
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tsec20

Journal of Cyber Security Technology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tsec20

Remote Desktop Software as a forensic resource

Jonathan Manson

To cite this article: Jonathan Manson (2022): Remote Desktop Software as a forensic resource,
Journal of Cyber Security Technology, DOI: 10.1080/23742917.2022.2049560

To link to this article: https://doi.org/10.1080/23742917.2022.2049560

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

View supplementary material

Published online: 14 Mar 2022.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tsec20
https://www.tandfonline.com/loi/tsec20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23742917.2022.2049560
https://doi.org/10.1080/23742917.2022.2049560
https://www.tandfonline.com/doi/suppl/10.1080/23742917.2022.2049560
https://www.tandfonline.com/doi/suppl/10.1080/23742917.2022.2049560
https://www.tandfonline.com/action/authorSubmission?journalCode=tsec20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tsec20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23742917.2022.2049560
https://www.tandfonline.com/doi/mlt/10.1080/23742917.2022.2049560
http://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2022.2049560&domain=pdf&date_stamp=2022-03-14
http://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2022.2049560&domain=pdf&date_stamp=2022-03-14

ORIGINAL ARTICLE

Remote Desktop Software as a forensic resource
Jonathan Manson

School of Computing, Edinburgh Napier University, Edinburgh, UK

ABSTRACT
Remote Desktop Software (RDS) enables the controlling
of a computer system without the need for physical
access. Operations are sent to the remote machine and
executed as if performed by a local user. With an unpre-
cedented shift to remote working due to the COVID-19
Pandemic, more people are working on home devices
without enterprise IT support and therefore reliant upon
this software to collaborate and keep their systems avail-
able and secure. RDS complicates a Forensic
Investigation as any person with remote access privi-
leges or knowledge of bypassing them could be respon-
sible for an action. Despite its importance and
prevalence, forensic research into RDS is minimal. As
a market-leading solution for Windows, TeamViewer is
an impactful starting point to demonstrate that such
software is forensically-valuable to explore. This paper
shows that with suitable evidence, an Investigator can
identify which machines have performed remote control
or been controlled, transferred files and have been remo-
tely rebooted, among other events. We also highlight
a potential privacy concern due to inadequate uninstal-
lation processes. To illustrate the value of our findings
we publish a Python module for Autopsy that automati-
cally locates, processes and visualises key TeamViewer
artefacts for an Investigator.

ARTICLE HISTORY
Received 20 August 2021
Accepted 1 March 2022

KEYWORDS
Forensics; TeamViewer;
remote desktop; RDP;
windows

1. Introduction

1.1. Application forensics

The forensic auditing of applications is vital for analysing evidence gath-
ered during a Forensic Investigation. Using this information, an
Investigator can discover and interpret captured evidence with a degree
of certainty and present well-supported conclusions. Research can be used
to develop automated tools, able to operate at-scale and quickly triage
large datasets.

CONTACT Jonathan Manson 40454033@live.napier.ac.uk School of Computing,Edinburgh Napier
University, 10 Colinton Road, Edinburgh, UK

Supplemental data for this article can be accessed here

JOURNAL OF CYBER SECURITY TECHNOLOGY
https://doi.org/10.1080/23742917.2022.2049560

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives
License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://orcid.org/0000-0002-0615-3003
https://doi.org/10.1080/23742917.2022.2049560
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/23742917.2022.2049560&domain=pdf&date_stamp=2022-03-13

The understanding of forensic artefacts is paramount from a privacy perspec-
tive. Users should be conscious of the data applications store, how it is pro-
tected and how it can be removed. Even privacy-focused applications like Tor
leave noteworthy traces following uninstallation [1].

1.2. Remote desktop software

Remote Desktop Software (RDS) allows users access to the desktop environment
of a remote machine, usually via a network connection. Inputs, such as mouse
and keyboard events, are sent via this connection and executed on the remote
environment. The results are returned and rendered for the controlling user. The
controlling of a computer system without the need for physical access has
a wide range of applications, including technical support and administering
hard-to-reach devices [2]. Commercial RDS often includes features beyond the
visualisation of a remote user’s desktop, such as integrated voice communica-
tion, increased security and auditing, and access management.

With a major shift to remote working due to the COVID-19 Pandemic [3],
more people are working on home devices without enterprise IT support and
are therefore reliant upon this software to collaborate and access machines
previously only operated physically.

RDS requires significant privileges on host systems, for example, access to
network traffic, user sessions and filesystems. As a result, such software provides
a sizeable attack vector for malicious actors. The recent Colonial Pipelines hack
upon US infrastructure has been posited to be the result of the compromise of
TeamViewer [4]. RDS is also used as Malware directly and referred to as Remote
Access Trojans (RATs) in this context. Scammers steal sensitive data by persuad-
ing users into installing a RAT to access their device under false pretences [5].

1.3. TeamViewer

TeamViewer is one of the most popular RDS offerings, providing support for all
common Operating Systems and claiming a market share of over a third. It is used
by more than 90% of Fortune 500 companies [6] and relied upon within critical
sectors, such as healthcare [7]. Some data sources classify TeamViewer as the
market leader, with around double the market share as their closest competitors [8].

