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Personalized learning is emerging in schools as an alternative to one-size-fits-all education. This study
introduces and explores a weekly demand-driven flexible learning activity planning problem of own-pace
own-method personalized learning. The introduced problem is a computationally intractable optimiza-
tion problem involving many decision dimensions and also many soft constraints. We propose batch and
decomposition methods to generate good-quality initial solutions and a dynamic Thompson sampling
based hyper-heuristic framework, as a local search mechanism, which explores the large solution space
of this problem in an integrative way. The characteristics of our test instances comply with average sec-
ondary schools in the Netherlands and are based on expert opinions and surveys. The experiments, which
benchmark the proposed heuristics against Gurobi MIP solver on small instances, illustrate the compu-
tational challenge of this problem numerically. According to our experiments, the batch method seems
quicker and also can provide better quality solutions for the instances in which resource levels are not
scarce, while the decomposition method seems more suitable in resource scarcity situations. The dynamic
Thompson sampling based online learning heuristic selection mechanism is shown to provide significant
value to the performance of our hyper-heuristic local search. We also provide some practical insights;
our experiments numerically demonstrate the alleviating effects of large school sizes on the challenge of

satisfying high-spread learning demands.
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1. Introduction

Education is shifting from traditional one-size-fits-all models
which offer standardized learning paths for everyone in a certain
group (e.g., age, level) to personalized learning (Bray & McClaskey,
2013; West-Burnham & Coates, 2005). Schools are implementing
various personalized learning models in which students have
the freedom to customize their learning paths and learn at their
own pace with their own methods throughout the world (see
Eiken (2011), Prain et al. (2013) and Kannan, van den Berg, and
Kuo (2012), for examples from Europe, Australia, and U.S.A., re-
spectively). In Europe, the Swedish kunskapsskolan personalized
learning model, initiated in 2000 in four schools in Sweden, is
now being implemented in more than 100 schools around the
world (see http://www.kunskapsskolan.com/thekednetwork). Ac-
cording to a report by the European Commission published in 2017
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(see https://ec.europa.eu/epsc/publications/other-publications/10-
trends-transforming-education-we-know-it_en), personalized lear-
ning is an important strategic trend to transform education.

Contrary to one-size-fits-all, students in personalized learning
are not tied to classes, instead their learning needs are regarded
individually. In personalized learning technology plays an impor-
tant role; online learning portals are often available for students
so that they can also learn independently through self-study learn-
ing activities in schools. This gives students the freedom to choose
their learning methods. In personalized learning, students are the
directors of their own learning processes; they set their own goals,
with the support of learning coaches, and actively demand learning
activities to reach them. An important task for schools is to satisfy
students’ learning demands on time by planning relevant in-class
and self-study learning activities with the utilization of teachers
and classrooms.

In these own-method own-pace personalized learning models
in which many students may demand many different activities at
any time, neither students nor teachers are tied to fixed groups.
Activity groups are formed flexibly each time by flexibly group-
ing student demands in activities and allocating suitable teachers
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and classrooms to activities. For example, a student may be with
different groups of students and also with different teachers
in learning activities. This study introduces the weekly flexible
demand-driven learning activity planning problem of personalized
learning in which schools plan learning activities flexibly each
week based on student demands. Due to the lack of fixed groups,
this problem involves decisions on individual student demands
and also on school resources (i.e., teachers, classrooms and time
blocks).

Our problem partially relates to the educational timetabling
problems due to common elements such as students, teachers
and classrooms, and also due to common constraints such as
scheduling conflicts, availability and capacity constraints. Educa-
tional timetabling problems are extensively studied (see Pillay,
2014; Pillay, 2016; Schaerf, 1999 for reviews). Many of these prob-
lems are computationally intractable, either N"P-complete or N'P-
hard problems. Various approaches such as single-solution local
search methods (Fonseca & Santos, 2014), population-based search
methods (Beligiannis, Moschopoulos, Kaperonis, & Likothanas-
sis, 2008; Santiago-Mozos, Salcedo-Sanz, DePrado-Cumplido, &
Bousofio-Calzén, 2005), hyper-heuristics (Ahmed, Ozcan, & Kheiri,
2015; Pillay & Banzhaf, 2009), matheuristics (Dorneles, de Aratjo,
& Buriol, 2014), integer programming techniques (Fonseca, San-
tos, Carrano, & Stidsen, 2017; Phillips, Waterer, Ehrgott, & Ryan,
2015) and graph-theoric approaches (Kannan et al., 2012) are
proposed and tested for these problems. Although the studied
problems in the literature are mostly concentrated on traditional
educational models, there are a few studies which explore student-
centred planning and timetabling problems. In Santiago-Mozos
et al. (2005), a student-preference based course timetabling prob-
lem in a Spanish university is presented. Also, a more recent
study (Kristiansen, Serensen, & Stidsen, 2011) presents the student-
centric elective course planning problem of Danish high schools.
Kannan et al. (2012) has proposed a multi-stage graph-theoric ap-
proach to the scheduling problem of a group of personalized learn-
ing schools in New York City. Implementations of personalized
learning differ in terms of their degree of freedom offered to stu-
dents. In Santiago-Mozos et al. (2005), Kristiansen et al. (2011) and
Kannan et al. (2012), students are only given the freedom to cus-
tomize their learning paths, their curricula, by providing prefer-
ences over a set of courses at the beginning of a semester or a
year. Our problem, on the other hand, considers models in which
students are also given the freedom to progress at their own pace
with their own methods for every learning activity of their courses
anytime.

The studied educational timetabling problems usually consider
traditional educational models and therefore study the assignment
of predetermined events (e.g., course-class meetings in school
timetabling (Pillay, 2014)) to available times. The main distinguish-
ing aspect of our problem is that learning activities are not pre-
determined; they are planned based on student demands. Namely,
which learning activities to plan and how many sessions of each
learning activity to plan in a week are also decisions to be made
in our problem. Thus, we classify this problem as a demand-driven
planning problem rather than a timetabling problem.

The dynamic, flexible, and demand-driven nature of this plan-
ning problem provides opportunities to learn from and contribute
to the state-of-the-art in the area of logistics; more specifically,
warehouse order picking (de Koster, Le-Duc, & Roodbergen, 2007),
dynamic vehicle routing (Pillac, Gendreau, Gueret, & Medaglia,
2013), train routing and scheduling (Cordeau, Toth, & Vigo, 1998),
among many others. For example, modern warehouse order pick-
ing problems face the challenge of dynamic order arrivals due to
the growth of e-commerce. Dynamically arriving orders must be
batched in pick lists and then picked by order pickers as efficiently
as possible (de Koster et al., 2007). Methodologically, parallels can

be drawn between creating pick lists in this problem and creat-
ing activity groups by batching student demands in our problem.
We get inspiration from and strive to provide insights for these
complex and dynamic logistics problems, which can directly bene-
fit from approximate systematic solution methods such as ones we
propose in this paper.

As also argued in Kannan et al. (2012), due to the freedom
offered to students, finding good solutions becomes a computa-
tional challenge as solution space grows. Therefore, this task is not
suitable for simple solution strategies such as rules of thumb, in-
stead, systematic planning tools are necessary to explore the so-
lution space and find high-quality solutions. This paper aims to
present an efficient systematic method for the flexible demand-
driven planning problem. We demonstrate the applicability of
our proposed method in the context of secondary schools in the
Netherlands.

The remainder of the paper is organized as follows.
Section 2 describes the weekly activity planning problem.
Section 3 presents the MILP formulation. Section 4 presents
the proposed heuristic approaches. Section 5 gives the compu-
tational experiments, which provide performance analysis of the
proposed solution approaches. Section 6 provides practical insights
and decision support for schools. Lastly, Section 7 concludes the

paper.
2. Problem description

The weekly flexible demand-driven learning activity planning
problem relates to schools which implement own-pace own-
method personalized learning models. The learning activity plan-
ning in these models is initiated when students demand learning
activities for the lesson units of the learning goals of their courses.
Fig. 1a illustrates the mechanism of learning activity planning in
these models, as opposed to the mechanism of one-size-fits-all
models which is depicted in Fig. 1b.

The main distinguishing aspect of planning in personalized
learning compared to traditional education is the lack of fixed
groups (i.e., classes). Yearly or semesterly produced weekly cyclic
timetables are not appropriate in personalized learning, as learner
groups are dynamically formed each time based on varying learn-
ing demands. In personalized learning, students can be grouped in
learning activities flexibly and teachers and classrooms can be al-
located flexibly as well. The planning problem of the schools here
is to weekly plan in-class and self-study learning activities by flex-
ibly composing activity groups and allocating resources to satisfy
students’ learning demands.

The formal description of the problem with notation (see
Table 1) is as follows.

