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contemporary spawning grounds, and discuss chal-
lenges arising from the methods used to recognize 
these grounds. Knowledge gaps regarding location 
and environmental status of past and current spawn-
ing grounds, particularly relevant for Scotland’s west 
coast, are identified. Based on the importance of spe-
cific environmental and physical variables for herring 
reproductive success, we advocate the inclusion of 
essential spawning grounds into herring management 
plans. This will require additional data on spawning 
grounds, including historic local ecological knowl-
edge rarely considered. An inclusive ecosystem-based 
approach to herring management would allow more 
targeted actions to  conserve (and potentially restore) 
essential spawning habitat. More effective manage-
ment strategies will also call for reversing the (global) 
issue of the disconnect between different stakeholder 
groups.

Abstract  Scotland once had the largest herring fish-
ery globally, generating local income, identity, and 
societal change. Following historic stock collapse, in 
spring 2018/2019 large herring shoals were observed 
on the west coast for the first time in decades, at a for-
merly important spawning ground. This highlights the 
urgency of maintaining historic (and contemporary) 
benthic spawning habitat, which these fish rely upon, 
in good condition. However, information on exact 
location, characteristics, and status of historic and 
contemporary spawning grounds, if existing, is not 
easily accessible. We searched over 1190 literature 
sources, dating back to 1884, using scientific data-
bases and web-based searches, and ran a query for 
automated search of comprehensive historic reports. 
We present current knowledge on Scottish herring 
spawning grounds, retrieved through these searches 
and fisher interviews, maps showing historic and 
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Introduction

Atlantic herring, Clupea harengus, are distributed 
widely across continental shelf waters of the North 
Atlantic and have provided economic and cultural 
benefits to coastal communities for centuries (Gull-
estad et al. 2020). In Scotland, the rich history of her-
ring fishing dates back to Neolithic times (Harland 
and Parks 2008), and subsistence and commercial 
fisheries have been commonplace along the mainland 
coast and isles ever since (Coull 1986; Rorke 2005; 
Harland and Parks 2008). By the early twentieth cen-
tury, Scotland’s herring fishery was the largest in the 
world, employing over 35,000 people—14,000 of 
them women—contributing significantly to rural and 
island communities (Coull 1986; Kumpulainen 2001). 
Herring populations are naturally prone to boom and 
busts, resulting in notoriously unpredictable fisheries 

through the centuries (Blaxter and Hunter 1982; 
Toresen and Østvedt 2008; Toresen et al. 2019; Tro-
chta et al. 2020). Modern intensive fishing pressures 
and poor management during times of environmental 
variability have led to past stock collapses (Dickey-
Collas et  al. 2010) and resulted in longer recov-
ery intervals for some herring populations in Scot-
tish waters, compared to former times (Blaxter and 
Hunter 1982; Payne et al. 2009; Thurstan and Roberts 
2010; Trochta et al. 2020).

Herring form dense shoals that migrate between 
feeding, spawning and overwintering grounds, main-
taining similar migration patterns year after year 
(Stobo 1982). They exhibit fidelity to spawning 
season and grounds (Brophy et  al. 2006; Berg et  al. 
2017), and thus management focusses on the timing 
of spawning, primarily spring and autumn in Scot-
land, and broad geographic region where spawn-
ing occurs (Fig. 1; Geffen 2009; Geffen et al. 2011). 
In Scottish waters, autumn-spawning mainly takes 
place offshore, while spring-spawning herring spawn 
inshore; although, there is some overlap in seasonal 
spawning ground locations (Heath 1993; Hay et  al. 
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2001; ICES 2020b, a). Whilst it has been assumed 
(for stock assessment purposes) that herring aggre-
gate in a series of discrete stocks within ICES (Inter-
national Council for the Exploration of the Seas) 
areas (Fig. 1), significant mixing of stocks that spawn 
in different seasons occurs in the waters surrounding 
the British Isles and Ireland (Molloy et al. 1993; Gef-
fen et al. 2011; Farrell et al. 2020), creating complex 
population assemblages that are difficult to account 
for in management and fisheries. Population discrimi-
nation is based on spawning season and location as 
well as biological parameters such as fecundity, egg 
size, growth rates, maximum size and age, otolith 
characteristics, and more recently, genetic analyses 
(Hempel and Blaxter 1967; Haegele and Schweigert 
1985; Clausen et  al. 2007; Geffen et  al. 2011; Han 
et al. 2020b; Berg et al. 2021). Spring-spawned her-
ring tend to live longer, reach a larger maximum size 
and produce fewer, heavier eggs that hatch into larger 

larvae when compared to autumn-spawned fish that 
hatch during less-favourable environmental condi-
tions and slowly progress through developmental 
stages over the winter months (Parrish and Saville 
1965; Gamble et  al. 1985; Haegele and Schweigert 
1985; Hunter et al. 2019). The observed differences in 
life-history characteristics likely reflect adaptations to 
specific environments and compensate for variability 
in larval mortality rates and environmental conditions 
between spawning seasons (Mcquinn 1997; Han et al. 
2020a).

Stocks that are managed as a single unit often con-
sist of several components that spawn in the same 
season, yet in different locations within the broad 
geographic region (Kerr et  al. 2017; Farrell et  al. 
2020). For example, the North Sea autumn-spawn-
ing (NSAS) stock is a complex of different compo-
nents that spawn in four locations in ICES subar-
eas IVa and IVb, (Fig. 1; Table S1; Hay et al. 2001; 

Fig. 1   Names of the geographic locations and fishing areas mentioned in main text. Roman numerals indicate ICES subareas for 
management of fish stocks in British waters and adjacent seas
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Dickey-Collas et  al. 2010 Farrell et  al. 2020). The 
West of Scotland (WoS) stock composition changed 
throughout the twentieth century (Table  S1). Previ-
ously a spring-spawning stock that spawned inshore 
along the west coast of Scotland and the Hebrides in 
ICES subarea VIa (Fig. 1), following collapse in the 
1950s, it changed to its current composition as a pri-
marily autumn-spawning stock that spawns offshore 
in the same ICES area (Coull et  al. 1998; Farrell 
et al. 2020; ICES 2020b). However, since the 1970s 
the [autumn-spawning] WoS population has been in 
steady decline. In spring 2018 and 2019, for the first 
time in over 50 years, large shoals of spring-spawning 
WoS herring were observed on known former spawn-
ing grounds, sparking considerable public interest 
and debate on protected areas (BBC 2019).

Herring differ from most marine fish through 
their reliance on specific benthic spawning habitat. 
Females deposit sticky benthic eggs and males fol-
low closely, releasing milt (sperm) that sinks over 
the eggs and fertilises them (Aneer et  al. 1983). 
Herring spawn in multiple waves, with older fish 
spawning before recruits and subsequently migrat-
ing to feeding grounds (Jones 1968; Lambert 1987; 
Skaret et  al. 2003). Suitable spawning grounds for 
egg deposition are vital for resilient herring stocks, 
yet such habitat is often adversely impacted by 
environmental and anthropogenic pressures (Thurs-
tan and Roberts 2010; Moll et  al. 2018; Moffat 
et al. 2020). Eggs layers create dense carpets within 
highly localized areas (Fig. 2), which increases vul-
nerability, particularly in shallower inshore spawn-
ing grounds, to mortality from storm damage, 

predation, toxins and bottom-towed gear (Rankine 
and Morrison 1989; Morrison et al. 1991; Ryan and 
Bailey 2012; Moll et  al. 2018). Understanding the 
environmental and anthropogenic factors influenc-
ing herring reproductive success is crucial. Further-
more, effective conservation and management of 
herring populations will require information on the 
exact location, characteristics, and status of spawn-
ing grounds.