1.4. Aims and scope

This paper explores the extent to which on-disk artefacts created by RDS can be
a resource for Forensic Investigators through their identification, examination
and evaluation. This is accomplished through the design and execution of
a well-structured experiment upon the TeamViewer Windows RDS and based
upon methodology from similar research.

2 J. MANSON

We used the latest free, non-commercial version at the time of experimenta-
tion. Even the free version of TeamViewer includes a wide range of individual
features and customisation. It would be infeasible to scrutinise all of these,
particularly in combination. Therefore, we focused on activities we believe are
of most benefit for an Investigator and are likely to be in widespread use –
TeamViewer core features.

2. Theoretical context

Despite the prevalence of RDS and its privileges on host systems, there is little
formal research on artefacts for any product. Formal analysis of Desktop appli-
cations, in general, is comparatively rare. For example, Skype has been
a mainstay Windows application for many years, but the most recent in-depth
forensic research was by Yang et al. [9] in 2016.

The appetite for forensic knowledge of TeamViewer is made clear through
open-source Internet articles discussing the topic. Blogs by Lee [10] and Haq
[11] contained no descriptions of their methodologies, specific versions tested
and lacked many explanatory notes. But they did seem to show that connection
details and other important artefacts may be available.

Kerai [12], in an unpublished Thesis, reviewed RDP and VNC-based artefacts
and included some investigation into TeamViewer. The specific version of
TeamViewer was ‘5.0.8232’, which is so ancient as not to be listed on
TeamViewer 2021 support pages [13]. A later conference paper by Kerai and
Vekariya [14] found Registry and file artefacts containing personal information,
such as email addresses and usernames, on a later (but unnamed) version of
TeamViewer. Little detail is provided regarding the methodology used to iden-
tify the artefacts and there is no explanation of specific structures.

3. TeamViewer technical summary

Due to its status as proprietary software, source code is not available [15].
However, the company maintains an active, open forum for customer queries
and an extensive set of guides and manuals which shed some light on the
internals.

3.1. Features

TeamViewer is free for personal use and provides solutions for all major
Operating Systems. Major features include:

● Access and control of Computers remotely, both attended and unattended.
● File sharing.
● Meetings.

JOURNAL OF CYBER SECURITY TECHNOLOGY 3

● Text chat.
● Session recording.

Commercial or paid licences provide additional features, such as an increase in
the number of concurrent meeting participants and remote printing. The
TeamViewer [16] Manuals provide much of the following information unless
specified.

3.2. Identifiers

TeamViewer devices (Clients) are uniquely identified via an ID, known as
a TeamViewer ID or Client ID. IDs are auto-generated for each device on
installation based on ‘hardware characteristics’ and reportedly do not change,
even following software reinstallation. Using these IDs, devices running
TeamViewer can request control over each other. In LAN scenarios, IDs are not
used. IP addresses serve as unique identifiers instead.

TeamViewer IDs are entirely numerical and can have either 9 or 10 digits [17].
When a meeting is started, a unique Meeting ID is generated of the form ‘mXX-
XXX-XXX’. ‘Static’ Meeting IDs, which do not change, allow for recurrent or
scheduled meetings.

Passwords for authentication for remote control are by default auto-
generated on each start of the application, therefore changing relatively
regularly. Permanent passwords can be configured to enable unattended
access.

3.3. Connections

TeamViewer servers broker connections between devices, which register
their assigned IDs to such servers, known as ‘TeamViewer Master Servers’.
Sessions can be over TCP or UDP, chosen by the Master Server. Initially,
both parties connect to the Master for a handshake procedure and most
often then connect directly. In circumstances where this is not possible,
connections via other TeamViewer servers, known as ‘Routers’, can be
used.

One of the key selling points of TeamViewer is its zero-configuration
setup, requiring just installation and no opening of ports on endpoint or
gateway devices. However, firewall rules may need to be modified to allow
connections from the application from the local machine. The preferred
outbound TCP/UDP port is 5938 but, when this is not responsive, TCP ports
443 and 80 are ordered backups.

4 J. MANSON

3.4. Security

TeamViewer traffic is secured using both public-key (RSA) and symmetric key
(AES) encryption. Devices generate an RSA public/private pair and upload the
public key to the Master Server. This key is encrypted in transit with the public
key of the Master itself. To connect to each other, devices first request each
other’s public keys from the Master, encrypted in-transit by their own public key
and digitally signed by the Master.

A signed 256-bit AES key is then generated by the initiating device
(Controller) and shared via the Master between devices, encrypted with the
public key of the other device (Slave). At this point, the Slave authenticates the
Controller, and the AES key, before an encrypted session is started using said
key. In this reported protocol, private keys are never transmitted, and therefore,
not even TeamViewer servers can decrypt the data between devices.

There is no public information available on the specifics of the cryptography
involved in this exchange protocol. Notably, we do not know:

● Key formats and public key bit lengths.
● Operating mode of the AES encryption.
● If and when keys are changed or recreated, even during a session.

A significant threat is the brute-forcing of TeamViewer passwords once an ID
is known. To prevent such attacks, TeamViewer exponentially increases the
latency between connection attempts. This should make attacks, particularly
on auto-generated passwords, unfeasible. Older versions of TeamViewer are
vulnerable to a bypass of this enforced wait, listed as CVE-2018-16,550 [18].