In personalized learning schools, a set of in-class activities acA
are offered to a set of students seS. Each in-class learning activ-
ity acA is uniquely associated to a lesson €L of a learning goal
geG of a course ceC. At the end of every week, students pro-
vide their high priority Al and low priority A2 demands for the in-
class activities that they would like to be planned for the following
week. Their school plans a number of sessions of the demanded
in-class learning activities in a set of time blocks beB of a set of
school days d €D for the next week by flexibly assigning teachers,
classrooms and students to the sessions. All demands should be
satisfied as much as possible with the efficient use of school re-
sources. However, if possible, the number of activities on course ¢
that are assigned to student s in day d should not be exceeding
a daily course limit of CL for each day deD for each course ceC
and for each student seS. Any in-class activity session takes one
time block. In personalized learning schools, self-study activities
with available learning materials, such as online learning portals,
can stand as an alternative to in-class learning. Therefore, usually
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Fig. 1. Personalized learning versus traditional education.

Table 1
Input notation.

Sets

acA : set of in-class activities, seS: set of students, ce C: set of courses,
geG: set of learning goals, [eL: set of lessons, teT: set of teachers,
reR: set of classrooms, d e D: set of weekdays, b e B: set of time blocks

Subsets

Al : set of in-class activities demanded with high priority by student s
AZ: set of in-class activities demanded with low priority by student s

Ac: set of activities on course ¢

Al: set of in-class activities on course ¢ which can be only taught by first-level teachers
Aq: set of in-class activities that precede activity a
Are: set of in-class activities on conventional courses

C¢: set of non-conventional courses

R¢: set of classrooms of non-conventional course ¢
R": set of classrooms of conventional courses
Tpq: set of teachers available in block b of day d

Tc: set of teachers of course ¢

T.: set of first-level teachers of course ¢
B.: set of time blocks that are preferred by course ¢

Parameters
CL: daily course limit of students

Kq: classroom capacity of in-class activity a
WT: weekly in-class assignment limit of teachers
SE: maximum number of students that a teacher can guide in self-study

a large self-study environment is available in schools for self-study
learning activities.

In-class activity sessions take place in a set of classrooms reR.
Some non-conventional courses c< C® such as Physical Education,
Art and Information Technologies can only be accommodated in
equipped classrooms RS such as gyms, art studios and computer
labs. The remaining conventional courses ¢ e C—C® can be ac-
commodated in traditional classrooms R" with no special equip-
ment. The classroom capacities can be defined for activities with-
out knowing explicitly in which classrooms they are going to be
planned (see Assumption A1). The capacities of classrooms K, set
a limit on the number of students that can be grouped in sessions
of in-class activities a € A.

Sessions are taught by a set of teachers teT. Each session
should be assigned to a teacher. Some teachers work part-time;
in any time block b e B of any day deD only some teachers te Tpy
are available. Secondary school teachers in the Netherlands have
two teaching qualification levels: first and second level. The first-
level teachers T of course ce C are qualified to teach any lesson of
any learning goal of course c. The second-level teachers T. — T of
course c e C, on the other hand, are qualified to teach the lessons of
the majority of learning goals, but not the ones of the higher levels
a e AL. It is not desired that teachers are assigned to in-class activ-
ity sessions in a week more than a weekly limit of WT. Apart from
in-class activities, teachers are also assigned to self-study environ-
ment in order to guide self-study activities of students. Any teacher

teT can provide guidance for up to SE many students’ self-study
activities. Sufficient teacher levels should be assigned for self-study
activities as much as possible in any time block. Balancing teach-
ers’ workloads in a week is desired in both in-class and self-study
activity assignments. For a teacher, the in-class (self-study) activity
workload in a week is measured by the utilization rate of his/her
total available time with in-class (self-study) activities. Teachers T
of each course ceC desire to have similar in-class activity work-
loads as much as possible among themselves. For the self-study
activities, all teachers T, regardless of their courses, desire to have
similar self-study workloads.

Lastly, schools can indicate preferred time blocks B. for courses
to plan in-class activities relating to courses. For example, for
courses that require high concentration levels, schools may pro-
vide preference of morning time blocks for the activities relating
to these courses.

This problem seeks to produce a weekly learning activity plan
at the end of each week, for the coming week, by deciding on how
many sessions of each activity to plan (x,,4), which students to as-
sign to the planned activities (z,4,4) and which resources to assign
to the planned in-class (y;,4) and self-study activities (y;bd). Note
that classroom assignment decisions are left out (see Table 2), and
teachers are only assigned to in-class/self-study states without be-
ing assigned to specific sessions of learning activities, also students
are not explicitly assigned to specific activity sessions; they are
only assigned to activities. With the flexibility in forming learning
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Table 2

Decision variables
Variable Description
Zsapd € {0, 1} 1 if student seS is assigned to in-class activity a € A} UA? in block b e B of day d e D, 0 otherwise
Xapa € N number of sessions planned of in-class activity a e | J,.sA! UA? in block beB of day deD
Ywa €{0, 1} 1 if teacher teT is assigned to an in-class activity session in block be B of day d e D, 0 otherwise
y;bd e {0,1} 1 if teacher teT is assigned to self-study environment in block b e B of day d e D, 0 otherwise

activity sessions, teachers do not have preferences over the in-class
activities that they are assigned, students do not have preferences
over the teachers of the sessions and over the students that they
are assigned together to the sessions, and activity sessions do not
have preferences over the classrooms. This allows a significant re-
duction in decision layers of the problem. The reduced decisions
can be reconstructed by a post-processing procedure without com-
promising optimality. One such procedure is given in the online
supplement.

Below we list our assumptions relating to the use of teachers
and classrooms in this planning problem. These assumptions are
confirmed by an expert to be mostly realistic in the case of the
secondary schools in the Netherlands.

e Al : Each traditional classroom is identical to any other tra-
ditional classroom and each equipped classroom of a non-
conventional course is identical to any other classroom of the
same course. This assumption establishes a direct link between
Xgpa and zggpq Without the knowledge of classroom assignments.
In fact, this assumption is also necessary for the decision reduc-
tion made on the classroom assignments.

A2: When students are not assigned to in-class activities, they
are doing self-study activities in the self-study environment.
A3: The size of the self-study environment is large enough to
accommodate all students in a school. Therefore, physical space
assignments for self-study activities are not included in the
problem.

A4: Each teacher teT is specialized in only one course ceC.
Note that, this assumption is not necessary for the mathe-
matical model. However, it simplifies the calculations in the
feasibility checking phases of our constructive heuristics (see
Section 4.2) and makes the course based in-class workload im-
balance calculations (see SC2) more meaningful.

The described problem seeks the desired weekly activity plan
that satisfies all described hard constraints and violates as few soft
constraints as possible.

3. MILP formulation

The plan that is to be produced must satisfy the following hard
constraints.

e HC1: A student can not be assigned to more than one activity
session at any time.

Y zaa<1 VseS VbeB VdeD (1)
acA

e HC2: A student can only be assigned to a session of an activity
that (s)he demands.

D> Zsabd < Ljaen) + Laea)
beB deD

VaecA VseS (2)

o HC3: The number of students assigned to activity sessions must
respect classroom capacities.

ZseS Zsabd

VYaecA VbeB VdeD 3)
Ky

= Xabd

e HC4: A suitable teacher must be assigned to each in-class ac-
tivity session.

Y Xaa < T NT!| VYceC VbeB VdeD (4)
aeAl

S Xaa < |ToaNTe] YceC VYbeB VdeD (5)
aeA.

> Y=Y Xaa VceC VbeB VdeD (6)
teTC1 NTpg aeA}

Z ytbd=2xabd VCEC,VbGB,VdED (7)
teTNTyq aehAc

Constraints (6) and (7) would be sufficient for satisfying HC4.
However, constraints (4) and (5) are valid inequalities that pro-
vide a tighter LP relaxation. They are also used in the decom-
position heuristic later (see Section 4.2.1).

o HC5: A teacher can not be assigned to more than one activity
at any time and (s)he can only be assigned if (s)he is available.

VteT,YVbeB,YdeD (8)

e HC6: A suitable classroom must be assigned to each in-class
activity session.

Yepa T Yebd = Litery,)

> Xaa <IR| VYceC,VbeB YdeD 9)
aeAc
> Xaa < IR™|  VbeB VdeD (10)
aeAre

Note that these constraints are only for making sure that the
activity decisions are taken such that they will be feasible with
respect to classroom resources. Specific classroom assignments
are done via a post-processing procedure.

e HC7: Lessons of learning goals have precedence relations; stu-
dents must follow them in the right order.

’ ;o Zo it

Lachy Lt'd) <o) Zaa VseS VYVbeBVdeD,
D d enq L eatum)

VaecAlUA? st |(AlUA2)NA,| £0 (11)

The notation (b',d’) < (b, d) is used to denote all blocks (b, d")
that precede time block b of day d.

