an arc is checked on instahgees, not on types. In consequence,
it is not possible to query objects that are not givan form/type. The effect of the presence
of negative elements is only visible on matching (see belde) thus define negatives arcs
and nodes like positive arcs and nodes but mark them asveggate. we speci al i se
the definitions of pattern value nodes into positive and
negati ve nodes. W define in the same way the set of pattern
positive value nodes and the set of pattern negative value
nodes, PPVN and PNVN respectively with PVYN = PPVN O PNVN, and
PPVYN n PNVN = 0. W proceed in a simlar way to define pattern
positive and negative arcs sets, PPA and PNA respectively with

PA = PPA 0O PNA, and PPA n PNA = [. The meaning of negativity for arcs and
nodes is different. For value nodes, negativity means ‘f@stgmce of the same type that has a
different label”, whereas for types it means “not ongance of this type between the two
nodes”. We also restrict the possibilities expressed by dterps: a negative arc can only be
created between two positive nodes. Indeed, if the offigin arc is positive, the arc itself is
negative and the destination of the arc is negative, they geieneaningless. It would be
asking for a configuration where there is no relationdleifyveen a node and not another node
which value is not specified. Two value nodes represeritiegsame instance node can
coexist in the pattern if one if positive and the other is thnegalndeed, we include the
negation in the label of the node in order to form a node avitew label, but representing the
same instance in the database.

4.2. Matching

After the definition of a pattern, the matching may beuiegl exact, or approximate. An
exact matching is a matching where the pattern reflectstlgxthe structure searched in the
database, whereas an approximate matching involved the defimifiopaths, regular
expressions, or variable sections of the pattern.

4.2.1. Exact matching.

Once a pattern is defined, it is necessary to matabaiinst the database in order to find the
element configurations that fulfil the user requirementger@é are many ways of performing

pattern matching on graphs and especially on treeeddst a connected graph where any two
nodes are connected by a unique chain). These techniquegergraiseful for pattern
matching in biology in order to discover molecules or DNA seges (e.g. [Jona97]). Some
of these algorithms are 2D algorithms (e.g. [B-YR93], [KU9cause tree representations
of strings where sequences are searched allow an &adiag of incomplete sequences (e.qg.
[ZSW94]), or because the text searched has a two-dimensitbneture. Since 2D matching
is a complex problem, one approach is the reduction of 2D stescta 1D structures. One
possibility is to attempt a match by columns (or rousing a simple 1D matching technique
(e.g. Knuth-Morris-Pratt [KMP77]). Another possibility tise transformation of the 2D text
into a 1D text by representing repeated patterns by achanacter and so constructing a
string representation of the matrix on which an automatdheoKMP algorithm can be run.
In that case the final string matching is fast, butpgheprocessing time is expensive. Very
few pure 2D algorithms exist. One common idea is the usesrabdicity in the pattern in
order to reduce the number of matches attempted. Indedlder# is no point where the
pattern overlaps with itself other than the origin, the Inenof potential locations of matches
is greatly reduced (we know that the next match has tatside the zone currently covered
by the pattern). A similar idea is used by [B-YR93] forugidg the search space.

The main obstacle to the implementation of these algositisnthe time and the extra-space
required. These algorithms may adopt a positive approabicifwnean that they try to find
where the matching can occur) or a negative approach (whéns that they try to find
where a matching cannot occur) depending on the likelihood otehrimaorder to speed-up
the algorithm. Although these algorithms work on any matne any pattern with a given
alphabet, they cannot cope with one of our problems: thaxmapresenting the graph may
be in an unexpected configuration. This is due to thetfattcolumns and rows in a matrix
can be swapped without changing the meaning of the matrix.dviemethese algorithms
often use tree structures whereas our structure ispd gtherefore without unique root and
unigue path between any two nodes. It is then clear thdiawe to proceed to the matching
by cutting down the element searched into smaller enthi@scan be found without being
disrupted by unnecessary data.