Based on a systematic literature review (see Sup-
plementary Information for full details on the meth-
odology; Tables S2, S3), we present the current 
knowledge on past and present herring spawning 
grounds in Scottish waters, including information 
on location and habitat characteristics and potential 
environmental and anthropogenic stressors affecting 
spawning, as well as the challenges associated with 
identifying herring spawning beds (Table  S1). We 
highlight prominent examples of spawning ground 
abandonment and recolonization to put the recent 
spawning events in WoS into context. Further, we 
emphasize the importance of historical records and 
local ecological knowledge of fishers for under-
standing the environmental and geographical fea-
tures essential for herring spawning. Finally, we 
identify critical gaps in current knowledge hinder-
ing the understanding of the status and geographic 
distribution of herring spawning grounds and, thus, 
the implementation of sustainable management 
strategies.

Spawning ground identification

Herring spawn in high energy and/or structurally 
complex environments, attaching adhesive eggs to 
coarse seabed substrates or aquatic vegetation in 
some nearshore habitats (e.g., Baltic herring and 
some spring-spawning WoS populations; Fig.  2; 
Table 1; Runnström 1941; Parrish and Saville 1965; 
Moll et  al. 2018; von Nordheim et  al. 2018). The 
offshore-banks where NSAS and WoS herring spawn 
typically have strong currents where the water column 
is more stratified (Dickey-Collas et  al. 2009), while 
the shallower nearshore environments where spring-
spawning stocks spawn are subject to stronger wave 
or tidal action or are lower energy environments with 
aquatic vegetation (Parrish and Saville 1965; Haegele 
and Schweigert 1985; Heath 1993; Hay et al. 2001). 

Fig. 2   Herring spawn forming a thick egg carpet on a maerl 
bed; Wester Ross, Scotland. Note  the live (pink) maerl over 
dead (white) maerl gravel. Photography and copyright: Andy 
Jackson, SubSeaTV; reproduced with permission. (Color figure 
online)
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Table 1   Seabed substrate of Northeast Atlantic herring spawning grounds as reported by the literature

Geographic regions refer to the study location or where the observation reported in the literature was originally made and are thus at 
differing geographic scales. Seabed substrates include coarse substrate (e.g., gravel, small rocks, shingle, and coarse sand), live maerl 
(coralline macroalga), kelp, other macroalgae (non-coralline), sea firs (Hydroida polyp phase), and broken mollusc shell
The spawning ground seabed substrate mentioned in each reference is indicated by corresponding superscript numbers (1–6) since 
not all references report findings of the same substrates in each area
Substrate types are represented by the following symbols:
  = coarse substrate1       = kelp2       = maerl3       = sea fir4       = shell5       = non-coralline macroalgae6

a Reviews with sections devoted to herring spawning (not original research)
b Local fishers in 1890 referred to part of the seabed substrate as “coral”
c Experimental research using wild-caught spawning herring from the spawning grounds in the Firth of Clyde

Geographic region Substrate type References

Atlantic Ocean Jones (1968)a,1,6, De Groot (1979)a,1,6, Bowers (1980)a,1, Haegele and Schweigert 
(1985)a,1, Hay et al. (2001)a,1,6

Baltic Aneer (1985)6, (1989)1,6, Kääriä et al. (1997)1,6, Bauer et al. (2013)6, Von Dorrien et al. 
(2013)a,6, Šaškov et al. (2014)1,6, Moll et al. (2018)6

British waters Ellis et al. (2012)1,3, Aires et al. (2014)1

English Channel Bolster and Bridger (1957)1, Dempsey and Bamber (1983)1,5

Iceland Fridriksson and Timmermann (1951)1

Ireland ICES (2010)1, (2015a)1, O’Sullivan et al. (2013)1, Deschepper et al. (2020)1

Isle of Man Bowers (1969)1,5, Gell and Hanley (2013)3,6

North Sea Postuma et al. (1975)1, Maravelias et al. (2000)1, Schmidt et al. (2009)1, ICES (2015b)1

Norway Runnström (1941)1,3,4,5,6, Høines et al. (1998)1, Skaret et al. (2003)1

Scotland—all waters Munro (1883)1, Rankine (1986)a,1

Scotland—Clyde Ewart (1884)1, Scottish Government (1884)1,2,5, (1886)1,2, (1899)1,2, Marshall et al. 
(1937)1,2, Holliday (1958)c,1,2, Parrish et al. (1959)1, Scottish Home Department 
(1959)1, (1960)c,1,2, (1965)1, (1966)1, Wood (1960)1, Hemmings (1965)1, Saville et al. 
(1974)1, Rankine and Morrison (1989)1, Morrison et al. (1990)1,3, Hopkins and Mor-
rison (1991)1, Stratoudakis et al. (1998)1

Scotland—Firth of 
Forth/Moray Firth

Scottish Government (1884)1,2,4, Scottish Government (1890)b,1

Scotland—Isle of 
Mull

Macleod et al. (2004a, b)1

Scotland—west coast ICES (2010)1, (2015a)1

Scotland—Wester 
Ross

Neervoort (2013)1,2,3, Cunningham (2018)1,2,3, (2019)1,3, Little Green Island Films 
(2018)1,2,3,5,6, BBC (2019)1,3

Scotland—Shetland Maravelias (2001)1
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Spawning in high energy environments can prohibit 
the build-up of sediment that could smother develop-
ing eggs, as well as improve circulation and oxygena-
tion over spawn (Hempel 1971; Drapeau (1973) in De 
Groot 1979).

Herring spawning ground locations (see Table S1 
for descriptions of spawning beds and grounds) have 
been described using several different types of avail-
able information. These include direct visual obser-
vations or sampling of spawn from the seabed, the 
position of recently hatched or young larvae, records 
of catch locations of “ripe” herring in spawning 
condition (Table  S1), and records of catch locations 
of fish that have recently preyed on herring spawn 
(Table  S1). As stated previously by many authors 
(e.g., Postuma et al. 1975; Rankine 1986; Bauer et al. 
2014), the only way to identify a herring spawning 
bed is by observing or sampling spawn in situ on the 
seabed. However, such direct observations are scarce 

in British waters, outside the few well-known spawn-
ing grounds in the Firth of Clyde, Scotland (Ewart 
1884; Marshall et al. 1937; Parrish et al. 1959; Saville 
et al. 1974; Stratoudakis et al. 1998), the Black Water 
Estuary, England (Dempsey and Bamber 1983), 
the Irish Sea (Bowers 1969), and the English Chan-
nel (Bolster and Bridger 1957), as well as the recent 
spawning events in Wester Ross filmed by local scal-
lop divers and the BBC. Other notable examples of 
herring spawn sampled from the seabed in the North-
east Atlantic are from the Baltic Sea (Aneer 1985, 
1989; Kääriä et al. 1997; Moll et al. 2018), Norway 
(Runnström 1941; Axelsen et  al. 2000; Skaret et  al. 
2003; Skaret and Slotte 2017), and Iceland (Fridriks-
son and Timmermann 1951).