Zsabd =

In addition to the presented hard constraints, there are sev-
eral soft constraints regarding the quality of learning activity plans.
These soft constraints do not have to be satisfied, however they are
desired to be satisfied as much as possible. For each soft constraint
an auxiliary variable is defined (see Table 3). These variables mea-
sure the violations of each soft constraint.

o SC1: Satisfying high and low priority student demands.

al =Y (1= Zepa Vse$S (12)
aeAl beB deD

al= > 1=z VseS (13)
acA? beB deD



A. Aslan, I. Bakir and LEA. Vis/European Journal of Operational Research 286 (2020) 673-688 677

Table 3
Auxiliary variables.
Variable Description
al eN number of unmet high priority demands of student seS
aZeN number of unmet low priority demands of student seS
ale ]Ra extent of imbalance in the in-class activity workloads among teachers in T,
aleN number of times that sessions of in-class activities in A. are planned in B — B,
ozftd eN extent of violating daily course limit of CL for student seS for course ceC in day de D
abeN extent of violating weekly in-class assignment limit of WT for teacher teT
D‘Zu eN number of shortage teachers in self-study environment in time block b e B of day de D
a®eN extent of imbalance in the self-study activity workloads among teachers T
o eN number of planned in-class activity sessions in a week

SC2: Balancing teachers’ in-class workloads.
Cl? — IBéﬂax—class _ ﬂgnin—class V¢ e C

where ﬁénax—class’ ﬁéﬂin—class c R6

‘ T Dbe 2odeD LiteTyy}

VteTst. Y Y lgep,, >0, VceC
beB deD

‘ N ZbeB ZdeD ]l{tEde}

VteTst. Y Y Iy, >0 YceC (14)
beB deD

The method employed here for measuring the imbalance is the
simple method of taking the difference between maximum and
minimum workloads.

SC3: Planning activity sessions in their preferred time blocks.

ad=>">">"Xpa VceC (15)
aeA¢ deD b¢B.

SC4: Limiting the extent of exceeding students’ daily course
limit of CL.

asscd > Z Zzsabd —CL

acAc beB

VseS VceCVdeD (16)

SC5: Limiting the extent of exceeding teachers’ weekly in-class
assignment limit of WT.

af =YY ypa—WT  VteT (17)
b d

SC6: Assigning required numbers of teachers to self-study at
any time.

alZd > Zses(] _S%:aeAzsabd) _ Zy/[bd VYbeB VdeD (18)
teT

SC7: Balancing teachers’ self-study workloads.

aS — ﬁmax—self _ ﬁmin—self’ where 'Bmax—self’ ﬁmin—self c RB

VteTst. ZZHHETM} >0

gmin-self . _2bep LdenYioa_

N ZbeB ZdeD Leety) beB deD
> bes 2den Vipa
ﬁmax—self > e el thd W e Tt Liter,,) > 0
ZbeB ZdeD l{fEde} %I; dEX; -

(19)
SC8: Minimizing the number of sessions planned in a week.
o = Z Z Zxabd (20)
beB deD aecA

This constraint imposes the efficiency in planning.

We define for each penalty auxiliary variable o', n=1,2,...,9 a
weight parameter w" e R*,n=1, 2, ...,9 and formulate the follow-
ing cost function, which is the weighted sum of violations of the
soft constraints of our problem.

2 4
MIN = Y afw'+ ) > afw'+ ) >y "l w’

n=1 seS n=3 ceC seS ceC deD

9
+ w4+ Y S g w + > o w" (21)
teT beB deD n=8

We show that the weekly flexible demand-driven learning ac-
tivity planning problem is AP-hard. In fact, it can be shown that
many of the educational timetabling problems, which are already
proven intractable in the literature, are special cases of this prob-
lem. For instance, the student scheduling problem, which is proven
NP-hard by Cheng, Kruk, and Lipman (2002), only assigns stu-
dents to course sections (can be thought as the activity sessions
of our problem) to fulfill student demands and therefore is a spe-
cial case of our problem, where sessions of activities already have
been planned and assigned to times, teachers and classrooms.

4. Dynamic thompson sampling hyper-heuristic framework

The MILP model described in the previous section is not solv-
able by the state-of-the-art solvers within reasonable times for
moderate sized instances. Consequently, we consider an approxi-
mate approach and develop a hyper-heuristic framework for pro-
ducing solutions for this intractable problem. Hyper-heuristics,
which are heuristic search methods that use heuristic methods
to choose from a pool of simpler (low-level) heuristics, are al-
ready in use to solve many computationally intractable educa-
tional timetabling problems (Ahmed et al., 2015; Burke, McCollum,
Meisels, Petrovic, & Qu, 2007; Pillay & Banzhaf, 2009). The use of
hyper-heuristics in educational timetabling has recently been re-
viewed by Pillay (2016). This section presents our dynamic Thomp-
son sampling single-solution selection hyper-heuristic framework.
The overall solution methodology is summarized in Fig. 2.

Differently from typical educational timetabling problems, this
planning problem contains a very large number of decision dimen-
sions. This fact enables many opportunities for different solution
methods and strategies. For instance, there are many ways of en-
coding solutions and performing search on various spaces. With
the motivation of exploring many solution approaches, here we de-
scribe two different constructive heuristics which we use as ini-
tial solution generators for our hyper-heuristic local search. In fact,
in the online supplement, we also briefly discuss other heuris-
tics that we test for this problem; these also include genetic algo-
rithms which explore different solution representations. Also with
the involvement of numerous soft constraints in our problem, ex-
actly nine many, the number of low-level heuristics in our hyper-
heuristic framework is significantly higher than that of a typical
educational timetabling problem.
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Fig. 2. Solution methodology.

4.1. Solution encoding

We use direct encoding which maps each student s€S to one
of the in-class activities in A} UAZ or to self-study, which we call
“student solution”, and each teacher teT to in-class or self-study
assignment, or to the idle state, which we call “teacher solution”,
for every time block beB of every day deD. The number of ses-
sions planned of each in-class activity a €A, x4, is determined in-
directly from the student solution as classrooms of activities K
have fixed sizes.

4.2. Initial Solutions

Our hyper-heuristic framework applies local search on a feasible
good-quality initial solution. Due to the fact that our problem in-
volves many decisions, it is difficult to construct a solution heuris-
tically in an integrative way. In this study, a feasible initial solu-
tion is obtained in two phases with greedy constructive heuristics.
Firstly, a feasible initial student solution is built and then the gen-
erated student solution is used to construct the corresponding fea-
sible teacher solution, to fulfill teacher assignment requirements
for the activities planned with student assignments. Two distinct
constructive heuristics are utilized to generate good-quality initial
solutions. These heuristics differ in the first phase of generating
student solutions.

A student solution can always be generated in a feasible way
with respect to teacher assignment requirements of activity ses-
sions, without the explicit decisions on teacher assignments (¥,
y;bd). Specifically, this feasibility relates to HC4. With assumption
A4, the computational effort of checking this feasibility is not sig-
nificant at all; only the available teacher levels in each course
need to be in line with the number of sessions planned of that
course; constraints (4) and (5) are sufficient to check this feasi-
bility, without the need of constraints (6) and (7). However, this
decomposition of the solution into student and teacher solutions
will affect the solution quality as there are some dependencies be-
tween student and teacher solutions. Namely, the firstly built stu-
dent solution will directly affect the quality in the self-study en-
vironment, concerning the teacher shortages in the environment,
and also the teachers’ weekly workloads and their workload im-
balances. The proposed heuristics build student solutions before
teacher solutions because meeting student demands is prioritized
over other soft constraints in practical instances. Besides, the con-
struction phase is only the first phase of our approach; the lo-
cal search applied after this phase is able to improve a solution
with respect to the teacher-related quality metrics, as local search
is made in an integrative manner on both student and teacher
solutions.

4.2.1. Student solutions

This section describes the two methods that are used to gen-
erate feasible student solutions. The detailed pseudocodes of the
methods can be found in the online supplement.

Batch method: This heuristic plans a feasible in-class session by
selecting a learning activity and an available time block of a day,
then a number of students, up to the classroom capacity of the
selected activity, who can feasibly be assigned to the selected ac-
tivity at the selected time are assigned in a greedy fashion, at each
iteration. The priorities of the activities to be selected at iterations
are determined based on their potential to reduce the costs which
relate to the student solution (costs due to o, a?,af and o2 ).
This procedure stops when there are no possibilities to plan feasi-
ble sessions. The feasibility of planning a new session of a learning
activity is determined by the levels of the suitable teachers and
classrooms of the course of the activity (by checking constraints
(4) and (5) and constraints (9) and (10)).

Decomposition method: This heuristic decomposes the student
solution part of the MILP model per time block per day. The
subproblem of each time block of each day is simple enough to
be solved by Gurobi to almost optimality quickly. This simplifica-
tion is mostly due to the fact that the subproblem does not con-
tain the computationally challenging lesson precedence constraints
(12). Each subproblem consists of constraints (1)-(5), (8)-(10), (12)
and (13), (15) and (16) and (20) with reduced time block and day
dimensions and an objective function that considers only the stu-
dent solution-related quality measures in (21).