Graph systems such as Hyperlog have a different approdtie tpattern matching. In this
model, queries are attached to a type. Thereforetterpanust also be defined relatively to a
type. This simplifies the search to the matching of lsimtonfigurations of nodes by
enumerating attributes. However, this approach may bectest if patterns involving very
complex structures are necessary. Moreover, we have chos@mattach patterns to certain
types (see pattern definition) thus our approach is diftere

The first step of our work on pattern matching consisfintling a good representation of our
graphs. This representation needs to capture two aspemis graphs: nodes and edges, and
their relationships. A possibility is the extraction of pattiings that would hold all
information about a path in the graph, then match thetmeléssical 1D matching techniques
(e.g. [Wat97]). However, this technigue seems to regaivery time and space consuming
pre-processing of the graph in order to extract all posgilsiths. Even if the graph was
traversed dynamically while matching attempts occur, thegpiee of cycles and loop make a
matching hard to detect (these algorithms are designedees, tnot general graphs). The
more sensible approach is guided by what a type meamsdeconforms to its type if it is
involved in the same relationships as its type. Sincerpattee derived from types, matching
a pattern is almost finding the type of an unknown pattewrebler, our model is centred on
relationships, so the pattern matching is a matching afioeships. Therefore, the matching
of a pattern is divided into three phases:

- extraction of the relationships that compose the pattern

- extraction of the relationships that exist in the instapsee

- matching of the relationships

The set of relationships in which a node (pattern or imgpis involved is divided into two
subsets: incoming relationships and outgoing relationships. dikigction is necessary
because incoming relationships are manly the presence of afests in the system, and
thus are not controllable. Each set contains the descripfioelationships in the following
form: {source node, arc, destination node}. If the set cilyeconsidered is the incoming set
of the node, it must appear in all destination node slotsgeasply it must appear in the
source node if the set considered is the outgoing set). Meacsets of relationships are
defined for the pattern to be matched, we proceed signflarlinstances. We can optimise the
search by reducing the search space to the types amhdestwe are interested in. For
example, if a positive structural pattern node is presenthén pattern, only instances
belonging to the type represented by the pattern node wibbsidered. If a negative value
node is present, only instances belonging to the same typeithudifferent labels will be
considered in this part of the search.

Then, we proceed to the matching of the pattern relatippshind of the instance
relationships. For each set of relationships relatel tode in the pattern, we only keep the
instances that satisfy all of them. If no relationshiiste in a set, then any number of
relationships of any nature is valid as a match. tegative arc is involved, we match the
positive form of the relationship and consider any matchiwgoag answer that we ignore.

After the previous step, we might have extracted instatizgssatisfy a part of the pattern,
but do not interact with any other instance extractethfthe pattern. For example, when an
NT and its Epithet must be extracted with a condition fen Epithet, some matches may
occur that do not satisfy the condition put on the Epithet. ¥eove these matches by
repeatedly removing instances that are involved in reldtipas(selected relationships
according to the pattern) which reference nodes not séléstehe matching. We stop the
process until the result set no longer changes.

Example:
We imagine a database defining the following schema (figure 2)

theType l theEpithet

NT | ——— Epithet

theP Validity

Publication Validity

Figure 2: Sample schema

For simplicity, let us imagine a database containinglttia (instances) shown in figure 3.

TheType .-V NT> TheEpltheg Bellis
NT. e ThePup™. e
e TheEpithet q Thevalidite-..
ThePUb_;..--"""A """"""""""" > Perennis Pub Validity,
~ TheVvaldity,
» €
Puh Validity,;

Figure 3: Sample data

In this diagram, instances are represented dotted lines.

If for example we want to find the publications that sssagiated to an NT which epithet is
Perennis, we can define the following pattern (figure 4):

NT

thePub theEpithet

Publication . Bellis

Figure 4: Sample pattern

In this diagram, pattern elements representing types are represented by solid lines, and those
representing instances by dotted lines. If negative arcs or nodes are to be represented, they
are assigned bold lines graphics.