TeamViewer provides no information on the location of or the storage format
of userchosen permanent passwords. Open-source research has previously
shown that password artefacts are stored in the Windows Registry encrypted
with a constant key and IV, allowing for quick decryption [19]. It is unknown
whether the latest versions of TeamViewer have changed this. A further docu-
mented vulnerability in TeamViewer versions prior to and including 13.1.1548,
CVE-2018-14,333 [20], allows attackers to extract passwords from the process
memory of the TeamViewer application.

3.5. Custom file types

Sessions are recorded in the proprietary ‘TVS’ format but can later be converted
to AVI video files. Only TeamViewer software can play TVS files. The TVS format is
entirely undocumented by TeamViewer, and little work has been done on its
specifics.

JOURNAL OF CYBER SECURITY TECHNOLOGY 5

A blog post by Dennis [21] showed that previous iterations of its file header
contained easily extractable metadata, such as versions, dates and various iden-
tifiers. The body of the file requires further insider information to process but
likely includes the session recording data itself in a custom compressed format.

4. Methodology

4.1. Design considerations

Since research into our subject area is thin, the analysis of live memory
captures was out of scope, and our focus was on the filesystem and
Registry. Windows Event Logs were also not of interest. Although
TeamViewer may have one or more Providers that deposit Events into the
Event Log, we believed it would be erroneous to consider these as purely
‘Application Artefacts’. More general Windows Operating System artefacts,
such as Prefetch Files, are also not viewed as a TeamViewer-specific
resource.

TeamViewer, like all RDS, requires network connectivity. It may also make
use of Internet access for automatic updates. We needed to consider the
potential impact of connectivity during any experimentation carefully. If an
update occurred during testing, we would be comparing the results of
different versions of the program. Mahr et al. [22], when researching
Zoom, accepted that not all testing could be conducted on the exact
same software version due to the forcing of updates that was apparent
only during the process.

A final consideration was timing. Applications often run scheduled updates
or actions without requiring user input. It is possible that running TeamViewer
with varying delays in artefact collection would result in different outputs. For
instance, if we collected artefacts too soon following a scenario, there may not
have been time for TeamViewer to log it appropriately. Some artefacts may also
only be written to disk following termination of the application, the data held in
RAM prior to that point.

To simulate timezone differences and detect whether local, UTC or other
formats were used in any artefacts, we manually adjusted the clock on the
Windows devices during experimentation.

4.2. Test protocol

We designed our test protocol to consider the issues described and based it on
similar forensic experimentation performed on Windows applications. Like Mahr
et al. [22], we began by setting up a test environment, followed by establishing the
scenarios to be used, covered by Setup and Scenario Creation sections, respectively.
The Execution stage describes how we performed the scenarios and acquired data

6 J. MANSON

following their completion, using VM snapshots similar to Muir et al. [1] but
without RAM captures. Our Analysis step was influenced by Yang et al. [9] and
Majeed et al. [23] and codified how we investigated changes in the filesystem and
Registry Hives between scenarios, balancing thoroughness and effort.

4.2.1. Setup
Unlike many other applications audited in the literature, TeamViewer involves
several machines. In our methodology, we refer to the machine being adminis-
tered remotely as the Slave and the machine performing the actions as the
Controller. TeamViewer has bidirectional functionality, so this naming does not
feature in other literature. TeamViewer themselves in their literature consider
the Controller the Client and Slave the Server, but we believe this terminology
unclear regarding when trying to understand which machine is performing
actions on the other.

We used Virtual Machines (VMs) throughout our work, based upon the
recommendations of Quick and Choo [24]. Using VMs, we were able to quickly
save and revert the states of machines in our experiments. We desired an
environment as clean as possible to act as a baseline to build from; therefore,
we created two 64-bit Windows 10 VMs using VirtualBox 6.1.18 r142142 from
a fresh ISO file downloaded from Microsoft. One machine was designated the
Slave and the other the Controller, with a single user created for each, named
‘Slave’ and ‘Controller’, respectively.

Both machines were connected via a VirtualBox ‘Internal Network’. When
internal connectivity was required, machines were manually assigned static IP
version 4 addresses. An additional network interface was configured for
VirtualBox ‘NAT Networking’ to allow Internet connectivity via our host machine.
A shared folder was connected to enable the bi-directional transfer of files
between the VMs and the host. The networking setup is illustrated in Figure 1.

The same download of TeamViewer Full version 15.16.8 was transferred to
both machines, as well as a RegistryChangesView (RCV) version 1.27 Windows
binary. RCV is a free tool that allows for the snapshotting of the Windows
Registry and comparisons between snapshots. TeamViewer and RCV were the
latest versions at the time of writing.

The machines were seeded with text files on their user Desktops, called
‘created_locally.txt’. Once each VM had been set up and relevant files trans-
ferred, we took an initial (‘Clean’) snapshot.

4.2.2. Scenario creation
Predefined scenarios are common in the literature [1,9,24–26]. We developed
each scenario in line with similar work to imitate typical user activities of interest
to an Investigator and numbered them for reference. Scenarios are listed in
Table 1. All settings and operations can be reviewed in detail in the TeamViewer
manuals [16].