4.2.2. Teacher solutions

A workload balancing constructive heuristic is used to build
a teacher solution from a student solution. In this heuristic, ini-
tially all teachers are considered idle in every time block of every
day. For every block b e B of each day deD, firstly the teacher as-
signments for sessions of in-class activities that require first-level
teachers are made. For each course ceC, only first-level available
teachers, t € Tyy N T}, are considered. In this process, teachers who
are least assigned to in-class activities are prioritized. This is to
balance teachers’ in-class activity workloads. When assignments
for the sessions of activities in A! are made, assignments are made
for the sessions of remaining activities on course c € C in the same
way. Note that an assigned teacher is not considered available any-
more for later assignments in the same time block. This is repeated
for every course ceC, and then, lastly, a number of teachers who
are still available are assigned for self-study activities. This num-
ber is based on SE and the number of students who are not as-
signed to any in-class activities in time block b of day d. Assign-
ments for self-study are also performed in a similar fashion where
teachers’ current self-study workloads are considered for prioritiz-
ing teachers. This procedure is repeated until teacher assignments
are made for every block beB of each day deD. The pseudocode
of this heuristic is also given in the online supplement.

4.3. Dynamic thompson sampling local search hyper-heuristic

We develop a single-solution hyper-heuristic framework which
uses the dynamic multi-armed bandit algorithm of dynamic
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Thompson sampling to improve a constructed initial greedy so-
lution. Our framework works as a local search method on a sin-
gle solution with a pool of predefined low-level heuristics that act
as neighborhood structures. Single-solution local search selection
hyper-heuristics perform search on a single solution with heuris-
tic selection and move acceptance processes until a stopping crite-
rion is met (Burke et al., 2009). The heuristic selection process at
each iteration selects a low-level heuristic from the pool to apply
on the current solution. After a candidate solution is found by ap-
plying the selected low-level heuristic on the current solution, the
move acceptance process decides whether to accept or reject the
candidate solution.

In our framework, the deterministic acceptance criterion of ac-
cepting only non-worsening solutions is selected. It is true that
only accepting good solutions limits the scope of the search space
and move acceptance strategies such as simulated annealing or
threshold acceptance that also accept some worsening solutions
can be useful for escaping local optima. However, our investiga-
tions could not find the benefits of using these acceptance strate-
gies in this problem. This is likely to be related to the issue that
the search space of this problem is extremely large that it may
take tremendous computational effort for these strategies to make
a fine exploration of the search space. Therefore, we limit ourselves
to local optima solutions. However, it is important to note that this
does not lead to a myopic search, since our framework consists 22
neighbourhoods.

Hyper-heuristic frameworks that use learning to guide the
heuristic selection process use historical performances of low-
level heuristics as guidance. When learning takes place during the
search process of an instance, frameworks are classified as on-
line learning hyper-heuristics (Burke et al., 2009). Here, a dynamic
Thompson sampling-based online learning mechanism is presented
to guide the heuristic selection process, to select an appropri-
ate low-level heuristic at each iteration of the search. The dy-
namic Thompson sampling (DTS) algorithm, which is introduced
by Gupta, Granmo, and Agrawala (2011) to solve dynamic multi-
armed bandit problems, is integrated in the heuristic selection pro-
cess of our framework.

We arrived at integrating this learning algorithm in our frame-
work by recognizing the parallelism between “the search game”,
selecting a heuristic at each iteration to reach a good solution at
the end of the search in dynamic search spaces, and “the gambler’s
game”, selecting an arm to pull at each step to reach a state with a
high reward in dynamic environments (for a similar parallelism see
Fialho, Da Costa, Schoenauer, & Sebag (2010)). Multi-armed ban-
dit problems are concerned with the balance of exploitation and
exploration in games. The typical multi-armed bandit problem of
static environments considers that a single player, the so-called
gambler, chooses an arm to pull from a given set of arms which
are associated with unknown probabilistic reward mechanisms at
each step in a sequential game, in order to maximize his/her total
expected reward at the end of the game. The gambler learns about
the reward distributions of the arms as time passes, in an online
fashion, which (s)he can exploit for the next steps of the game.
However, the gambler may also choose to increase his/her knowl-
edge of the reward mechanisms of the arms by exploring. In the
static version, the reward mechanisms of the arms do not change
in time such that there is a best arm that the gambler wants to
discover. However, in the search games of heuristics there is not a
single heuristic/operator that would be best for any time (Da Costa,
Fialho, Schoenauer, & Sebag, 2008) for any solution. Hence, the dy-
namic version of multi-armed bandit problem is more suitable for
building parallelism for the search game. Many dynamic versions
of multi-armed bandit problem algorithms such as Upper Con-
fidence Bound (UCB) bandit algorithm are already tested (Fialho
et al, 2010) for guiding the search processes. In this study, the

performance of the DTS algorithm in Gupta et al. (2011) as a
heuristic selector is tested to explore more on how dynamic multi-
armed bandit based algorithms perform as operator/heuristic se-
lectors in search algorithms.

The DTS algorithm in Gupta et al. (2011) is introduced for dy-
namic bandit problems in which reward probabilities of the beta-
Bernoulli arms are Brownian motion processes. This algorithm is
an order statistics-based Thompson sampling which tracks dy-
namic changes in reward probabilities with an exponential fil-
tering technique. Gupta et al. (2011) demonstrates that the DTS
algorithm outperforms Thompson sampling and two UCB based al-
gorithms for dynamic bandits. Our framework considers a beta-
Bernoulli bandit for the heuristic selection process; rewards of low-
level heuristics follow Bernoulli distributions and reward success
probabilities of heuristics follow beta distributions. When a low-
level heuristic improves the current solution, it is considered a
success and the heuristic is rewarded. This mechanism does not
consider the extent of improvements. Our choice is deliberate to
give fairer chances to the low-level heuristics. For instance, some
low-level heuristics that act on the teacher solutions, although not
having greater chances of improving the current solution to a great
extent immediately, create high-improvement opportunities for the
succeeding low-level heuristics that act on student solutions. Our
heuristic selection process uses the expectation values of beta-
distributed reward success probabilities of low-level heuristics.

Algorithm 1 presents the pseudocode of our framework of dy-
namic Thompson sampling based single solution hyper-heuristic

Algorithm 1 Pseudocode of the dynamic Thompson sampling
hyper-heuristic (DTSHH) framework.

1: Initialize CPTS and ok, B% for k=1:N; Pool <
{LLH,, ... LLHy}:
2: Scurrent < Generate Initial Greedy Solutions;
3: feurrent < Calculate Objective(Scyrrent);
4: while time & iteration limit not reached do
: ok o .
5.  h <« Findp; n S-t. P MaXpet,..N guygns
6: reward < 0;
7 Scandidate < APPLY (Scurrent, LLH);
8:  feandidate < Calculate Objective(S qndidate);
9: if fcandidare < feurrenr then
10: Scurrent < Scandidate; fcurrent <~ fcandidate;
1 if feandidate < feurrent then
12: reward < 1;
13: end if
14:  end if
15 if ah 4 B < CPTS then
16: al — ah +reward; B « gh + (1 — reward);
17:  else ors
18: al < (ah +reward)CgT75+]; Bl — (B +(1-
reward))%;
19:  end if

20: end while
21: return Scyrrent

(DTSHH). This framework uses three parameters that relate to the
DTS algorithm. CPS denotes a threshold value that reflects for how
long to postpone the tracking of changes in reward probabilities.
The remaining parameters are initialization of beta distribution pa-
rameters ¥ and B¥ for each low-level heuristic k. Note that when
CPTS is sufficiently large, our heuristic selection process will be-
have as a traditional Thompson sampling algorithm, which does
not track the changes at all, by only using the first set of parame-
ter update rules, i.e., lines 18-19 of Algorithm 1.
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We classify our low-level heuristics in two groups: (1) generic
and (2) tailor-made low-level heuristics. We have 12 generic low-
level heuristics which are often used in local-search (pertur-
bative) selection hyper-heuristics in solving various educational
timetabling problems (Pillay, 2016). These heuristics apply simple
mutation (e.g., move and swap) and hill-climbing operations to
perturb a current solution.

Additionally to these, 10 tailor-made low-level heuristics are de-
veloped which aim to reduce violations of specific soft constraints
of our planning problem. Our tailor-made low-level heuristics de-
liberately guide to neighbourhoods that may potentially contain
better solutions, as opposed to generics which do not use any guid-
ance to direct their operations. Some of these tailor-made low-level
heuristics focus on improving the demand satisfaction measures.
These heuristics try to satisfy unmet student demands either by
constructing new in-class learning activities or by increasing the
utilization of already created activities. The remaining tailor-made
low-level heuristics focus on reducing the violations of other soft
constraints. Each one of these focuses on a specific soft constraint
and tries to reduce its violation by destructing a current solution.