Due to the paucity of direct egg observations, most 
spawning grounds have been described by the pres-
ence of young larvae, catch data of herring in spawn-
ing condition and fish predating on herring eggs 

Fig. 3   Spatial data on herring reproduction, spawning grounds 
and larval occurrences for ICES areas IV, VI and VII (includ-
ing Isle of Man) (see Table S3 for original sources). Polygons 
are displayed based on the different survey techniques applied, 
i.e., manual collection of herring eggs from the seabed or 
grab sampling, location of recently hatched and/or young lar-
vae, fisheries catch locations of ripe or running herring (see 
Table  S1 for definition of terms), location of “spawny” had-
dock with herring roe found in stomach contents, or a com-
bination of methods that included all available information. 

Some publications did not specify how spawning ground dis-
tributions were derived. Note: herring eggs have only been 
sampled in situ in the Firth of Clyde (from 1884 to 1998) and 
filmed in 2018/2019 off the coast of Wester Ross. For the lat-
ter, spatially explicit data of bed locations are not available and 
therefore point locations were plotted instead. Point locations 
are also given for historic data on the catch locations of ripe 
or running herring and historic spawning grounds mentioned 
by fishers
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(Rankine 1986; Ellis et  al. 2012). These methods 
are merely indicators that eggs have been laid some-
where nearby where the larvae or fish were sampled, 
but do not explicitly identify spawning grounds, and 
with it, the important physical and environmental fea-
tures of spawning habitat. Spawning grounds derived 
from larvae or adult presence appear as vast diffusive 
areas that likely encompass individual (point) herring 
spawning beds (Fig. 3; ICES 1994; Bauer et al. 2014). 
Spawning ground descriptions using catch locations 
of ripe herring can also be confounded by the fact that 
herring congregates near spawning locations in the 
months prior to spawning, in environmental condi-
tions similar to those they will later spawn in, before 
moving to a specific spawning bed (Maravelias et al. 
2000). Although these indirect methods are less accu-
rate at determining the precise location of herring 
spawning beds, the consistency within and between 
methods as well as the long timeseries available for 
this type of data do provide some information on the 
extent of spawning grounds (Postuma et  al. 1975). 
Identification of preferred spawning substrate within 
the wider areas derived by these methods can fur-
ther narrow down the location of spawning grounds; 
however, other key habitat variables may only occur 
in isolated patches, complicating reliable extrapola-
tions from substrate alone (Fig. S2). Finding the exact 
location of herring spawning beds requires intensive 
sampling in small geographical areas (Bowers 1980).

Information from ICES herring larval surveys 
has been used to infer the contemporary location of 
spawning grounds in areas with a high density of 
yolk-sac or young larvae (e.g., Wood 1971; Corten 
1988; Coull et al. 1998; Ellis et al. 2012; Anonymous 
2019). The ICES International Herring Larval Sur-
vey program was implemented in 1967 to provide a 
relative index of change in spawning stock biomass 
(SSB; Table S1) based on estimates of herring larval 
abundance. However, these larval surveys have not 
sampled the west coast of Scotland since 1994 (ICES 
2010). Ellis et al. (2012) noted that the distribution of 
survey stations influences the “apparent” distribution 
of herring larvae, and thus spawning grounds (Fig. 3). 
This is particularly problematic on the west coast of 
Scotland where herring surveys target offshore sum-
mer feeding aggregations of mixed spawning stocks 
(ICES 2019a), and consequently do not encounter 
spring spawning shoals. Herring spawning aggrega-
tions are dense but the events are brief, which makes 

identifying and observing them challenging (ICES 
2015a). In addition, the fact that hyper-aggregation 
of ripe herring often occurs close to the seabed in 
sheltered, shallow waters or banks make it difficult 
to survey inshore waters with larger governmental 
vessels. For many decades, large shoals of spring-
spawning herring have been rarely observed on the 
Scottish west coast, so research efforts have focussed 
primarily on autumn-spawning herring stocks in eas-
ily accessible offshore grounds.

Temporal‑spatial occurrence of herring spawning 
in Scotland

Spawning ground locations

Throughout their range in Scottish waters, herring 
have spawned at some point in time along most of the 
mainland and island coastlines as well as over offshore 
banks (Fig. 4). Spawning grounds on the west coast 
of Scotland were most recently reviewed in Rankine 
(1986), ICES (1994, 2010), Coull et al. (1998), Ellis 
et al. (2012) and Aires et al. (2014), based on survey 
data now decades old and/or targeting autumn spawn-
ing activity in the North Sea and west of the Hebrides 
only. Aires et  al. (2014) attempted to model herring 
larvae aggregations to update spawning ground distri-
butions in British waters but identified a critical lack 
of environmental data for coastal areas—most notable 
on the Scottish west coast. Furthermore, they com-
mented on the unknown timespan between the act of 
spawning and larvae surveying that resulted in low 
predictive strength and uncertainty in their models. 
The authors cautioned against using maps of herring 
larvae aggregations as a proxy for spawning grounds 
when sampling coverage is poor and environmental 
data are limited, as is the case for western Scotland.

The historic distribution of fisheries along the 
mainland coast and Hebrides reflects the former loca-
tion of herring spawning grounds, particularly in the 
Minch, Firth of Clyde and Firth of Forth (Fig.  1; 
Scottish Government 1884; Coull 1986). Prior to their 
disappearance, spring-spawning WoS herring domi-
nated catches in the Minch, where fisheries regularly 
took place on spawning grounds in the sea lochs from 
Cape Wrath, in the north, to Wester Ross, in the south 
of the Minch (Fig. 4; Munro 1883; Anonymous 1924; 
Wood 1930; Baxter 1958; Rankine 1986). The exact 
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locations of the autumn-spawning grounds are mostly 
unknown (Baxter 1958; Saville et  al. 1966). Spring-
spawning herring fisheries were also commonplace 
further south, in the Firth of Clyde, dating back cen-
turies (Fig. 4; Table S1; Marshall et al. 1937; Wood 
1960; Funk et al. 2000). The Clyde also supported a 
small autumn-spawning population, although it was 
much less abundant and spawning activity was unpre-
dictable (Scottish Government 1884; Scottish Home 
Department 1967). The Firth of Clyde was one of 
the last remaining spring-spawning grounds on the 
west coast of Scotland, but habitat degradation and 

high pollution levels are thought to have led to an 
“ecological meltdown” (Thurstan and Roberts 2010), 
and herring no longer spawn there in large numbers 
(ICES 2019b).

Spatial and temporal shifts in NSAS herring 
spawning grounds have also been observed during 
the last century (Fig.  4). On the Shetland/Orkney, 
Buchan, and Banks spawning grounds contempo-
rary spawning occurs during September and October 
(Fig.  1; ICES 2020b). However, herring historically 
spawned in the spring to the northwest and west of 
Shetland and Orkney, while autumn-spawning took 

Fig. 4   Original spatio-temporal data on herring reproduction, 
spawning grounds and larval occurrences reported in different 
seasons between 1880 and 2019 for ICES areas IV, VI and VII 
(including Isle of Man; Table S3). a Occurrence of ripe or run-
ning herring catch locations and “known” spawning grounds 
based on fisher interviews; b Occurrence of spawning herring 
and ‘spawny’ haddock (haddock feeding upon herring spawn, 
‘Spring’ and ‘Autumn’) and herring eggs (W-coast Clyde area, 
‘Spring’); c Occurrence of spawning herring (‘Spring’), her-

ring eggs (W-coast Clyde and Wester Ross areas, ‘Spring’) 
and herring larvae (‘Autumn’ and ‘Season not specified’); d 
Occurrence of spawning herring (‘Spring’ and ‘Autumn’), her-
ring eggs (W-coast Clyde area, ‘Spring’) and herring larvae 
(‘Spring’, ‘Summer’, ‘Autumn’ and ‘Season not specified’). 
Point locations are also included for historic data on the catch 
locations of ripe or running herring, historic spawning grounds 
mentioned by fishers, and spawning grounds filmed off Wester 
Ross in 2018/2019
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place primarily to the east of the Northern Isles 
(Fulton 1890; Wood 1930; Hodgson 1951; Rankine 
1986). Spatial and temporal changes to the spawning 
ground distribution surrounding Shetland and Orkney 
likely occurred after the stock collapsed in the 1970s 
and subsequent recovery of the NSAS herring stock 
(Rankine 1986). Active spawning grounds are now 
considered limited to the autumn months when there 
is an abundance of yolk-sac larvae between Shetland 
and Orkney (Bartsch et  al. 1989; Coull et  al. 1998; 
Corten 2013).