JOURNAL OF CYBER SECURITY TECHNOLOGY 7

4.2.3. Execution
Analysis of both machines following every listed scenario would have been
arduous, and we expect that the extra effort would not have provided significant
benefit. Instead, We took VM and Registry snapshots to capture sets of depen-
dent scenarios. Following each node’s completion, we left machines to run for
between 1 and 5 minutes to allow TeamViewer to complete the updating of any
artefacts. Once this time elapsed, we closed any open TeamViewer windows and
processes and performed a second set of VM and Registry snapshots.

To provide further assurances that factors such as timing do not affect the
scenarios, they were repeated at least three times each, at different dates and
times of day in the same manner as that by Yang et al. [9].

4.2.4. Analysis
Our host machine also acted as a Forensic Workstation for further analysis,
which was set up with tools required to analyse collected artefacts. FTK
Imager version 4.5.0 was used to extract filesystems from snapshots by adding

Figure 1. Network diagram of experiment setup.

8 J. MANSON

Virtual Hard Disk (VHD) files created by VirtualBox as evidence items. Snapshots
were imported into Autopsy using their VHD files by cloning the machine’s state
into a new VM in VirtualBox and extracting VHD files.

We used the comparison capabilities of RCV to determine changes in the
Registry between scenarios. WinMerge version 2.16.10.0 was used to compare
changes in captured filesystems quickly. WinMerge is a free, open-source tool
for comparing modifications to files and directories, which provides
a straightforward interface for examining differences.

We needed to isolate the TeamViewer-specific actions for analysis, which
could become complicated when looking at files that multiple applications
modify. When reviewing the differences between snapshots, we did not study
every artefact. Instead, we used keywords to focus on those TeamViewer-related
(i.e. not likely to be altered by any other software), similar to Teing et al. [27].
Without this limitation, the process would have become much too time-
consuming. Matches were case-insensitive and could appear at any point in
the file or Registry path.

The keywords we used were as follows:

● TeamViewer
● TV
● Viewer
● Meeting
● Control
● Slave
● Session

We used the Microsoft SysInternals Strings program to extract information
from artefacts that could not be easily rendered into Unicode or other formats.

4.2.5. Software and tools
Table 2. Summary of software used during experiment.

5. Results

Following installation, the application starts immediately and presents
a TeamViewerID and password. The displayed passwords are auto-generated
upon each start of the application. Table 3 shows the TeamViewer IDs related to
each machine.

Rather than provide an exhaustive list of all artefacts identified, we discuss
only those we believe are of significant forensic value in terms of identifying:

● TeamViewer installation (i.e. the presence of TeamViewer).
● TeamViewer usage (i.e. what actions have been performed and when).
● Information on user identities and preferences.

JOURNAL OF CYBER SECURITY TECHNOLOGY 9

Where reasonable, we provide sample structures and examples of artefacts
we have found, such as lines in log files and headers. These are often truncated
(using), templated or otherwise modified to illustrate a point.

5.1. Firewall rules

Upon installation four new firewall rules were added that allowed inbound TCP
and UDP from any remote address on Public profiles for the following programs:

● C:\Program Files (x86)\TeamViewer\TeamViewer.exe
● C:\Program Files (x86)\TeamViewer\TeamViewer Service.exe

Table 1. Summary of scenarios.
Scenario Number Scenario Summary

S0 Clean Windows 10 machine.
S1 TeamViewer installed.
S2 Remote Control connection via WAN.
S3 Application usage.
S4 File creation and access.
S5 File transfer using drag and drop.
S6 Remote restart.
S7 File transfer using file transfer mode.
S8 TeamViewer Meeting.
S9 Settings configuration.
S10 Session recording.
S11 LAN connection.
S12 TeamViewer uninstalled.

Table 2. Shows a summary list of the software and tools used during the experimentation stage.
Role(s) Product Version

TeamViewer Installation File TeamViewer Full 15.16.8
Forensic Workstation/Host machine Windows 10 x64 N/A
VM software. VirtualBox for Windows 6.1.18 r142142
VM OS installation. Windows 10 × 64 ISO Consumer Edition (2004),

updated in February 2020.
Forensic analysis. Autopsy for Windows 4.17
Data Acquisition. FTK Imager 4.5.0
Registry Snapshots & analysis. RegistryChangesView 1.27
Filesystem comparison. WinMerge 2.16.10.0
String extraction. SysInternals Strings 2.53

Table 3. TeamViewer IDs of
machines within experiment.

Machine TeamViewer ID

Slave 958,223,731
Controller 958,517,082

10 J. MANSON

5.2. Registry artefacts

The TeamViewer Registry key locations we found and their descriptions are
shown in Table 4.

5.2.1. HKCR artefacts
Subkeys were created under the Hive HKEY_CLASSES_ROOT, which contains file
extension association information. These included .tvs, .tvc and .tvi, among
others.

These artefacts provide a good indicator that TeamViewer is currently
installed some-

where on the machine. They were removed when TeamViewer was
uninstalled.

5.2.2. HKCU artefacts
Artefacts in the current user Hive location, HKEY_CURRENT_USER (HKCU), can
reveal details regarding user preferences and historical usage. Table 5 provides
a summary of those we expect to be of the most value.