The matching proceeds like follows:
1. Extract the pattern relationships

NT in={}

out = {{NT, thePub, Publication}, {NT, theEpitheBellis}}

Publication in = {{NT, thePub, Publication}}

out={}

Bellis in = {{NT, theEpithet, Bellis}}

out = {}

Extract the interesting instance relationships from theunts graph

NT, in={}
out = {{NT,, theType, NT,}, {NT ;, theValidity;, Validity;}, {NT 1, thePul, Puh}, {NT ;, theEpithet, Perennis}}
NT, in = {{NT 4, theType, NT,}}
out = {{NT,, theValidity, Validity,}, {NT , thePub, Pub}, {NT ,, theEpithet, Bellis}}
Validity, in = {{NT 4, theValidity, Validity:}}
out = {}
Validity, in = {{NT », theValidity,, Validity,}}
out={}
Puh in = {{NT 4, thePub, Puh}}
out={}
Puly in = {{NT ,, thePub, Pub}}
out={}
Bellis in = {{NT ,, theEpithet, Bellis}}
out={}
Perennis in = {{NT, theEpithet, Perennis}}
out = {}

2. The resulting set of relationships is the following afeanoving unnecessary matches:

NT, |in={)

out = {{NT», thePub, Pub}, {NT », theEpithes, Bellis}}

Pub in = {{NT ,, thePub, Pub}}

out={}

Bellis | in = {{NT 5, theEpithes, Bellis}}

out = {}

The result of the pattern matching is in consequencitiosving instance graph:

NT2

thePub2 . . theEpithet2
K N
Pub2 . Bellis

Figure 5: Result of the pattern matching

In some cases, many matches are possible in the datadzasding to a given pattern. In this
case, each component (sub connected graph) of the resultpigigra match for the pattern.
Components are simply found by going through the matrix amowfivlg arcs. Each time a
node is found, the algorithm checks if it already belongsni of the found components, if
not it creates a new set (component).

It appears clear now that Prometheus achieves recursiavibeh by extracting whole
subgraphs from the database. Since our structure is a gompdining possibly loops and
cycles, a graph traversing approach would be much more matgu and inefficient. For
example [BDS95] had to introduce the complex concept of texkears in order to deal with
cycles. We do not think that this approach is suitable people with not computing
background and is not user friendly [Cluet97].

4.2.2. Approximate matching

We have not yet developed an efficient algorithm for inceteplpatterns or regular
expressions. Some techniques exist in the literature faméndional spaces and patterns
(e.g. [AAL97], [A-YP96]), or for 2D approximate matchingde[ZSW94]). One expensive
possibility is to consider each relationship betweenriages as being a circuit (succession of
arcs, possibly cyclic) and then find ways through th@lyrd he problem of this method is its
cost in term of time: each relationship defined in thiégpa implies a circuit search through
the graph. The number of circuits in a graph may beneoos and an exhaustive search
uneasy because of the number of possibilities creategdbgsc

A possible approximate matching is the matching of paths asgrgph traversing approach
on a patrticular arc (the equivalent of a form of simpd¢h expressions). For example, the
path between the rank family and the rank species cani amy length, but always follows
the relationship NextRank between Rank nodes. This is amairkied of queries that cannot
be represented be the languages we know on graphs, but theybmigdguired in order to
implement consistency rules in the system (see later).

Like it was done in the case of exact matching, we can coreigoximate matching with
swaps and apply it either on a 1D representation of the 2Bespa repeatedly on the 2D
matrix taking great care of keeping the constancy of thtempa(e.g. if two elements are
swapped, the whole column or row must be swapped in therpaiéore proceeding to the
match). The feasibility and efficiency of this ideavéanot been tested yet. Moreover, the
differences that may occur obey certain rules. For exantpé insertions must represent an
existing path in the database. Like for the exact matchimghope to find a practical and
efficient way to extract the matches from the graph bexéist the alphabet is very limited
and because we can use the type information availabke to

The matrix we used has the property to show paths of lengtiren it is multiplied n—1 times
by itself. For example Riwill show all paths of length 2 between every pair of nodéss
can be used in order to find out the paths following a typénea repeated fashion.

4.3. Extraction of information

It must be possible to represent in a query the struthatemust be matched against the
database (the pattern) but also the structure returned &roser point of view but also for
applying the operations described above). For example, a patégricontain the definition
of a Person concept, but only the hame associated viithréqquired as an answer. Thus we
define a query as being constituted of two parts, the Aeddhe body. The body contains
one or more patterns that will be matched against tkebdae, and the head contains the
structure that is required (a single pattern). Thiscstire returned must only contain nodes
and edges defined in one of the patterns constituting the Inodgra only labelled with type
names. It is the equivalent of the SELECT clausenii®@L statement. This pattern must be
directly derived from the schema in order to define the siracof the data returned.
Therefore, it can be extended to the schema, i.e. if vateto be matched in the body of the
query, only their type can be included in the head. For pbani author Mark is part of the
body of the query and is to be included in the resultirtg,dbe type Author must be included
in the head of the query.