The size of this low-level heuristic pool is considerably large,
compared to existing hyper-heuristics and also local search meth-
ods in the literature, in general. The fact that there are many soft
constraints involved in our problem and also the fact that student
and teacher solutions are searched in an integrative way during the
local search have created the need for developing many low-level
heuristics. Naturally, the large size of the heuristic pool makes the
task of heuristic selection more important for the effectiveness and
efficiency of the search process, requiring an intelligent selection
mechanism. Below we briefly explain these low-level heuristics.

. LLH‘]ge”eri‘: It randomly picks a student and a time block of a
day, and it randomly changes the plan of the picked student to
a randomly picked in-class activity that the student demands
or to self-study in the picked time.

o LLHS™": 1t randomly picks an available teacher in a randomly
picked time block of a day, and it randomly changes the assign-
ment state of the picked teacher to either in-class or self-study
states in the picked time.

o LLHE®"": 1t randomly picks a student and a time block of a
day, and changes the plan of the picked student to the in-class
activity or self-study that results in largest cost reduction in the
objective function.

o LLHE™": 1t randomly picks an available teacher in a randomly
picked time block of a day, and changes the plan of the picked
teacher to an assignment state that results in largest cost re-
duction in the objective function.

o LLHE™": It randomly picks a student and two different times,
and swaps the plans of the picked student in these times.

o LLHE"": It randomly picks a teacher who is assigned to in-
class state in a randomly picked time block of a day and ran-
domly picks another teacher who is a teacher of the course
that the firstly picked teacher teaches and is either idle or as-
signed to self-study state. Then, this heuristic assigns the first
teacher to idle state and the second teacher to in-class state in
the picked time.

o LLHE®"": 1t randomly picks a student and a time block of a
day, and it randomly changes the plan of the picked student to
a randomly picked in-class activity of his/her demand such that
the assignment of the student would not require the creation
of a new activity session.

o LLHE®"": It randomly picks a student. Then, for assigning the
student to an in-class activity that the student demands, it finds
a random time where the student is assigned to self-study in
which the student can be feasibly assigned to the picked in-
class activity.

LLH§"": 1t randomly picks a student and a time block of a
day in which the student is assigned to an in-class activity. The
aim is to move this assignment to another time. The heuristic
randomly selects a different time for the student to be feasi-
bly assigned to the activity that (s)he is assigned in the first
picked time. Then, the student is assigned to self-study in the
first picked time block.

LLHE"": This heuristic swaps two students who are assigned
to two different sessions, at different times, of the same in-class
activity.

LLHE™": This heuristic swaps two randomly picked students
who are assigned to two different in-class activities in a ran-
domly picked time block of a day.

LLHE™"C: This heuristic applies a hill-climbing greedy local
search on the current solution for seeking improvement oppor-
tunities. For each time block of each day it visits the students
in a fixed order and assigns the best feasible activity options
for them, which will reduce the costs best.

LLHigilored: This tailor-made heuristic acts on student solutions
to reduce the violations of exceeding students’ daily course
limit. For every student and every day, it reduces one randomly
picked in-class activity session of a course from the student in
which the student has excess activities assigned to the course
on a day.

LLHtgilored: This tailor-made heuristic acts on teacher solutions
to reduce the violations of exceeding teachers’ weekly in-class
assignment limit. For every teacher with an overloaded weekly
in-class assignment, it reduces one of the randomly picked in-
class assignment from the teacher by assigning him/her to idle
state.

LLH{gilored: This tailor-made heuristic acts on teacher solutions
to reduce the teacher shortage in the self-study environment. It
randomly picks a time block of a day, and assigns a randomly
picked idle and available teacher to self-study state.

LLHtgilored: This tailor-made heuristic acts on student solutions
to reduce the number of unmet in-class activity demands of
students by increasing the utilization of already planned in-
class activity sessions. It randomly picks a time block of a day,
and for each planned in-class activity in the picked time, it as-
signs a randomly picked student who is assigned to self-study
but with an unmet demand on the activity to the in-class ac-
tivity, if this assignment does not require the planning of an
additional session of the activity.

LLHgilored: This heuristic is very similar to the previous one. Dif-
ferently, this heuristic also considers students who are already
assigned to some in-class activities at the picked time, for as-
signing to the activities that have excess capacities.

LLH{glored: This heuristic also works for increasing the utiliza-
tion of already planned activity sessions. It randomly picks a
time and an activity, then it assigns a random number of idle
students, who can be feasibly assigned, to the selected activity
at the selected time.

LLH{gilored: This tailor-made heuristic acts on both student and
teacher solutions to reduce the number of unmet in-class ac-
tivity demands of students. It randomly picks a time block of a
day and a student who is assigned to self-study at the picked
time, and randomly assigns the student to an in-class activity
which the student has a demand but is not assigned. Then, it
also assigns a randomly picked available teacher, who is qual-
ified to teach the activity and not earlier assigned to in-class
assignment state, to in-class state.

LLHGtored: This tailor-made heuristic acts on both student and
teacher solutions to reduce the number of unmet in-class ac-
tivity demands of students by adding a new in-class activity
session. It randomly picks a time block of a day, and plans a
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new session of an in-class activity by assigning an idle available
teacher who is qualified to teach the activity to in-class activity
state and a number of students who are assigned to self-study
on the picked time but have unmet demands on the activity to
the in-class activity. A session of the in-class activity with the
largest potential, the activity that can provide demand satisfac-
tion for the largest group of students, is picked. A number of
students are randomly assigned to the picked activity up to the
classroom capacity of the activity.

o LLHSgilored: This tailor-made heuristic is very similar to the
previous one. Differently from the previous heuristic, in the
teacher assignment phase, this heuristic also considers non-idle
teachers.

. LLH%”‘”M: This heuristic also searches for opportunities to cre-
ate new in-class activity sessions. For this purpose, it uses an
iteration of the batch heuristic.

5. Computational experiments

This section firstly introduces the characteristics of the bench-
mark instances used to test our approaches. The first experiment
focuses on the performance of our method against Gurobi MIP
solver. The second experiment presents our benchmark solutions,
along with the performance comparisons of the proposed con-
structive heuristic approaches. The last experiment focuses on the
the performance of the local search. This section highlights the im-
portant results and patterns of the experiments. For ease of read-
ing, detailed outputs of the experiments are given in Tables 1-7 of
the online supplement.

In all of the experiments, an Intel Xeon 2.5 GHz processor with
128 GB memory is used. 50 runs are completed in each non-
deterministic setting. Each local search run is limited by one hour
of running time and each run is also limited to perform at most
50 000 non-improving iterations. The DTS parameters are offline
tuned to the following values: CP7S = 60, o = gh =3,V h.

5.1. Data set

This study is an exploratory work for personalized learning
models where students master their learning goals at their own
pace which results in demand-driven learning activity plans in
schools. In our research, we collaborate with the Zo.Leer.Ik! (https:
/[www.zoleerik.nl/) secondary schools network, which currently
experiments with various personalized learning models in the
Netherlands. There are currently 22 schools in this network. Ac-
cording to the experts from VO-raad (Dutch branch organization
for secondary education), several school networks in the Nether-
lands work on implementing personalized learning. Those net-
works, including Zo.Leer.Ik!, consist of at least 90 schools in to-
tal. Due to the fact that the schools in this network have recently
started with personalized learning implementations, sufficient data
on student demands are not yet available. We therefore gener-
ate artificial instances for this problem that reflect the size-related
characteristics of the schools in this network (e.g., number of stu-
dents, number of teachers, number of classrooms, etc.). The de-
mand scenarios that we consider in our instances are based on an
expert’s opinions from the network. The student demands in the
instances are generated by the consideration of four demand spread
and two demand level scenarios.

Demand Spread: In traditional educational models, students
are grouped into fixed age or level groups. In our instances, this
concept is again used to consider different demand clusters over
the activity set, although in personalized learning there are no
longer fixed groups. However in our personalized spread scenarios
we consider variety in demands within these conceptual groups.

T
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Year 1 Year 2 Year 6
P 100% 100%
Year 1 Year 2 Year 6
| |
3P1 | I
| |\
0%  60%  20% oV 60% 20%
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Year 1 Year 2 Year 6
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| |\
0% 40%,  30% oV A40%  30%
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Fig. 3. The illustration of four demand spread scenarios in a course.

The following scenarios are considered for the spread in students’
demands.

 T: This is the traditional situation in which the ages determine
students’ learning paces. This scenario assumes that within an
age group there is no variety observed in the students’ learning
paces. The traditional demand scenario is included in our ex-
periments for the sake of comparing the outcomes of personal-
ized demands with traditional demands.

e P: This is the first personalized demand scenario. It assumes
that within an age group, learning demands are spread over ac-
tivities that range over two learning goals.

e 3P1: This personalized demand scenario assumes that within
any age group, three distinct student groups can be observed
as a result of their learning speed differences. The three groups
represent the slow-, average- and fast-pacing students in each
age group. Average-pace groups are assumed to be the largest.
The demands of the average speed groups are spread over ac-
tivities ranging over two learning goals, just like in the first
personalized demand scenario. On the other hand, the small
groups of slow and fast pacing students demand activities that
are spread over only one learning goal.

e 3P2: This scenario is very similar to the previous personalized
demand scenario. The only difference of this scenario to the
previous one lies in the sizes of learning speed groups within
each age group.