5.2.3. HKLM artefacts
HKEY_LOCAL_MACHINE (HKLM) values apply to the complete installation of
TeamViewer and do not vary between different Windows accounts. Table 6
provides a list of interesting keys, descriptions of them and investigative
comments.

5.3. Filesystem artefacts

Table 7 shows a summary of key filesystem locations and artefacts. In order to
shorten path descriptions the following aliases are used:

Table 4. Identified teamviewer registry locations.
Location Description

HKEY_CLASSES_ROOT (HKCR) File extension information for TVspecific formats.
HKCU\SOFTWARE\TeamViewer User preferences and configuration values.
HKLM\Software\WOW6432Node

\TeamViewer
Machine data, such as certificates, password information and

software details.

Table 5. Identified HKCU registry artefacts.
Key Name Description

FT_Start_Directories Recent local and remote directories used by the File Transfer utility, of the format:
<Slave ID>?<Local Dir>|<Remote Dir> This was only present on the Controller.

Meeting_Username The configured username for Meetings. Automatically set to the Windows username.
Username The configured Display Name set by the user. If this key does not exist then the Windows

Computer Name is used in interactions and logs.

JOURNAL OF CYBER SECURITY TECHNOLOGY 11

● <ADL> for c:\users\<username>\AppData\Local\TeamViewer
● <ADR> for c:\users\<username>\AppData\Roaming\TeamViewer

We discuss these artefacts in more detail in the following sections.

5.3.1. Connection logs
TeamViewer records details of incoming and outgoing connections in text files,
with one line per connection. Lines are of similar formats in each, with white-
space separating data points. Listing 1 describes incoming and outgoing log
line formats.

Table 6. Identified HKLM registry artefacts.
Key Name Description

Always_Online Indicates whether TeamViewer is always running and will start on Windows
startup to allow for 24/7 access. 0 indicates false, 1 true.

BlacklistBuddy Email addresses of accounts added to the block list.
Certificate DigitalCertificatedetails.Unknownformat. Changes regularly.
CertificateKey Key for certificate. Unknown format. Changes regularly.
ClientID The TeamViewer ID in hexadecimal format.
ConnectionHistory Each eight bytes is an entry of a connection performed. Even if the same machine

is connected to, the entry differs each time. Unknown format. Only exists on the
Controller.

InstallationDirectory Location of the TeamViewer program files.
LanOnly If existing and set to 1, only LAN connections are allowed.
LastLogoffTime Unix epoch representation of the time the most recent session ended. Only exists

on the Slave.
LastMACUsed Lists MAC addresses of the most recent interfaces used. Exists even when no

connections have been made. Includes significant whitespace at the start of the
value.

PermanentPassword Binary data of the Personal Password set. If not existing, no such password is
allowed. Format unknown. If the same password is saved at different times,
a different value is stored.

PermanentPasswordDate UTC Timestamp of when the password was set in ISO 8601 combined date-time
format. E.g.
‘20210409T122529’.

Restore_Session_Notify_ID The TeamViewer ID to notify when a session needs to be restored. We found this
to contain the Controller ID following a remote reboot. Only exists on the Slave.

Security_WinLogin Determines if Windows logon is allowed. A value of 2 indicates ‘Allowed for all
users’. If the key does not exist or set to 0, it is not allowed.

Version Version of TeamViewer installed.

Table 7. Identified TeamViewer filesystem artefacts.
Location Description

C:\Program Files (x86)\TeamViewer Installation directory, alias <ID>.
<ID>\Connections_incoming.txt Incoming Connection log.
<ADR>\Connections.txt Outgoing Connection Log.
<ID>\TeamViewer15_Logfile.log Program Log.
<ADR>\MRU\RemoteSupport Configuration file directory.
<ADL>\RemotePrinting\tvprint.db

<ADL>\Database\tvchatfile.db
Printing and chat databases in SQLite format.

12 J. MANSON

Outgoing:

<Slave ID> <Start Date> <Start Time> <End Date> <End Time> <Current

Windows User> <Connection Type> <Unique Session ID>

Incoming:

<Controller ID> <Controller Display Name> <Start Date> <Start Time> <End Date>
<End Time> <Current Windows User> <Connection Type> <Unique

Session ID>

Listing 1: Connection Log formats

Listings 2 and 3 show examples from the Controller and Slave logs
respectively.

958223731 05–04-2021 16:30:36 05–04-2021 16:32:37 Controller RemoteControl {
CCFBCE3E-49B1-420D-9589-BFBAD8EF70E6}

Listing 2: Example Connection Log line (Controller).

958517082 Controller 05–04-2021 16:30:40 05–04-2021 16:32:56 Slave
RemoteControl {CCFBCE3E-49B1-420D-9589-BFBAD8EF70E6}

Listing 3: Example Connection Log line (Slave).

We further discovered that:

● All times are in UTC.
● The Session ID is the same in both logs.
● The Connection Type for File Transfer Mode is ‘FileTransfer’.
● If Connections are made via LAN, the TeamViewer IDs are ‘0’.
● By default, the display name is the Windows Computer Name (hostname).

5.3.2. Program log
The TeamViewer15_Logfile.log file, which we refer to as the ‘Program Log’, is an
incredibly verbose record of application activities written to continually whilst
running. The challenge with a log this detailed was to extract only relevant
information.