In the above example, the head of the query is simply thef setdes Publication, which as a
result of the query run against the database only coriaibs

4.4. Programs.

A program consists of a series of queries for infaromaretrieval, and a set of operations
applied on the results of the queries.

5. Database Example

Using the concepts defined in our model, we can redesign xbaedaic model we have
developed in [PK99]:

i Type [Specimen<—i Circumscriptioni

theType theCirc

thePlacement

————————— 1

Epithet Conserv

theConservedAgainst

3
I
|
I
I
I
I
I
I
|

Conservall Rejected FCOnservone

In this diagram types are represented by solid boxes and union types by dashed boxes. Sngle
arcs are represented by a solid line and multi-valued arc by dashed lines. Aggregation arcs
are represented with a starting diamond whereas associations are not. Note that arcs linking
union type nodes to other nodes are not names. Thisis because their name is not attributed by
the user.

This schema differs from the object-oriented one by theeace of inheritance (replaced by
union types), and the fact that Publication is not spseidlinto OriginalPublication. Indeed,

a publication is made original by its relationship to an Norienclatural Taxon), not by its

nature.

Since types are unique, the choice of names is not aleasy. By tradition, we use “the” as a
prefix for arcs representing aggregation because of thkcitnmeaning that the targeted node
is special (part of the origin node). A good way to maregenames could be to include the
source node name and the destination node name in their,rathesgh it produces very
long names. In any case, one must be careful in the cbioi@ames because the creation of a
type node with a particular name implies that no instaiacke will ever have that name.

Now, we can imagine that we want to populate this medéi a very small simplified
classification containing only information about Bellis Peiis. First, we enter the required
information about names (NT):

. Perennis valid Species Specimen
------------------ - e 4
NT: etheNTRank e
s ¢ Genus NeXtRanK thePub AUthOj
theEpithef .~ _—
th eva_!_ldl tieNTPub
‘_ < B . thePubAuthor Y
Bellis valid Pubinfa ¢ > Mark

Figure 7: Instance graph for names

Note that in this diagram, the atomic node valid has been repeated although it exists only
once in the database (uniqueness of labels) in order to clarify the display.

This instance diagram shows how the structure is repeatdiffaent levels (a level being
identified by its rank object) to form a recursiveusture. It shows also that we are not in
presence of a tree, but a directed graph (note for exatiat the Mark node is reached by at
least two different circuits), which is due to theriéhg of data between different levels of the
hierarchy and different hierarchies.

We can associate the following set of relationships thighinstance graph.

NT, in={}

out = {{NT, theEpithet, Bellis}, {NT, theValid, valid}, {NT1, theNTPul, Pubinfa}, {NT 1, theNTRank
Genus}, {NT, theType, NT,}}

Bellis in = {{NT ,, theEpithet, Bellis}}

out={}

valid in = {{NT 1, theValid, valid}}

out={}

Publnfol in = {{NT,, theNTPub, Pubinfa}}

out = {{Publnfo,, thePubAuthor, Mark}}

Genus in = {{NT,, theNTRank, Genus}}
out = {{Genus, NextRank Species}}

Mark in = {{Publnfo,, thePubAuthar Mark}, {Publnfo,, thePubAuthg; Mark}}
out={}

NT, in = {{NT 4, theType, NT,}}

out = {{NT,, theEpithet, Perennis}, {NT, theValid, valid}, {NT,, theNTPub, Pubinfa}, {NT ,, theNTRank,
Species}, {NT,, theType, Specimei}}

Perennis in = {{NT,, theEpithet, Perennis}}

out={}

Publinfg in = {{NT ,, theNTPub, Pubinfa}}

out = {{Publnfo,, thePubAuthar, Mark}}

Specimen in = {{NT, theType, Specimen}}

out = {}

Species in = {{Genus, NextRapkSpecies}, {NE, theNTRank, Species}}

out = {}

Then, we can enter data related to the classificafi@pecimens (CT side) as follows:

theCTAuthog
NT, S o2 F W— > Mark
: the€TRank
B W 4 A
Species Specimen Specimen

Figure 8: Instance graph for classification

In this diagram, only the NT2 and the Species nodes have been copied from figure 8 to show
how these diagrams are related.