Fig. 3 illustrates the differences in these four spread scenarios.
This figure shows the learning demands of a representative course
in the case of T, P, 3P1 and 3P2 demand spread scenarios. Nor-
mal distributions are used for distributing student demands over
lessons for the cases that relate to personalized learning demands
in our instances. Our instances are in line with the six-year-long
secondary education program in the Netherlands.

Demand Level: In traditional models, students use all of their
available school time [B x D| in a week only for course meetings.
This is usually between 30 and 40 h in a week. In contrast, in
personalized learning, students also learn through self-study ac-
tivities in schools. This would translate into fewer in-class activ-
ity demands. The following demand level scenarios are considered
where each student is assumed to be enrolled in six or seven
courses.

e 12: Each student demands in total 12 in-class activities per
week, two activities per six of his/her courses.
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Table 4
Weight parameters.

weight (w")  (w;) Setting 1 (wy) Setting 2
w! 1000 1000

w? 500 500

w3 300 300

w4 50 50

w3 400 2000

wb 400 2000

w’ 50 50

w8 300 300

w? 20 20

e 21: Each student demands in total 21 in-class activities per
week, three activities per seven of his/her courses.

School Size: Four school size scenarios are considered : small
(S), small_200 (5290), medium (M) and large (L). The medium size
reflects the average school in the collaboration network. Other sce-
narios are obtained by the rough linearization of the medium size
(5200 jnstances do not exactly follow this pattern, explanations for
this are given in Section 5.2). In fact, S and 5200 scenarios are not
realistic, however they are useful in our experiments to investigate
the optimality gaps of our heuristic approach.

¢ S: 100 students, 12 teachers and 12 classrooms.

e §200: 200 students, 20 teachers and oo classrooms.
e M: 800 students, 80 teachers, 40 classrooms.

e L: 2400 students, 240 teachers, 120 classrooms.

Weights of Soft Constraints:

This problem involves nine soft constraints. Our concern in this
paper is to use realistic weight settings such that outcomes of
our experiments will be also meaningful for providing insights to
schools, apart from testing and benchmarking our heuristic ap-
proach. To achieve that, we benefit from the results of the two
surveys which we conduct with the participation of the school
managers of some personalized learning secondary schools in the
Netherlands. In the first survey, which is conducted during a work-
shop session at the “VO-congress, March 28, 2019”, 28 participants
were given multiple-choice questions that quantify the relative im-
portance levels of given two soft constraints, while in the latter
survey seven participants from the Zo.Leer.Ik! network quantified
the importance of each soft constraint by directly setting their
weights. The results of these surveys almost match with respect
to the importance order of soft constraints. However, only one sig-
nificant difference is realized, the importance level of overloading
teachers and students, namely the weights of w® and w® in the
results. The second survey suggests considerably high importance
levels for these soft constraints compared to the first survey. As
a result, we conduct our experiments by considering two differ-
ent weight settings, each representing one survey. Table 4 declares
these settings; Setting 1 corresponds to the result of the first sur-
vey, while the other to the second.

We denote the instance with x; €{T, P, 3P1, 3P2} demand
spread, x, € {12, 21} demand level, x5 € {S, S299M, L} school size and
X4 € {wy1, w,} weight setting as “x’l‘ig o " in this document. The de-
tails of how these instances are generated are described in the
online supplement. The description of our data set in the on-
line supplement also explains the data format of our instances,
which can be accessed at https://drive.google.com/drive/folders/
10s]5CxYNK9IPj8-yqGvnONz1ADPqgs51lv?usp=sharing.

5.2. Benchmarking against a solver

Our heuristic approach is benchmarked against Gurobi 7.0.2
MIP solver for performance investigation. The small school size in-
stances (S) are used for this investigation, even though they are

not realistic cases, because of the limitation of the solver to find
optimal or nearly optimal solutions in the considered time limit
of four days. In fact, this time limit is too long for practical pur-
poses because in practice a school needs to solve the problem of
the upcoming week during the weekend. We compare the Gurobi
solutions with the best solutions obtained from the heuristics. The
comparisons are given in Table 1 of the online supplement. Firstly,
we observe that Gurobi is not able to even find good solutions for
the two of the instances: Ts‘f"zll and Ts‘f";. For these instances, the
gaps of the Gurobi solutions to the best bounds that Gurobi finds
are more than 85% and the heuristic solutions are significantly bet-
ter than Gurobi’s. We argue that the reason for this could be re-
lated to the increased numbers of feasible activity group forma-
tions of the traditional demand scenario. This also demonstrates
the computational challenge of our problem numerically. For the
remaining instances, we found that the heuristic solutions have on
average 15.72% optimality gap, compared to the best lower bounds
found by Gurobi.

In order to experiment with larger instances, some simplifica-
tions are made. We use another set of instances which has 200
students (S200) for this purpose. In these instances, the number of
classrooms are assumed to be unlimited for each course, all teach-
ers are first-level and also the demand level is only 12. The solver
is again given four days of running time. In four out of these eight
instances, the heuristic solutions are better in quality then Gurobi
solutions. For these simplified instances, the gaps of the heuristic
solutions to Gurobi bounds are observed to be significantly smaller
compared to the instances with 100 students; the average optimal-
ity gap of these instances is 9.19%. Also, for the instances with 3P2
spread scenario, the gaps are even lower than five percent. This
could be an indication that the gaps will get smaller as the size of
the instances get larger. Although, we are not able to demonstrate
this for the larger sizes, such as M school size instances, due to the
current performances of the state-of-the-art MIP solvers, we expect
that this will be case. Our intuition is that as school size increases,
demand satisfaction will get easier because the increasing number
of students can be grouped in activities and limited teacher and
classroom resources could be used more efficiently, given that the
activity set is kept fixed. The detailed explanation for this situation
is given later in Section 5.3.2.

5.3. Solutions

This section provides the solutions for the medium and large
size instances for benchmarking purposes and also an analysis
of two different initialization methods. The detailed performance
measures of constructive heuristics are given in Tables 2 and 4,
while the solutions of our benchmark instances can be found in
Tables 3 and 5 of the online supplement.

5.3.1. Initial solutions

Running Times:

In order to see the running time patterns of the batch and de-
composition methods across four demand spread scenarios (T, P,
3P1 and 3P2) in Fig. 4 we present the average running times over
all instances of each spread scenario, for each school size. The y-
axes of the graphs in this figure give these average CPU values that
are measured in seconds. The running times of the batch method
are considerably lower compared to the decomposition method in
almost all instances, with some exceptions in the case of large size
instances. This is expected as decomposition method utilizes the
solver for small-scale subproblems. Although these problems are
quickly solved, there are 40 of them in our instances. Moreover,
the running times seem to be correlated with the demand spread
scenarios in both methods. The instances with high-spread scenar-
ios, 3P1 and 3P2, always require more time in both methods. Note
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Fig. 4. Average CPUs of batch and decomposition solutions over spread scenarios. M (in blue) and L (in yellow) mark medium and large school size instances, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 5
Overall performance measures of initial solution heuristics in medium and large
school size instances (note: each set has 16 instances).

School size  Batch Decomposition
M Ave: 261,724.19 #Best: 9 Ave: 207,407.24 #Best: 7
L Ave: 253,139.19 #Best 12 Ave: 269,622.38 #Best: 4

that as spread increases, the demanded set of activities will grow
which will result in increased variables for activity planning (Xgpq),
increasing the time required to construct the solutions.

Solution Qualities:

Table 5 provides overall performance measures of the batch
and decomposition methods, with respect to the qualities of the
solutions they produce. “Ave” gives the average objective values
of the solutions found by the corresponding method of the in-
stances with the corresponding school size scenario, while “Best”
gives the number of times that the corresponding method pro-
duces the best-quality solutions in the considered instance set. In
both medium and large size instances, the initial solutions pro-
duced by the batch method are mostly better in quality than those
produced by the decomposition method. However, if the averages
of the solutions found by these methods are compared, the decom-
position method is better than the batch method in medium school
size instances.