Natal homing and seasonal straying behaviour

Herring philopatry to spawning grounds and season 
is well-documented (e.g., Mitchell 1864; Sinclair 
and Iles 1985; Geffen et  al. 2011). It has, however, 
been questioned whether homing to natal spawning 
grounds is mediated by imprinting during the larval 
stage or by recruits learning from repeat spawners 
(Sinclair and Tremblay 1983; Mcquinn 1997; Bro-
phy et al. 2006). Homing to natal spawning grounds 
has been evidenced through external tagging studies 
in the NW Atlantic (Stobo 1982; Stephenson et  al. 
2009; Wheeler and Winters 2011). However, tagging 
experiments on spawning grounds in the NE Atlan-
tic revealed low recapture rates (Wood et al. 1954), or 
showed no clear evidence of homing to natal spawn-
ing grounds (Eggers et al. 2014). Biological markers, 
most notably otolith structure and microchemistry, 
have provided more empirical evidence that herring 
exhibit fidelity to spawning grounds and season in the 
Celtic Sea, west of the British Isles and Norway (Gef-
fen et  al. 2011; Deschepper et  al. 2020; Berg et  al. 
2021). Straying between spring and autumn spawn-
ing seasons has been documented on both sides of the 
Atlantic, likely occurring at low but steady enough 
rates to facilitate gene flow (Brophy et al. 2006; Kerr 
et al. 2019; Berg et al. 2021). Herring spawning sea-
son is likely regulated by a combination of environ-
mental and genetic variables (Han et al. 2020a).

Adaptation to specific environments

Recent molecular analyses revealed that herring have 
a “genomic toolbox” enabling them to adapt to spe-
cific ecological conditions, such as spawning sea-
son, temperature, salinity, and photoperiodic regula-
tion, all likely related to life history parameters and 

environmental conditions experienced during larval 
development (Barrio et  al. 2016; Bekkevold et  al. 
2016; Han et al. 2020a). The significant genomic dif-
ferentiation between spring and autumn-spawning 
stocks suggests that spawning season has an underly-
ing genetic-basis related to the biological responses 
to environmental variability between spawning 
season and the mechanisms that control reproduc-
tive timing (Kerr et  al. 2019). Genetically different 
populations have been detected between spring and 
autumn-spawning herring in the waters surrounding 
the British Isles and Ireland (Farrell 2019). Autumn-
spawning WoS and NSAS herring are genetically 
similar, while the spring-spawning WoS and Clyde 
stocks are genetically distinct from all herring popu-
lations in ICES Area VIa. Spring-spawning WoS 
herring are genetically similar to Norwegian spring-
spawning (NSS; Table  S1) fjord herring that spawn 
in comparable environmental conditions (Han et  al. 
2020a). Herring that spawn off the coast of Ireland 
represent several genetically differentiated popula-
tions, likely due to recent temporal shifts in spawning 
(Farrell 2019).

Spawning ground habitat characteristics

High‑energy or structurally complex environments

High structural complexity of spawning substrate 
allows more egg surface area to encounter seawater, 
increasing oxygen supply and metabolic waste dis-
posal, significantly improving development rates and 
egg survival on spawning grounds that are not subject 
to strong tides and currents (Hempel 1971; Woods 
and Podolsky 2007; Phillips and Moran 2015; von 
Nordheim et  al. 2018). Spawning in multiple waves 
likely hedges against the uncertainty of spawning 
during poor weather in spring and autumn (Lambert 
1987), but results in a build-up of egg masses at vary-
ing stages of development (Fig. 2; Parrish et al. 1959; 
Skaret et al. 2003; Skaret and Slotte 2017). Poor oxy-
gen conditions can slow embryo development and 
increase mortality in benthic egg masses, particularly 
for embryos positioned centrally in the mass where 
oxygen concentrations are lowest (Cohen and Strath-
mann 1996; von Nordheim et al. 2018). WoS spring-
spawning grounds were often recorded on or near 
maerl (Fig. 2; Table 1; Fig. S1; Morrison et al. 1991; 
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Neervoort 2013), a hard “coralline” red algae that cre-
ates a complex three-dimensional bed of living maerl 
over dead maerl gravel, supporting a diverse commu-
nity of plants and animals (Grall et al. 2006). Minch 
fishers believe herring preferentially selected maerl 
beds, referred to locally as “coral”, or seaweed/kelp 
to spawn on (Neervoort 2013). Interestingly, on the 
east coast of Scotland and the Norwegian shelf, her-
ring used spawning beds covered with the Hydroida 
polyp phase of sea firs (reported in 3.3% of the exam-
ined literature sources). Half of the literature sources 
we reviewed here reported spawning grounds with 
macroalgal coverage (Table  1). Most sources (20%) 
described spawning beds covered in non-coralline 
macroalgae (to genus level), maerl was predominantly 
recorded on the western coast of Scotland and adja-
cent seas (13%), as well as by a single study in Nor-
way, while herring eggs on kelp are only known from 
Scottish waters (albeit this is the preferred spawning 
substrate of Pacific herring (C. pallasii); reported in 
16% of sources; Table 1).

Herring that spawn in higher energy (e.g., strong 
currents or tidally active) environments still select 
structurally complex environments and deposit eggs 
over “coarse” substrates (e.g., gravel, small rocks, 
shingle, or coarse sand). The occurrence of coarse 
seabed substrate in herring spawning grounds was 
reported by most sources reviewed (92%) and has 
been widely documented throughout the Northeast 
Atlantic (e.g., De Groot 1979; Table 1), including the 
well-known spawning grounds at Ballantrae Bank in 
the Firth of Clyde (e.g., Ewart 1884; Parrish et  al. 
1959; Morrison et al. 1991; Stratoudakis et al. 1998). 
Several (8%) studies also described spawning beds 
consisting of broken mollusc shells. Although NSAS 
spawning grounds have been determined by capture 
of herring in spawning condition and distribution of 
young larvae (Fig.  3), the consistency with which 
these sightings have been recorded over gravel depos-
its increases confidence that spawning likely takes 
place on coarse substrate (Fig. S2; Parrish and Saville 
1965; Postuma et al. 1975; Schmidt et al. 2009). Fur-
thermore, aquaria experiments of ripe herring demon-
strated that, when given the choice of different spawn-
ing substrata, herring choose complex textures and 
patterns (i.e., gravel or macrophyte), to deposit spawn 
on (Holliday 1958; Scottish Home Department 1960). 
However, the full extent of potentially suitable spawn-
ing habitat (e.g., coarse substrate) is often far larger 

than the actual areas used for spawning (O’Sullivan 
et al. 2013; Šaškov et al. 2014). Whether this is due to 
an overabundance of suitable spawning habitat or to 
a lack of the right combination of required (multiple) 
habitat characteristics is not known.