The set of relationships associated with this patefiistance graph is as follows:

NT, in={}
out = {{NT,, theNTRank, Species}, {NB, theType, Specimei}}
Species in = {{NT,, theNTRank, Species}, {CT, theCTRank Species}}
out={}
Specimen | in ={{NT ,, theType, Specimeg, {CT ;, theCirg, Specimei}}
out={}
Specimep | in={{CT 4, theCirg, Specimes}}
out={}
Mark in = {{CT,, theCTAuthor, Mark}}
out={}
CTy in={}
out = {{CT;, theCTRank Species}, {CT, theCirg, Specimer}, {CTi, theCirg, Specimes}, {CT,
theCTAuthog, Mark}}

As a first query, we can ask for the extraction of\ills and their Epithet. The query has two
parts: the pattern that will match data, and the hdeat, specifies what data are actually
extracted from the match. In our present case, the heastoaf the NT, its Epithet, and the
arc joining them. The pattern, derived from the schemas fellows (figure 9):

NT

theEpithet

Epithet

Figure 9: Pattern for query 1

The corresponding set of relationships is as follows:

NT in={}

out = {{NT, theEpithet, Epithet}}

Epithet in = {{NT, theEpithet, Epithet}}

out = {}

The first step in the matching of the pattern consist&daping only instances that are
interesting for us. We see that we can keep only NTEpithet instances and their related
relationships:

NT, in= {}
out = {{NT, theEpithet, Bellis}}
NT, in= {}

out = {{NT,, theEpithet, Perennis} }}

Perennis in = {{NT,, theEpithet, Perennis}}

out = {}

Bellis in = {{NT ,, theEpithet, Bellis}}

out = {}

We don't need to apply the next steps of the algorithm becdugsenatrix is already
consistent and would not change. When we extract the deahegbgraphs, we see that the
answer to the query consists of two graphs (figure 10):

NT, NT,
. .
theEpithet theEpithes
v v
Bellis Perennis

Figure 10: Result of thefirst query

As a second example, we can write a recursive query.c&eask for all NT with their
Epithet, which have been published by author Mark, and staectas a hierarchy. In a
recursive query language, answering this query would measersing the instance graph
until a configuration is found. Since we do not use a sdeirquery language per se, our
approach is the description of the recursive link as it of the model. The corresponding
pattern is the following (figure 11):

ﬁ theType

theEpithe theNTPub

thePubAutho

Epithet Publication Mark

Figure 11: Pattern for query 2

The corresponding set of relationships is:

NT in = {{NT, theType, NT}}
out = {{NT, theType, NT}}
Epithet in = {{NT, theEpithet, Epither}}
out={}
Publication in = {{NT, theNTPub, Publication}}
out = {{Publication, thePubAuthor, Mark}}
Mark in = {{Publication, thePubAuthor, Mark}}

out={}

The application of this pattern to the instances seatlafionships:

NT, in={}
out = {{NT,, theEpithet, Bellis}, {NT 1, theNTPulp, PubInfa}, {NT ;, theNTRank}, {NT ,, theType, NT;}}
Bellis in = {{NT ,, theEpithet, Bellis}}
out={}
Publnfa in = {{NT 4, theNTPul, Pubinfa}}
out = {{Publnfo,, thePubAuthor, Mark}}
Genus in = {{NT,, theNTRank, Genus}}
out={}
Mark in = {{Publnfo,, thePubAuthar, Mark}, {Publnfo,, thePublinfe, Mark}}
out={}
NT, in = {{NT 4, theType, NT2}}
out = {{NT,, theEpithet, Perennis}, {NT, theNTPub, Pubinfa}}
Perennis in = {{NT, theEpithet, Perennis}}
out={}
Publnfg in = {{NT ,, theNTPub, Pubinfg}}
out = {{Publnfo,, thePubAuthar, Mark}}

Since this matrix is connected, the resulting graph islisafs (figure 12):

-- . theNTPubp
NT, B — p Pubinfo
‘l --- L o
heTyPe " neepitres
. : Perennis
-
NT,
_ Pacouy thePubAuthor
theEpithet .~
tieNTPub
‘_ ----------- B — : thePubAuthor A4
Bellis Publnfq ¢ > Mark

Figure 12: Solution for query 2

The last step is the extraction of the structures requiyethe user in the head of the query,
i.e. the instances of NT, their arc to an instaoc&pithet and the instances of Epithet, and
the type arc joining NTs.