The performance of these methods with respect to the qualities
of the solutions they produce form patterns over the characteristics
of the instances. In order to illustrate these patterns, we present
Figs. 5 and 6 which show the objective values found by the two
initialization heuristics for the medium school size instances with
12 and 21 demand levels, respectively. It can be observed from
these figures that the batch method is always better for the low
demand level instances, while in the case of high demand level
scenario, the decomposition method is almost always better. We
also observe that in the high demand level scenario instances with
Setting 2 weights, the decomposition method always outperforms
the batch method significantly. The weakness of the decomposition
method is that it makes time block based decisions and does not
regard the resource availability of the latter time blocks when it
is making activity assignment decisions for a block. For instance,
this method can make undesirable activity group formations for
the sake of satisfying student demands in a time block, although
there are better formation opportunities in the future time blocks.
In fact, this is the likely reason for the worse performance of the
decomposition method in the low demand level instances. In these
instances, the opportunities to satisfy student demands in a week
are not scarce. Lastly, these experiences with our instances indi-
cate the issue that the instance characteristics plays an important
role in the performance of our heuristics for this problem. There-
fore, we can not conclude that batch or decomposition method
performs best overall. However, based on our computational
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Table 6

The average improvement performance of
DTSHH in medium and large school size
instances.

School size  Batch Decomposition

M 26.06%  20.01%
L 6.68% 3.40%

experiments, we conjecture that the batch method is more suit-
able when the resources are not scarce compared to the demands
and for the other situations the decomposition method should be
used.

5.3.2. Local search applied solutions

Here, the improvement performance of the local search is dis-
cussed. Table 6 presents the average improvement percentage by
DTSHH for medium and large school size instances, on batch and
decomposition initial solutions.

The improvement percentages are always high for the medium
school size instances compared to the large size instances. This can
be explained with the frequent use of activity creating low-level
heuristics, which usually provide high levels of improvement, in
medium size instances. On the contrary, in most large school size
instances, initial solutions are already able to satisfy most of the
demands, leaving less room for the activity creating heuristics. The
reason for this is intuitive. In our instances, the number of stu-
dents and resources increase linearly from the medium to the large
school size scenario while the activity set is kept fixed, because in
practice the number of courses or lessons within courses usually
will not be affected by the size of the school. Given a fixed demand
spread scenario, if the number of activities is fixed, increasing the
number of students will result in larger activity groups such that
the utilization of teachers and classrooms will be higher. In order
to also illustrate this numerically, Table 7 is presented.

This table shows the number of unmet demands relating to the
batch initial solution and its best found improved solution for the
instance with high-demand level, 3P2 demand spread and with
large school size. The table shows the results for both weight set-
tings. We first observe the significant quality difference with re-
spect to demand satisfaction levels of the initial solutions of two

weight settings. While the improvement percentage is more than
32% in the instance with Setting 2 weights, the setting where the
initial solution is significantly poorer with respect to demand sat-
isfaction levels, this percentage is only 1.36% in the same instance
with Setting 1 weights. Given the weights of unmet demands (see
Table 4), we can calculate and understand that these improve-
ments in the unmet demand levels are the main contributors to
a high improvement level of 32%.

We also observe that DTSHH could improve the batch solutions
more than the decomposition solutions. In fact, this could also be
related to the opportunities to make use of the activity creating
low-level heuristics. We mention the weakness of the decompo-
sition method on the ability to consider the available resources
of the whole week in the previous section. This method prioritizes
the demand satisfaction in each time block, without recognizing
the satisfaction chances in the future time blocks of a week. There-
fore, the available resources of each time block are depleted greed-
ily. It can be said that in general terms that the decomposition
method is greedier than the batch method, which integrates the
decisions over the whole week. For this reason, the solutions con-
structed by the decomposition method can create a significantly
larger number of activity sessions compared to those constructed
by the batch method and may leave less room for the activity cre-
ating heuristics of local search. For instance, in the instance given
in Table 7, batch initial solutions create 1952 and 1880 sessions
in the Setting 1 and Setting 2 weights, respectively, while de-
composition solutions create 3145 and 3167 sessions for the same
instances.

5.4. Benchmarking DTS heuristic selection mechanism and low-level
heuristics

Our selection hyper-heuristic framework uses the DTS algorithm
as an intelligent online-learning heuristic selector. It is of interest
to investigate the contribution of this learning mechanism. For this
purpose, DTS selection is benchmarked against the non-intelligent
mechanism that selects the low-level heuristics uniformly at each
iteration, without making use of their historical performances. This
framework is named simple random hyper-heuristic (SRHH). Since
local search contributes more in the cases of medium school size
instances, this benchmarking is performed on these instances. The
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Table 7

The improvement of unmet demands with local search for batch solution in a large school

size instance.

Unmet Demands

Setting 1

Setting 2

Initial

Improved Best

Initial  Improved Best

# unmet high priority demands 81
# unmet low priority demands 348

71 261 111
337 857 543

Table 8
The improvement performances of the low-level heuristics
in the local search on the batch initial solution of T¥3,

instance.
low-level heuristic ~ #calls (ave)  # improved (ave)
LLHEmerie 244.38 0.08
LLHEer 503.72 7.44
LR 269.64 0.54
LLHE™ere 2429.38 91.72
LLHE™r™ 284.82 1.06
LLHE™er 336.36 4.60
LLHE™erie 249.2 0.20
LLHEmerie 255.02 0.22
LLHEenerie 355.24 2.46
LLHSEmerie 243.1 0.00
LLHEEerie 243.1 0.00
LLHEere 3808.04 358.28
LLHgitored 242.94 0.00
LLHGilored 262.56 0.42
LLHgilored 479.4 11.36
LLH{gitored 348.3 4.98
LLHgilored 407.36 10.06
LLHgilored 258.2 0.72
LLHglored 248.26 0.08
LLH{gilored 298.64 2.90
LLH{gilored 336.36 4.60
LLHglored 242.94 0.00

instance-specific measures relating to DTSHH and SRHH are given
in Tables 6 and 7 of the online supplement. ANOVA finds that DT-
SHH significantly performs better than SRHH on average (with 95%
confidence level), on both batch and decomposition initialized so-
lutions. In fact, this difference is already clearly visible, the im-
provement average of DTSHH is around 10% higher than of SRHH.
Clearly, this suggests the important role of the heuristic selection
mechanism, keeping in mind that both DTSHH and SRHH uses the
same set of 22 low-level heuristics.

We illustrate in Table 8 some performance measures relating to
the low-level heuristics on improving the batch initial solution of
T)\%] instance. This instance is deliberately selected as it is one of
instances in which the local search improves significantly; thus, we
can have a good view of the performances of low-level heuristics.
The numbers in this table are the averages of 50 runs. The second
column in the table shows the average number of times that low-
level heuristics are called in a run, while the third column presents
the average number of times that low-level heuristics improved
the given solution. The integrative search performed to produce so-
lutions for teachers, students and learning activities in the hyper-
heuristic framework led to an inevitably large low-level heuristic
pool. With this large heuristic pool, we aim to provide a general lo-
cal search approach which can adopt itself to different instances of
this planning problem. For the selected instance, we can see from
Table 8 that almost all of the low-level heuristics are contributing.
Table 8 also shows how the online learning DTS selection mech-
anism adapts itself to exploit the good low-level heuristics in the
pool.

The most two successful low-level heuristics for this instance,
based on their likelihoods of solution improvement, LLH3,""* and

LLer”e’iC, are hill-climbers. This is not striking as hill-climbers

greedily aim for improving solutions. Especially, LLnggneriC, which
applies hill-climbing by visiting all students in a fixed order in all
time blocks and days, is expected to be successful in improving any
given solution.

The low-level heuristics which perturb teacher solutions
to improve teacher-related soft constraint violations, LLH5"*"™,

LLHEeMee, [P pgeneric  [pptailored and [[Hgilored are all seem con-
tributing in improving the solutions when applied. Note that our
initial solutions are constructed in two phases. The first phase
builds a feasible student solution by considering teacher-related
hard constraints but is blind to the teacher-related soft constraint
violations. These low-level heuristics are expected to reduce the
violations of these soft constraints which are ignored during the
initial solution construction.

Among the tailor-made low-level heuristics, which try to im-
prove students’ demand satisfaction, the ones that try to increase
the utilization of already planned activities, without planning new
ones, LLH{g!ored and LLHigoed | seem more likely to improve a given
solution. The low-level heuristics which try to plan new activi-
ties need suitable idle teachers and classrooms. Depending on the
tightness of available teacher and classroom resources, these low-
level heuristics might not have many chances. In the instance given
in Table 8, LLHiglored and LLHored seem to be the most use-
ful ones among these type of low-level heuristics. However, note
that all tailored low-level heuristics aimed for demand satisfaction
(LLHtgilored _ [ Htdilored) have the potential to perturb a given so-
lution to a great extent and significantly reduce costs, considering
that in general demand satisfaction is the major concern. Even if
their improvement chances are low, their impacts are potentially
higher.