Strong winds and tidal forcing likely impact 
deposited herring spawn, particularly in shallow or 
nearshore spawning grounds, where storm events 
cause significant mortality of eggs (Moll et al. 2018). 
Spring-spawning WoS herring did not spawn on the 
mainland side of the Minch during periods of strong 
easterly winds and would leave spawning grounds if 
winds became unfavourable (Scottish Government 
1884; Neervoort 2013). Wind and tidal forcing inte-
grated into biophysical models of larvae transport 
from Celtic Sea spawning grounds affected the out-
comes, suggesting that these parameters impact when 
and where herring spawn (Deschepper et  al. 2020). 
There is no empirical evidence suggesting that her-
ring spawning activity is influenced by lunar cycles in 
the Northeast Atlantic (see Lambert 1987 and refer-
ences therein).

Geomorphology and salinity

Whilst herring appear to seek structurally complex 
substrates to deposit spawn on, geomorphology and 
salinity also seem to be important habitat cues for 
the selection of spawning beds. For example, seabed 
geomorphology was a far more significant determi-
nant than substrate for the location of spawning beds 
of Baltic herring on the Lithuanian coast, who only 
used one third of presumed suitable spawning habi-
tat (Šaškov et  al. 2014). Similarly, spring-spawning 
Clyde herring deposited eggs almost exclusively on 
ridges at Ballantrae Banks and off the coast of Arran, 
with very few egg observations in the hollows (Scot-
tish Home Department 1966; Morrison et  al. 1991; 
Stratoudakis et  al. 1998). In the southern English 
Channel, geomorphology as well as hydrography 
seem to be important for herring that used to spawn 
on a narrow strip of seabed only, in line with the 
direction of tidal flow (Bolster and Bridger 1957).

Regarding the salinity of their spawning grounds, 
herring show a high plasticity. Whilst most spawning 
locations in Scottish waters are characterized by fully 
marine salinities, some spring-spawning was reported 
in the upper reaches of sea lochs, which are subject to 
freshwater input from seasonal rainfall and snowmelt 
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resulting in salinity fronts (i.e., ~ 20–34.75 PSU) 
(Matthews 1885; English 2000; Neervoort 2013; 
Scanlon et  al. 2021). Off the Isle of Mull, herring 
spawned near a productive fresh water convergence 
zone close to the coastal current (Macleod et  al. 
2004a). Similarly, herring in the Firth of Forth, on the 
Scottish East Coast, used to spawn in brackish water 
(Scottish Government 1886), and in Irish waters, 
many herring spawning grounds are located at the 
mouth of large rivers (O’Sullivan et al. 2013). In Nor-
wegian fjords, where NSS herring spawn, freshwater 
runoff regularly modifies the hydrography (Johannes-
sen et al. 1995; Sætre et al. 2002; Berg et al. 2017).

Water temperature and depth

Water temperature of spawning beds is highly vari-
able, depending on spawning season (spring versus 
autumn/winter spawning), proximity to shore and 
habitat type. The Fishery Board for Scotland, the 
branch of the Scottish Government that monitored 
fisheries in the 19th and early twentieth century, 
assumed that the disappearance of herring from 
their usual spring-spawning grounds was tempera-
ture related and that herring would not spawn when 

bottom temperatures were too low (Scottish Gov-
ernment 1884). In fact, exceptionally cold winter 
temperatures can delay WoS herring maturation, 
and thus delay the onset of spawning to some extent 
(De Silva 1973). Low temperature at spawning beds 
during reproduction impacts recruitment and subse-
quent year-class strength through increased embryo 
mortality (Blaxter 1956; Postuma 1971). Blaxter 
(1956) reported preferred spawning temperatures of 
Scottish herring of 5–14  °C (Table 2), but embryo 
mortality did not occur until temperatures fell 
below 1.3  °C or went above 22  °C (Blaxter 1956, 
1960). Skaret et al. (2003) suggested that NSS her-
ring can modify their spawning time with prevailing 
conditions to optimise reproduction and survival of 
their offspring. Similarly, Icelandic spring-spawn-
ing, which occurs over a constant 30  day period 
year-to-year, can be delayed by up to 10 days when 
ocean temperatures are colder than average (Óskars-
son and Taggart 2009). The temporal spawning pat-
terns of Baltic herring (Table  S1) is plastic, coin-
ciding with temperatures reaching 6  °C, regardless 
of when that temperature is reached (Šaškov et  al. 
2014), allowing these populations to mitigate some 
of the effects of variability in spring temperatures 

Table 2   Water depth and temperature of Northeast Atlantic herring spawning grounds as reported by the literature

Geographic regions refer to the study location or where the observation reported in the literature was originally made and are thus at 
differing geographic scales
Spawning season refers to the predominant season herring spawn in the geographic region
*The majority of spawning occurs in depths of 20–80 m with only rare observations at 250 m

Geographic region Spawning season Depth (m) Temperature (°C) References

Scotland—Minch Spring  ~ 14–75 Wood (1930); Cunningham (2018); Little 
Green Island Films (2018)

Scotland—Clyde Spring 13–24 5–8 Blaxter (1956); Parrish et al. (1959); Rankine 
and Morrison (1989); Morrison et al. (1990)

Scotland—West of the Hebrides Autumn 50–100 Heath and Maclachlan (1987)
Scotland—Firth of Forth Spring 25–40 De Groot (1979)
Scotland—North Sea Autumn  ~ 35–150 9–14.5 Scottish Government (1936); Blaxter (1956); 

Postuma (1971)
Ireland Autumn & Winter 7–90 O’Sullivan et al. (2013)
England—Blackwater Estuary Spring  ~ 4.5  ~ 3.5–6 Dempsey and Bamber (1983)
Norway Spring 5–250* 4–7 Runnström (1941); Høines et al. (1998); Slotte 

(2001); Skaret et al. (2003); Berg et al. 
(2017)

Iceland Spring  ~ 55–130 Fridriksson and Timmermann (1951); Samarra 
and Miller (2015)

Western Baltic Spring  ~ 1–8 6 Moll et al. (2018); Kanstinger et al. (2018); 
von Nordheim et al. (2020)
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(Dodson et al. 2019). However, in the shallow West-
ern Baltic, the delayed seasonal onset of cold peri-
ods and corresponding elongation of the interval 
over which larvae hatch has reduced contemporary 
reproductive success of spring-spawning herring 
(Polte et  al. 2021). Spawning phenology shifting 
as seas warm could severely impact the reproduc-
tive timing and success of herring in Scottish waters 
because of short daylength limiting larval growth 
and match-mismatch dynamics of larvae and zoo-
plankton prey (Hufnagl and Peck 2011).

Water depth of NE Atlantic herring spawn-
ing grounds also varies considerably. Spawning 
beds have been observed between 1 and 250 m for 
spring-spawners (Table 2). For example, Baltic her-
ring populations spawn almost exclusively in the lit-
toral or sublittoral zones as shallow as ~ 1 m (Geffen 
2009; Kanstinger et  al. 2018), while NSS popula-
tions have spawned in depths up to 250  m (Slotte 
2001). However, the majority of spring-spawning 
grounds (apart from the Baltic Sea and Blackwa-
ter Estuary) occur at depths less than 80 m (Wood 
1930; Runnström 1941; Fridriksson and Timmer-
mann 1951; Parrish et  al. 1959; De Groot 1979). 
The depth of autumn-spawning grounds appears 
less variable (~ 35–150  m; Table  2) than spring-
spawning grounds, but there is much less precise 
information on autumn-spawning grounds, due to 
the lack of direct observations of offshore spawning 
activity.