As a third example, we can query the database for thediples where one NT of rank
Species is the type of another NT of rank Genus. This \iegothe use of patterns where
nodes and arcs are repeated. The pattern is as follguse(fL3):

theNTRank’
NT’ Genus

theType

NT Species

theNTRank
Figure 13: Third sample pattern

The set of relationships associated with this tempdads follows:

NT’ in={}
out = {{NT’, theType, NT}, {NT’, theNTRank’, Genus}
NT in = {{NT’, theType, NT}}

out = {{NT’, theNTRank, Species}}

Species in = {{NT, theNTRank, Species}}

out={}

Genus in = {{NT’, theNTRank’, Genus}}

out = {}

The application of this pattern to the instance graph défgfiere results in the following set
of relationships:

NT, in={}

out = {{NT,, theNTRank, Genus}, {NT,, theType, NT,}}
Genus in = {{NT,, theNTRank, Genus}}

out={}
NT, in = {{NT 4, theType, NT,}}

out = {{NT», theNTRank, Species}}

Species in = {{NT,, theNTRank, Species}}

out={}

The resulting graph is then shown in figure 14.

NT,

theType V

NT, theNTRan lé

A Species

theNTRanI{“"‘A Genus

Figure 14: Result of query 3

Finally, we can query the database using a patterninotgaa negative node. For example,
we can ask the NT that has not been at rank GenusasBoeiated pattern is (figure 15):

theNTRank

Figure 15: Pattern with a negative node

The associated set of relationships-isnfjeans negation):

NT in={}

out = {{NT, theNTRank~Genus}}

- Genus in = {{NT, theNTRank; Genus}}

out = {}

The matching if this pattern on the instances producefoliosving result. It is important to
note that Genus was removed as not relevant becauas i wegative node and all nodes of
the same type as Genus (but not Genus) included. Then wk amat arc that reaches one of
these elements (or none).

NT, in={}

out={}

NT, in={}

out = {{NT», theNTRank, Species}}

Species in = {{NT,, theNTRank, Species}}

out = {}

The application of the rest of the algorithm eliminates N&cause it does not conform to the
pattern. The resulting graph is then the following (figL6g:

A Species

Figure 16: Resulting graph of query 4

6. Conclusion

In this document, we have defined a query language for tred®heus database system. This
query language is based on graphs and is itself compoggdpifs. A query is composed of
many patterns (in the body of the query) that are all nest@gainst the database and return
sets of matching data. The resulting set is then matohediother set of patterns (in the head
of the query) that filter the result of the query in orderpresent the required kind of
information to the user.

This query language has been built on top of the model pegsen{RKB99]. It allows the
user to query and manipulate the database and is ataifment text based. But since graphs
are naturally represented graphically, a graphical imerface will be built on top of this
query language.

Further work includes the definition of mechanisms for riging the amount of data
available to the user in order to make taxonomic work mosy,eand the definition of
integrity constraints mechanisms.

7. References

[PL94] A. Poulovassilis, M. Levene, "A nested-graph model tfog representation and
manipulation of complex objects”, ACM Transactions on InfaromaSystems Vol. 12 Issue
1, pp 35-68 (1994)

[PK99] M. Pullan, J. Kennedyt al., "The Prometheus Taxonomic Model ", submitted to
Taxon, 1999

[RK97] P. J. Rodgers, P. J. H. King, "A graph rewritingusislanguage for database
programming”, Journal of Visual Languages & Computing Vol. &ds5/6, pp 641-674
(1997)

[RKB99] Cédric Raguenaud, Jessie Kennedy, Peter J. Bafdlhe Prometheus Database
Model”, Technical report, School of Computing, Napier Univer§i§99)