In addition to having to generate solutions based on student,
teacher, and learning activity perturbations, which already requires
a reasonably large low-level heuristic pool, it is also important to
note that depending on user preferences, the proposed problem
can have many weight configurations for the numerous compet-
ing soft constraints. In our computational experiments, we bene-
fit from the surveys we have conducted to determine the weight
of each soft constraint. Naturally, in practice, different schools can
have different weight configurations and instance-specific charac-
teristics, and therefore the initial solutions and the most useful
low-level heuristics can change accordingly. For example, in the
instances we use in Table 8, the demand level of each student is
such that each student only demands three activities in total in a
course, while the students’ daily course limit is two. Thus, it is very
unlikely that a feasible solution of this instance will incur costs for
this soft constraint (see SC4). However, if this is not the case, then
it might be that the local search would benefit from the low-level
heuristic LLHigilored,

We observe that swap type low-level heuristics acting on stu-
dent solutions, LLHE"*"", LLHE"", LLHS™" and LLH§™", are
not very likely to improve a given solution, especially the ones
which operate on two selected students, LLH5™" and LLHS;"*"™.
Note that these swap operators, when applied, will not change the
demand satisfaction measures of a given solution, however may
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Table 9
The spread challenge for satisfying learning demands.

Unmet Demands (M) T P 3P1 3P2

% unmet high priority demands  0.82 0.28 2.95 3.59
% unmet low priority demands 0.57 0.27 2.08 2.92

Unmet Demands (L) T P 3P1 3P2

% unmet high priority demands  0.00 0.00 0.05 0.09
% unmet low priority demands 0.00 0.10 0.18 0.28

change the timing-related soft constraint violations, such as daily
course limit violations and planning activities at non-preferred
time blocks. Therefore, their potential to improve the objective
value of a given solution is bounded by the weight of these timing-
related soft constraints.

With these 22 low-level heuristics we aim to provide a solution
approach which can generalize well over different instance charac-
teristics. We already have evidence from the two surveys we con-
ducted that soft-constraint violations can be weighed differently in
different schools. Each low-level heuristic we propose works for re-
ducing the violations of some specific soft-constraints, either by in-
creasing or decreasing the density of planning decisions. Together,
they cover all soft-constraints. With the proposed DTS-based intel-
ligent selection mechanism, our approach can efficiently discover
and exploit useful heuristics from the pool, for any given instance.

6. Practical insights and decision support for schools

This section aims to provide practical insights and decision sup-
port for schools. Firstly, we discuss the challenge of satisfying high-

spread learning demands in schools with limited resources. Later,
we provide a sensitivity-analysis based guidance for schools so that
they can cope with the process of selecting a suitable weight set-
ting and are able to use our proposed approaches.

6.1. Demand spread challenge

Our experiments on the instances with four different demand
spread scenarios indicate the challenge of satisfying demands as
they get more spread over the activities. Table 9 illustrates this on
the instances with 21 demand level scenario and Setting 2 weights
for the medium and large school size scenarios. This table uses the
best found heuristic solutions. Note that the pattern seen in this
table also is in line with that of Figs. 5 and 6. The table shows that
the percentage demand satisfaction levels are significantly worse
in the high spread scenarios of 3P1 and 3P2 in both school size
scenarios. As the spread of demands increases, the number of stu-
dents who demand the same activities will decrease. This will lead
to smaller activity groups and inefficient use of limited resources.
Naturally, it will be more challenging to satisfy high-spread de-
mands. However, we also observe that the demand satisfaction
percentages are strictly better for the large school size instance,
across all spread scenarios. In Section 5.3.2 we already explain why
it is easier to satisfy demands as the school size increases. Our ex-
periments demonstrate the alleviating effects of increased school
sizes on the challenge of satisfying spread learning demands. That
means that in practice, although it would be always challenging
for schools to satisfy high-spread student demands, we expect that
large schools can more easily cope with higher levels of spread
than small schools.

Table 10

The results of the weight sensitivity analysis on the selected 3P2}4l,; instance.
Weights #u_high #u_low # tol #s_ol #acts #np_acts #1_self
wl, w?
{100,50} 231 322 2 0 1235 373 148
{500,250} 199 308 7 43 1274 415 163
{1000,500} 156 290 6 230 1313 440 189
{2000,1000} 166 288 4 363 1275 433 134
{5000,2500} 145 294 4 585 1289 435 148
wd, wh
{50,50} 175 303 6 670 1259 414 134
{250,250} 156 259 5 323 1272 419 144
{500,500} 179 290 5 91 1283 427 146
{1000,1000} 186 290 3 0 1262 413 172
{5000,5000} 186 290 2 0 1261 412 160
wA
50 155 291 4 253 1316 444 194
250 178 303 4 249 1257 408 140
500 157 328 2 250 1256 384 127
1000 183 326 2 258 1237 352 139
5000 180 377 2 249 1152 215 111
w
50 155 288 5 231 1306 442 183
250 156 294 4 247 1306 442 182
500 155 295 4 336 1302 438 166
1000 160 304 4 323 1308 442 161
5000 138 345 4 338 1278 430 137

# acts: total number of in-class activities planned in a week.
#np_acts: total number of in-class activities planned in non-preferred time blocks in a week.

u_high: total number of unmet high priority demands.

u_low: total number unmet low priority demands.

#1_self: total number of lacking teachers in self-study in a week.

# t_ol: total number of overloaded teachers in a week.

#s_ol: total number of student course overloads in a week.
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6.2. Weight selection

The weekly flexible demand-driven learning activity planning
problem involves numerous quality criteria among which some cri-
teria would be in conflict with some other criteria. In order to test
our proposed approaches on realistic situations with respect to the
relative importance levels of these criteria, two weight settings are
used which are interpreted from the results of two surveys we
conducted. However, in practice the issue of which soft constraint
is more valuable to satisfy than another will be school specific. In
fact, in implementing our methods, the challenging task for schools
is the determination of suitable weights for the considered qual-
ity criteria. In order to provide guidance for how schools can de-
termine their weights, in this section we illustrate a sensitivity-
analysis based method for this selection. In this analysis, we start
with a base setting for weights. Then, one-by-one, the weights of
some soft constraints are varied while keeping the weights of the
others unchanged. For each varied setting, the trade-offs in quali-
ties can be observed.

The results of this analysis are given in Table 10. The results in
the table relate to the best solutions found by our heuristics. The
insights from our own analysis is summarized as follows.

e Varying the weights of the unmet learning demands: w!, w? ¢
{{100, 50}, {500, 250}, {1000, 500}, {2000, 1000}, {5000, 2000}}.
We observe how much we gain with respect to the demand
satisfaction and at the same time how much the solution gets
worse with respect to other criteria as these weights increase.
Specially, we observe that the effect on the number of students
who have course overloaded days is significant.

Varying the overload weights of both teachers and students:
w3 =wb e {50, 250, 500, 1000, 5000}. The results illustrate the
trade-off between satisfying demands and not overloading
teachers and students.

Varying the weight of planning activities at non-preferred
times: w* e {50, 250, 500, 1000, 5000}. The analysis shows how
much we will lose with respect to demand satisfaction, if we
value the timing of the activities a lot, especially for the case
of low priority demands.

Varying the weight of teacher shortages in the self-study
environment: w’ e {50,250, 500, 1000, 5000}. We observe
that if the weight of this soft constraint is too high, then the
demand satisfaction levels will get affected significantly, again
especially the low priority demands.

As can be seen above, this analysis can shed light into how the
quality measures change as weights vary. In practice, if a school
would like to use this analysis to select their weights, the school
might also need to select the order in which the weights are var-
ied. For instance, the school can start with varying the weights of
the soft constraints that they find most important. Then, they can
fix these weights to the level that they think gives the most desir-
able outcome. Weights of all soft constraints can be fixed one-by-
one in this fashion.

7. Conclusion

In this work, we explore the weekly activity planning problem
of personalized learning models in which students master their
learning goals at their own pace with their own methods. This is a
student demand-driven flexible planning problem which involves
decisions on students, activities, teachers and classrooms. We ex-
ploit the flexibility in planning to reduce some of the decision lay-
ers and provide a reduced MILP model. However, this exploitation
is not sufficient for standard solvers to find optimal solutions effi-
ciently to real-life sized problem instances. Alternatively, we pro-

vide a heuristic approach which firstly builds greedy initial solu-
tions with batch and decomposition methods and then improves
these solutions with a dynamic Thomson sampling based hyper-
heuristic framework. We use a relatively large low-level heuris-
tic pool. Our hyper-heuristic framework integrates the dynamic
Thompson sampling algorithm (DTS), an algorithm proposed for
the dynamic multi-armed bandit problem, as an intelligent heuris-
tic selection mechanism. We demonstrate the applicability of our
methods in the context of Dutch secondary schools, for which
we make use of expert opinions and survey results in generating
benchmark instances. Our experiments illustrate the computational
challenge of this problem and demonstrate the effectiveness of the
proposed heuristic methods. Specifically, we show under which cir-
cumstances which of our constructive heuristics perform better.
Moreover, we numerically demonstrate the challenge of satisfying
high-spread demands in schools, and also the alleviating effects of
increasing school sizes in this manner.
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