Larval advection/retention

Whether herring choose spawning sites to retain lar-
vae near the area or to facilitate transport of the hatch 
to more productive nursery grounds is contradictorily 
discussed. Changes in hydrography can significantly 
impact larval development and survival (Røttingen 
1990). Herring larvae can adjust their swimming 
behaviour in response to environmental variables 
(e.g., light and water turbidity) and prey availability 
(Munk and Kierboe 1985; MacKenzie and Kiørboe 
1995; Folkvord et al. 2009). Although, the swimming 
ability of small (i.e., 8-11 mm) larvae is largely lim-
ited to vertical movements (Rosenthal 1968), often 
making them more reliant on current velocity for 
movement in high energy environments (Henri et al. 
1985), larger larvae can actively influence their posi-
tion within the water column (Stephenson and Power 

1988; Fortier and Leggett 2011). Larvae in the shal-
low Baltic Sea, not exposed to strong tidal forcing or 
current regimes, were able to actively control their 
distribution within the’retention area’, suggesting 
that behavioural mechanisms might be important for 
larval dispersal in the absence of significant hydro-
graphic features (Polte et al. 2017).

It has been suggested that the location of herring 
spawning grounds in the North Atlantic is a function 
of the number, location, and geographic extent of lar-
val retention areas (Iles and Sinclair 1982). A review 
on herring larval drift and transport supports the 
hypothesis that spawning locations of Atlantic her-
ring populations are actively chosen to promote larval 
retention near spawning grounds, although some dis-
persal is unavoidable (Sinclair and Power 2015). For 
example, the larvae of WoS herring spawning inshore 
remain in those areas for long periods resulting from 
lower flushing rates of waters in the Minch, Inner 
Hebrides, and along the northern coast of Scotland 
(Heath et  al. 1987; Heath 1989). Conversely, larvae 
hatched west of the Hebrides are transported by cur-
rents from shelf waters to the north coast of Scotland 
(Heath and Maclachlan 1987; Heath et  al. 1987). 
Dooley and McKay (1975) examined herring larval 
transport from west of the Hebrides to the North Sea, 
via the Fair Isle current, and observed that the young-
est larvae were confined to areas between the current 
and northern coast of mainland Scotland, whilst older 
ones occurred within the core of the current. They 
concluded that the current was too narrow to allow 
the transport of a significant number of herring lar-
vae. High recruitment of Downs (English Channel) 
herring has been linked to longer retention times 
near spawning grounds (Dickey-Collas et  al. 2009). 
NSS spawning grounds are often located in areas 
of reduced vertical water stratification compared to 
surrounding areas, favouring larval retention. High 
wind-turbulence during springtime likely increases 
encounter rates between herring and their food source 
in retention areas, thus contributing to higher survival 
rates (Sætre et al. 2002). Biophysical models simulat-
ing dispersal of young larvae from spawning grounds 
in the Celtic Sea suggest that retention and transport 
are influenced by a combination of larval behaviour, 
tides, and wind (Deschepper et al. 2020).
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Spawning ground abandonment 
and recolonization: prominent examples

Scotland

When herring abundance declines, the geographic 
distribution of spawning sites often contracts (Pat-
terson 1998; Ivshina 2001; Rottingen and Slotte 
2001; Overholtz and Friedland 2002; Schmidt et  al. 
2009). Spawning grounds used by NSAS herring 
changed throughout the twentieth century (Schmidt 
et  al. 2009), and the stock collapse in the 1970s led 
to a decrease in the area used for spawning, but the 
process involved in the recolonization of spawning 
grounds is not well understood (Schmidt et al. 2009; 
Dickey-Collas et  al. 2010). Prior to collapse of the 
stock, the Buchan grounds, off the northeast coast of 
Scotland, were a historically important fishing ground 
for pre-spawning (Table  S1) and spawning NSAS 
herring (Scottish Home Department 1960; Parrish 
and Saville 1965). The grounds were abandoned from 
the late 1960s to early 1980s, which coincided with a 
period of low plankton biomass in the area but ended 
in 1981. During the time of low plankton abundance, 
spawning in the North Sea was restricted entirely to 
the more productive waters surrounding Orkney and 
Shetland (Corten 1988, 1999). The reappearance 
of spawning herring at Buchan Banks in 1983 was 
not ascribed to increased herring abundance in the 
Northern Isles that would cause spill-over spawn-
ing, but instead attributed to a strong Atlantic inflow 
of warm water that resulted in a southern displace-
ment of feeding and pre-spawning herring (Corten 
1999). However, “core” spawning grounds in Shet-
land and Orkney were maintained throughout the 
1960s–1980s, and Schmidt et  al. (2009) contended 
that the recolonization of southern spawning grounds 
resulted from a change in the core sites that eventu-
ally spread to areas with lower herring abundance. 
Regardless of the mechanism behind recolonization, 
herring are particular in where they choose to spawn, 
and subtle changes in environmental variables can 
potentially alter their preference for spawning in cer-
tain grounds that meet habitat requirements, offering 
their offspring the best chance of survival (Corten 
1988). Hence, the herrings’ plasticity in spawning 
ground usage can buffer against temporary variations 
in the environment (Schmidt et al. 2009), improving 
stock resilience.

Norway

In Norway, the formerly productive herring spring-
spawning stock underwent a significant decline in 
the 1950s and 60  s, during which time there was 
high fisheries mortality, a lack of fishing regulations, 
and an inflow of cold Atlantic water masses (Rot-
tingen and Slotte 2001; Toresen and Østvedt 2008). 
The reduction of the stock led to a range contrac-
tion that altered migration patterns and resulted in a 
northward shift of spawning activity from previously 
south of the 60°N parallel during the early twentieth 
century, to spawning occurring north of the 62°N par-
allel only at the beginning of the rebuilding phase in 
the late 1960s (Rottingen and Slotte 2001). Herring 
began recolonizing historically important southern 
spawning grounds after the recruitment of strong year 
classes in 1983 and 1989 (Høines et al. 1998). Man-
agement measures were then introduced to protect 
spawning grounds, allocating [low] fishing quotas 
to small inshore vessels only, in an effort to increase 
SSB by extending the geographic extent of available 
spawning habitat and reducing density-dependent 
mortality of eggs and larvae (Patterson 1998; Rottin-
gen and Slotte 2001; Slotte 2001). During the 1990s, 
the SSB of the NSS stock recovered to similar levels 
as in the early twentieth century (Toresen and Øst-
vedt 2008), driving the recolonization of southern 
spawning grounds (Rottingen and Slotte 2001). In 
2009, significant spawning in some southern spawn-
ing grounds led to recruitment of a strong year-class 
that continued using the former grounds (Eggers et al. 
2014; ICES 2020c). However, a lack of recruitment 
success elsewhere in Norwegian waters has caused a 
substantial reduction in the overall SSB of the NSS 
stock (ICES 2020c; Tiedemann et al. 2020). Although 
the exact mechanisms behind the abandonment and 
recolonization of herring spawning grounds is not 
implicit, it remains a common feature among herring 
populations.