Upon startup, a summary of program, server and computer details are written
to the log. An example is shown in Listing 4.

JOURNAL OF CYBER SECURITY TECHNOLOGY 13

Start:2021/04/05 17:21:46.764 (UTC+1:00)
Version:15.16.8 (32-bit)
Version short hash: b0756eefb01
ID:958,223,731
Loglevel:Info (100)
License:10,000
Server:master4.teamviewer.com
IC:-116,641,248
CPU:Intel64 Family 6 Model 142 Stepping 11, GenuineIntel
CPU extensions: g9
OS:Win_10.0.19041_W (64-bit) IP:169.254.111.195,10.0.2.15
MIDv:2
Proxy-Settings:Type = 1 IP = User =
IE:11.789.19041.0
AppPath:C:\Program Files (x86)\TeamViewer\TeamViewer_Service.exe
UserAccount:SYSTEM

Listing 4: Example Program Log startup.

The IP field contains a comma-separated set of addresses of interfaces on the
machine. In Listing 4 the first (169.*) is the address of the default VirtualBox
internal network and the second the address of the NAT interface used to access
the Internet.

The Program Logs of our experimental machines as a whole contained some
similarities, but were sufficiently different such that we analysed them
separately.

All log lines (unless specified) are of the format detailed in Listing 5, where
the Process ID is that of the TeamViewer process and Local Time is in 24-hour
format. For brevity in the following examples and extracts, we omit all but the
<Details> sections.

<YYYY/MM/DD> <Local Time> <Process ID> <Unknown> <Unknown>
<Details>

Listing 5: Program Log line format.

The following subsections highlight information we were able to consistently
extract from the Program Logs of either machine, focusing specifically on the
events covered as part of the experimental scenarios.

Connection details

When a connection is received on a machine, it is noted by logs that show an
incoming session, encryption negotiation and shows that UDP punching is
employed.

CommandHandlerRouting [2]::CreatePassiveSession(): incoming session via
GB-LON

-ANX-R017.teamviewer.com, protocol Tcp

14 J. MANSON

CTcpConnectionBase [2]::ConnectEndpoint(): Connecting to endpoint
188.172.198.148:5938

Negotiating session encryption: client hello received from 958517082, RSA key length
= 4096

[. . .]
UDPv4: punch received a = 169.254.146.29:57,662: (*)

Listing 6: Program Log connection example (Slave).

UDP punching enables packets to be received from a remote endpoint,
even if the local computer is behind a device implementing Network
Address Translation (NAT) or a firewall [28]. In normal situations access to
a device using their public IP is not possible without specifically configured
router rules. From a forensics standpoint, what is most interesting about this
is that we can identify the public IP of the Controller from the Slave and
vice-versa. In Listing 6 this is 169.254.146.29. Due to the way our machines
were networked, this is a private IP within the VirtualBox internal network.

We repeated this portion of the experiment using an Amazon EC2 instance
hosted on the Internet to connect to one of our VMs. By searching for ”punch
received a = ” we found the verifiable public IP of the EC2 machine within the logs.

However, we found the best and most reliable logs to identify session details
contain the lines ‘New Participant added in CParticipantManager’ or ‘was added
with the role’.

Line details can be of either of the following forms in Listing 7, where <>
indicates a parameter such as the TeamViewer ID or display name. Listing 8
shows an example log when the Controller connected to the Slave.

New Participant added in CParticipantManager (ID [,<TVID>,<Unknown>])

Listing 7: Program Log incoming connection format.

CParticipantManagerBase participant Slave (ID [958,223,731,-775,734,905]) was added with the role 3
New Participant added in CParticipantManager Slave ([958,223,731,-775,734,905])
CParticipantManagerBase participant Controller (ID [958,517,082,546,167,381]) was added with the role 6
New Participant added in CParticipantManager Controller
([958,517,082,546,167,381])

Listing 8: Program Log connection extract (Slave).

We believe that the role numbers 3 and 6 relate to Slave and Controller
respectively, but cannot confirm this without further effort.

There was no consistent log that defined when a connection was terminated,
though lines with the pattern ‘in session [0–9] has terminated’ were found.

JOURNAL OF CYBER SECURITY TECHNOLOGY 15

On the Controller, similar logs for connections were found, which can be
identified through searching for ‘was added with the role’. Notably, the
Controller appears to be added to the session first from its own perspective.

CParticipantManagerBase participant Controller (ID [958517082,546167381]) was
added with the role 6

CParticipantManagerBase participant Slave (ID [958223731,-775734905]) was added
with the role 3

Listing 9: Program Log connection extract (Controller).

The Program Log is not a complete historical record and is eventually
archived once it becomes greater in size than 1MB [29]. At any point in time
there is only one active log file and one archived file. i.e. when a new file is
created, the currently archived file is replaced. We found that this size is
comparatively generous for an Investigator to understand substantial amounts
of previous activity. The previous archived log file has _OLD appended to the
end of its filename. We did not produce enough data to determine whether
several archives are kept.

Remote reboot

Within the Slave’s log, we found evidence that the remote reboot ordered by
the Controller in scenario S6 had occurred. This also included the ID of the
machine ordering the reboot (as ‘PartnerID’), shown in Listing 10. No evidence
of requesting a remote reboot could be seen on the Controller.