Effects of primary productivity and climate 
on early life stages

Primary production in the North Sea has been in 
decline since the late 1980s, due to warming sea tem-
peratures and reduction of riverine runoff (Capuzzo 
et  al. 2018). This has resulted in a bottom-up effect 
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on higher tropic levels, mediated through a decline in 
copepod abundance, leading to recruitment depres-
sions in herring and other important commercial fish 
stocks. Unfortunately, due to the paucity of data on 
plankton and larval abundance from the west and 
northwest coasts of Scotland, similar assessments 
cannot be made for this region. However, a short 
time-series of recent data from a fixed-point plank-
ton monitoring site in Loch Ewe (Minch) showed 
a negative trend in the abundance of all zooplank-
ton lifeforms between 2003 and 2017 (Moffat et  al. 
2020). Climate variability has also been proposed as 
a mechanism driving density-dependent cannibalism, 
negatively affecting herring recruitment, for exam-
ple, when prey availability (e.g., copepods and small 
fish) is low and adult herring numbers are high (Holst 
1992; Gröger et al. 2010), or when changes in the dis-
tribution of herring stocks increase contact between 
adults and larvae (Corten 2013). Herring stock 
dynamics appear to be influenced by the dynamics of 
multiple trophic levels in the North Sea (Segers et al. 
2007). Akimova et  al. (2016) suggested that herring 
SSB is more strongly influenced by fluctuations in 
the Atlantic inflow, which has a significant impact 
on zooplankton abundance and composition, than by 
temperature (Akimova et  al. 2016). Temperature in 
the Barents Sea was a poor predictor of NSS herring 
recruitment (Bogstad et al. 2013), and modelled sim-
ulations of NSS larvae survival in this area was more 
closely associated with rapid displacement of larvae 
to nursery grounds than with temperature (Vikebø 
et al. 2010). When temperature data used in recruit-
ment models is not representative of the full range 
of temperatures experienced by the early life stages 
of a stock, regime shifts in the plankton community 
can provide a good temporal indicator of changes in 
recruitment (Payne et al. 2009, 2013; Capuzzo et al. 
2018; Estrella-Martínez et al. 2019).

In the North Atlantic, herring recruitment depres-
sion during the late 1960s and 1970s coincided with 
an abrupt drop in sea surface temperature (SST) in 
the Northern Hemisphere, when an influx of fresh-
water entered the North Atlantic (Thompson et  al. 
2010). Herring stocks would likely have naturally 
experienced lower levels of recruitment, but fisher-
ies continued to expand, likely contributing to stock 
collapses in the North Atlantic during that decade 
(Corten 1988; Toresen and Østvedt 2008). The popu-
lation dynamics of NSS herring have been linked to 

warming and cooling phases of the Atlantic Multi-
decadal Oscillation (AMO; Table  S1), with higher 
recruitment and catches occurring in warm AMO 
phases during the 19th and early twentieth centuries 
(Gröger et  al. 2010; Alheit et  al. 2014; Tiedemann 
et al. 2020). A warm AMO phase began in the 1990s, 
presumably facilitating recruitment of strong-year 
classes at its beginning, but was more recently char-
acterized by higher SST in the Celtic and Nordic 
Seas, likely outside the optimal thermal conditions 
for survival of early life-history stages of herring 
(Alheit et  al. 2014; Toresen et  al. 2019; Tiedemann 
et al. 2020). This could explain the lack of abundant 
year-classes since 2005. In Garcia et  al.’s (2021) 
appraisal of the drivers of NSS herring recruitment, 
the authors tested 30 different hypotheses from pre-
vious studies to explain variation in recruitment suc-
cess. Only 2 hypotheses were supported: (i) top-down 
control of larvae by predation and (ii) a positive rela-
tionship between recruitment and warmer tempera-
tures (~ 3.5 °C), until the 2000s, when higher temper-
atures (reaching ~ 4.4  °C) started to negatively affect 
recruitment. NSAS herring also experienced lower 
recruitment in the early 2000s, which was attributed 
to decreased growth and larval survival rates caused 
by a regime shift in the plankton community arising 
from contemporary warming of the North Sea (Payne 
et al. 2009, 2013).

The optimum temperatures for the early life 
stages of spring-spawning Clyde and NSAS herring 
is ~ 8–9 °C (Overnell 1997), but viable hatching and 
larval development of both populations has been 
observed in temperatures ranging from 3.5 to 17  °C 
(Blaxter 1956; Overnell 1997). Year-class strength in 
NSAS herring is associated with winter bottom tem-
peratures, likely reflecting the physiological effect of 
temperature on growth and development of young 
larvae (Nash and Dickey-Collas 2005). The abun-
dance of early life-history stages of spring-spawning 
Baltic herring near shallow spawning grounds exhib-
its a dome-shaped relationship with SST, and survival 
rates have been adversely affected by increasing sum-
mer temperatures, presumably exceeding the optimal 
thermal window for eggs and larvae (Arula et  al. 
2016; Dodson et al. 2019). Local or regional environ-
mental changes can alter the likelihood of recruitment 
success for spawning in either spring or autumn, often 
resulting in fluctuations in stock dominance between 
spring or autumn-spawners, which can hedge against 
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risks associated with changing environmental condi-
tions (Melvin et  al. 2009). However, climate-driven 
changes will presumably affect spring and autumn-
spawning herring differently. While autumn-spawned 
herring are unlikely to avoid unfavourable conditions 
by delaying spawning time, or by shifting to a more 
northern geographic range (due to their long develop-
ment period and short daylength), early spring or late 
summer-spawned larvae will be tightly coupled with 
zooplankton production dynamics in the NE Atlantic 
(Hufnagl and Peck 2011).

Contemporary warming trends in the North Atlan-
tic have seemingly favoured the predominance of 
autumn-spawning herring, except in distributional 
extremes where stocks are restricted to a single 
spawning season, and changing environmental con-
ditions have resulted in recruitment suppression and 
northward movements of some stocks (Melvin et  al. 
2009; Alheit et  al. 2014; Tiedemann et  al. 2020). 
However, following unusually harsh winters in 
2013–2015, the North Atlantic entered a cooler phase, 
likely to persist for some time (Frajka-Williams et al. 
2017). This may have helped to facilitate the WoS 
spring-spawning events in 2018 and 2019, either 
directly or indirectly as a proxy for other environ-
mental or oceanographic mechanisms. Evidence (e.g., 
fidelity to spawning season and grounds with low 
rates of straying) suggests that WoS spring-spawning 
herring have likely gone undetected in the Minch for 
some time. Herring in a spawning state have periodi-
cally been recorded in the spring (Peter Cunningham, 
Wester Ross Fisheries Trust, Pers. Comm.), but sur-
vey efforts have primarily focussed on more profit-
able species (e.g., salmon and trout). Recruitment 
of a particularly strong year class (or several), when 
environmental conditions became favourable, has 
previously facilitated rebuilding of stocks and extant 
spawning populations (see examples above) and 
could be responsible for the recent re-emergence of 
WoS spring-spawning herring.