CRemoteReboot::Reboot (Reboot-Type = 1, PartnerID = 958,517,082,
InstantSupportSession = 0)

Listing 10: Program Log remote reboot example.

Meetings

We found meeting IDs, participant IDs and names in the Slave’s Program Log.
Meetings were also designated a String in the format of a Globally Unique ID
(GUID) (Listing 11). On the Controller, similar to the Slave (the meeting host), we
found IDs and display names, looking for ‘joined meetings’ and ‘added name’
(Listing 12). Additionally, when a meeting session ended, we could sometimes
identify the reason by searching for ‘TerminateSession’.

16 J. MANSON

Start meeting with MeetingID = m600-002-52
VoIP: Meeting session created: MeetingID = m600-002-52, ParticipantID = [958,223,731,1,301,508,607],
MeetingGUID = {3BE8BF24-BEFC-4F0C-964C-
CB55B8FE6B9C} tvclientbase::blitz::ManagerImpl::AddParticipant(05E30C08): participant id
[958,517,082,915,592,460] added name ’Controller’

Listing 11: Program Log meeting example (Slave).

ConnectionGuard: joined meetings in sessions: 1(m600-002-52)
tvclientbase::blitz::ManagerImpl::AddParticipant(055A8D48): participant id
[958,223,731,1,301,508,607] added name ’Slave’ tvclientbase::blitz::ManagerImpl::AddParticipant
(055A8D48): participant id [958,517,082,915,592,460] added name ’Controller’
[. . .]
SessionControl::TerminateSession: Session termination reason
MeetingPresenterDisconnect

Listing 12: Program Log meeting example (Controller).

Authentication attempts

Vital for intrusion investigations is the identification of any reconnaissance or
failed access attempts. We found the details highlighted in Listing 13 when
subsequent incorrect passwords were submitted to the Slave. Using search
terms of ‘attempt number’ and ‘password was denied’ we could quickly locate
relevant logs lines. Failed authentication attempt details did not appear in the
Controller log.

AuthenticationBlocker::Allocate: allocate ok for DyngateID 958517082, attempt num-
ber 1

AuthenticationPasswordLogin_Passive::RunAuthenticationMethod: authentication
using dynamic password was denied

AuthenticationBlocker::Allocate: allocate ok for DyngateID 958517082, attempt num-
ber 2

Listing 13: Program Log failed authentication example.

File transfers

File transfer details were available in the Program Log on the Controller. We
could identify local and remote file locations, as well as the sizes of those
moved.

JOURNAL OF CYBER SECURITY TECHNOLOGY 17

Listing 14 shows summarised results of the Controller downloading ‘created
locally.txt’ from the Slave and then uploading an empty file called ”created
remotely.txt”.

Write file C:\Users\Controller\Desktop\.\created_locally.txt
Download from “‘C:/Users/Slave/Desktop\.\created_locally.txt’“ to “C:\Users
Controller\Desktop\.\created_locally.txt”“ (13 Bytes)
[. . .]
Upload from ‘C:\Users\Controller\Desktop\created_remotely.txt’ to “C:/Users/
Slave/Desktop\created_remotely.txt” (0 Bytes)

Listing 14: Program Log file transfer examples.

A finding of note regarding the File Transfer scenarios is that there was no
discernible difference in the logs between the use of the ”Drag and Drop” and
the ”File Transfer Mode” tools. It is, therefore, likely these capabilities are backed
by the same program code, and only the user interface shown to the operator
differs. From a forensics standpoint, this may make investigation simpler, not
having to cover two styles of transfer.

Session recording

On the Controller we could identify when a session recording was completed via
a search for ‘StoreSessionFile: File’, which included details on the filenames
being written. Listing 15 shows an extract of such a log following scenario S10.

StoreSessionFile: File ’C:\Users\CONTRO~1\AppData\Local\Temp\TeamViewer
TeamViewerSession 2021–04-06 13.14.17.tmp.tvs’ moved successfully to ’C:\ Users\Controller\Desktop\Slave
(958,223,731)_2021–04-06 13.14.tvs’.

Listing 15: Program Log session recording example.

The log also shows that session recordings are initially stored in a temporary
directory. Session files are further discussed in a later section.

No relevant logs could be found on the Slave (the device being recorded)
that detailed that the session was being recorded by the Controller.

5.3.3. TeamViewer configuration files
TeamViewer configuration files are in Windows INI file format but with a tvc file
extension. We found these on the Controller following connections and meet-
ings, under <ADR>\MRU\RemoteSupport. Remote Control configuration files
were found named with the Slave TeamViewer ID and Meeting configuration
files with the Meeting ID.

18 J. MANSON

The first line of configuration files contains a simple header. The body of the
files contained two ‘ = ’-separated fields of ‘targetID’ and ‘action’, of either
a TeamViewer or Meeting ID and type of connection respectively. Examples
are shown in Listing 16, retrieved from the Controller.

File: 958,223,731.tvc
========================== [TeamViewer Configuration]

targetID = 958,223,731 action = RemoteSupport
File: m600-002-52.tvc
========================== [TeamViewer Configuration]

targetID = m600-002-52 action = Meeting

Listing 16: TeamViewer Configuration File content examples.