Management and conservation of spawning 
grounds

Intense fishing pressure, environmental variability 
and insufficient management measures during the 
nineteenth and twentieth centuries led to herring 
stock collapses and widespread ecosystem change of 

near-shore habitats, with significant ecological and 
economic consequences (Dickey-Collas et  al. 2010; 
Thurstan et  al. 2014; Jones et  al. 2016). Historic 
habitat use by fish is typically not accounted for in 
contemporary management plans. Local extirpations 
and geographic range shifts may gradually become 
accepted as the new normal, the so-called “shifting 
baseline syndrome” (Pauly 1995; Plumeridge and 
Roberts 2017), leading to unambitious conservation 
and recovery targets for priority species and habitats 
(Plumeridge and Roberts 2017). On the other hand, 
distribution shifts driven by climate change could 
lead to unattainable population rebuilding goals. 
Areas where fish were once abundant may no longer 
provide the species’ climate niche. For herring, which 
are reliant on specific habitat for the survival of their 
early life stages, historic temporal and spatial fluc-
tuations in the use of spawning grounds should be 
recognized and considered. This would ensure that 
limited availability of suitable spawning habitat does 
not restrict recolonization and proper rebuilding plans 
are established (Ellis et  al. 2012). Effective herring 
management strategies should, but currently do not in 
Scotland, incorporate the species’ spawning grounds, 
particularly in shallower inshore areas that are more 
vulnerable to anthropogenic and environmental 
impacts (Olsen et al. 2010).

Scientific advice recommends that activities nega-
tively impacting herring spawning grounds should not 
occur (ICES 2020a). Yet Scotland’s recent Marine 
Assessment (Moffat et  al. 2020) identified pres-
sure from bottom-contacting gear (e.g., trawling and 
dredging) as one of the most widespread and direct 
pressures across all Scottish marine regions. These 
practices can alter the physical and biological char-
acteristics of seabed habitats, posing an immediate 
threat to essential herring spawning grounds (Watling 
and Norse 1998; Ryan and Bailey 2012). While ~ 7% 
of Scottish inshore waters are included in a network 
of Marine Protected Areas (MPAs), bottom-towed 
gear is only prohibited in 2.5% of the inshore MPA 
network (Langton et  al. 2020). In addition, maerl, a 
seemingly important spawning substrate for spring-
spawning herring in Scottish waters, is extremely 
vulnerable to physical disturbance and environmen-
tal change (Donnan and Moore 2003). Maerl could 
undergo spatial declines of up to 84% under pro-
jected climate change scenarios (Simon-Nutbrown 
et al. 2020), indicating that its protection in Scottish 
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waters may be crucial in order to maintain [maerl] 
refuge populations. A more holistic ecosystem-based 
approach, encompassing the needs of all herring life 
stages, and their essential habitats, is therefore key for 
effective management (Zhou et  al. 2010; Link et  al. 
2019). This would likely require conserving more 
of Scotland’s seabed from damaging anthropogenic 
activities (e.g., bottom-contacting gear) as advised 
by the scientific community (ICES 2020b; Moffat 
et al. 2020). The planning and implementation of an 
ecosystem-based approach should involve industry 
stakeholders to assure their ‘buy-in’, as successfully 
achieved elsewhere (e.g., in New Zealand) (Mackin-
son and Middleton 2018).

Gaps of knowledge and future study needs

Incorporating conservation of essential herring 
spawning habitat into management plans first 
requires identifying all historic and extant spawn-
ing grounds. Here we have shown that this infor-
mation is often lacking, particularly for the west 
coast of Scotland and offshore regions (Haegele 
and Schweigert 1985; Aires et  al. 2014). Key gaps 
of knowledge (GoK) we have identified refer to: 
(1) location, habitat type and status of current and 
historic herring spawning beds in Scottish waters; 
(2) presence and abundance of larvae on the west 
coast and inshore waters of Scotland; and (3) pres-
ence and abundance of spring-spawning herring on 
the west coast of Scotland. The first GoK is based 
on the lack of herring egg observations on the sea-
bed and the reliance on “proxy” methods of spawn-
ing ground identification. The unpredictable nature 
of spawning events and inclement weather during 
herring spawning seasons has historically made 
sampling of eggs in situ difficult. However, modern 
survey techniques, such as ROVs and state-of-the-
art dive and camera equipment, as well as industry 
and citizen-science monitoring projects could facili-
tate the detection and recording of herring spawn-
ing events.

Most important fished species in the NE Atlan-
tic recruit from pelagic eggs and larvae that move 
towards coastal habitats as juveniles, but herring 
stocks represent a reversed pattern with dispersal 
towards pelagic zones. This has resulted in larval 
surveys focussing on offshore regions, neglecting 

inshore habitats despite their significant ecological 
roles (Polte et  al. 2017). To tackle this and help fill 
GoK 2, surveys should include sampling of larvae 
and (spawning) adult herring in inshore waters on 
the west coast of Scotland, where habitat status and 
biodiversity information is limited. Locating ‘hidden’ 
aggregations of smaller extant spawning populations 
and detecting the early life stages of different herring 
populations is difficult (e.g., Skaret et al. 2003). How-
ever, conducting environmental DNA (eDNA) analy-
ses from water samples could help determine if and 
when herring are present in inshore waters by detect-
ing their DNA shed in the water column (Ratcliffe 
et  al. 2021). This could potentially provide a rapid, 
non-destructive and widely accessible approach to 
monitoring spawning grounds.    Trained  citizen sci-
entists  could conduct community-based eDNA sam-
pling and help  filling the above GoKs.

Engaging with communities and the fishing sector 
is also important to tap into their valuable local eco-
logical knowledge (LEK) regarding herring spawning 
ecology (helping to fill GoK 1–3), which is largely 
unexplored to date. Past industry and community 
engagement gave considerable insight into the loca-
tion of spawning grounds (Fulton 1890; Baxter 1963; 
Neervoort 2013), but historic LEK from the last her-
ring boom, i.e., prior to the 1970s, is on the brink 
of being lost forever. O’Sullivan et  al. (2013) high-
lighted that the exact location of herring spawning 
beds in Irish waters was not known outside the fish-
ing industry, and their inventory of herring spawning 
ground locations exemplifies what can be achieved 
through collaboration across sectors.

Conclusion

The precise locations of herring spawning grounds in 
Scottish waters have not been identified, aside from 
a few sites, and have never been incorporated into 
management plans (Fulton 1890; English 2000; Neer-
voort 2013). Yet, documented recolonization of for-
merly abandoned spawning grounds on the west coast 
of Scotland, the North Sea and Norway highlight the 
importance of maintaining these essential habitats 
to increase stock resilience (Patterson 1998; Cor-
ten 1999; Rottingen and Slotte 2001; Schmidt et  al. 
2009). Contemporary locations of herring spawn-
ing grounds determined by “proxies”, rather than 
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by  direct sampling of eggs, are insufficient for spa-
tial management and conservation of herring stocks 
adapted to spawn under specific environmental condi-
tions differing across populations (Bauer et al. 2014; 
Barrio et  al. 2016; Han et  al. 2020b). Furthermore, 
the use of contemporary data alone for spatial man-
agement underestimates the significant alterations 
marine ecosystems have experienced (Plumeridge 
and Roberts 2017). The recent observation of WoS 
spring-spawning herring at their historical spawning 
grounds, in a location   without spatial management, 
demonstrates why historical data need to be included 
in conservation decisions.

We advocate the incorporation of essential spawn-
ing habitat into marine management plans, without 
which, herring stock recovery and expansion is likely 
to be jeopardized. Bridging historic and contem-
porary knowledge of herring spawning grounds in 
Scottish waters would allow to conserve, and poten-
tially restore, such essential spawning habitat while 
accounting for natural variability in stock dynamics 
and potential future range shifts under climate change 
scenarios.
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