5.3.4. Database files
We found SQLite database files in the following locations:

● <ADL>\RemotePrinting\tvprint.db
● <ADL>\Database\tvchatfile.db

Their names imply they store chat and printing data but were both empty in
all scenarios.

5.3.5. Session recording files
Recorded sessions are by default saved with filenames of the following format
when taken by the Controller:

<Slave Display Name> (<Slave ID>)_<YYYY-MM-DD> <HH>.<SS>.tvs

Examining the file, we found a human-readable header indicating useful
metadata, such as versions, times, TeamViewer IDs of both participants and
a display name. The first line includes ‘TVS’, which is likely used for file format
validation purposes. The GUID reported in this header was not the same as any
aforementioned Session GUID we could find. Similarly, the ‘LocalParticipantID’
number also did not appear elsewhere, and therefore we were unable to
determine their meaning.

TVS
Version 5
TVVersion15.16.8
Date2021-04-06 13.14
ClientID958517082
ServerIDSlave (958,223,731)
LocalParticipantID4116799522416294559
GUID{50FB8ABF-4E7F-485D-AF56-6AF08A2572E7}
StreamTypes2

JOURNAL OF CYBER SECURITY TECHNOLOGY 19

ScreenFeatures 127
MetadataPosition000000000000913c

Listing 17: TeamViewer Session File content example.

5.3.6. Temporary files
c:\users\<username>\AppData\Local\Temp was found to contain a variety of
TeamViewer artefacts, including:

Bitmap images of profile photos of accounts connected to. The naming
format appeared to be <Display Name>.bmp.

A TeamViewer folder with a file named TV15Install.log containing installation
logs.

5.3.7. Remaining artefacts
Following TeamViewer uninstallation, some artefacts were found to persist.
These were as follows:

The incoming connection log at <ID>\Connections_incoming.txt.
All files under <ADL> and <ADR> and the temporary files.
The registry key HKLM\SOFTWARE\WOW6432Node\TeamViewer, though

without any values.
All other artefacts mentioned could no longer be found.

5.4. Autopsy plugin

To validate and demonstrate the value of our findings, we created a data ingest
plugin for Autopsy and tested it against all of our VM snapshots. Our testing
showed that the plugin could reliably extract all relevant information.

5.5. Summary of results

Using our forensic methodology and analysis, we identified filesystem and
Registry artefacts that can provide evidence and details of TeamViewer:

● Installation.
● User settings.
● Incoming and outgoing connections.
● Public IP addresses of connected machines.
● Failed authentication attempts.
● File transfers.
● Meetings.
● Recorded Sessions.
● Remote rebooting.

20 J. MANSON

In the context of the defined scenarios of interest, only S2 and S3 did not
leave any evidence. This is because the specific actions (application and file
usage) took place via TeamViewer rather than by direct use of it.

6. Discussion

6.1. Limitations

Although we were able to identify a large number of TeamViewer activities,
there are some notable absences. We could find no evidence of:

● Chat messages sent between parties.
● Application usage by the Controller, such as in scenario S2.

This means in practice that once a session has been established, TeamViewer
artefacts themselves cannot provide evidence of non-TeamViewer operations.
An Investigator may determine that a TeamViewer session took place during
a period of time but cannot prove whether the remote or local user performed,
for example, web activity and file creation (but not transfer). With further
testing, we may be able to determine when the database files are populated
and with what data. ‘Premium’ features, such as Remote Printing, are only
available to organisational or paying users and therefore could not be tested.

Many of the artefacts discovered appear in temporary directories and, there-
fore, may not be persistent over an extended period or between reboots. Other
artefacts depend on human-readable log files that have a maximum size limit
before they are rotated, and any previous data is lost [29].

One of our disappointments is that we could not understand the formats of
the cryptographic-related Registry keys we found, such as PermanentPassword
and ClientKey. We do have some informal ideas of when these values are
created and changed through the black-box style experimentation we con-
ducted. However, we cannot, for example, extract the cleartext value of
a password stored with TeamViewer. Some reverse engineering of the applica-
tion itself is likely to be required to do this.

We expect that most artefacts will remain constant for any short-term
updates of TeamViewer, but newer versions will likely progressively modify,
remove and add artefacts. Of particular concern are the artefacts found through
parsing of the Program Log.

Our testing occurred on 64-bit versions of Windows. There will be slight
variations in artefact locations on a 32-bit build. For example, Registry locations
including WOW6432Node will be underneath the parent Software key instead,
and the installation directory will be ”Program Files”, rather than ”Program
Files (x86.

JOURNAL OF CYBER SECURITY TECHNOLOGY 21

We found no IPv6 addresses during our experimentation, though we expect
that they would also be logged when used. Matching and extraction of these
will be more involved than IPv4 addresses, as they can have many more formats
and can be contracted in several different ways.

6.2. Comparison to Literature

Since formal forensic work concerning any RDS is limited, comparison and
evaluation with respect to the existing literature is difficult. Our findings show
artefacts of similar forensic value, if not more so than some of those found when
analysing other applications. Zoom filesystem artefacts found by Mahr et al. [22]
are comparatively alike, such as records of meetings and persona information
(usernames and IDs).

Our exploration of the Registry and in-depth analysis of the Program Log sets
apart our research from many others in the literature. Mahr et al. [22] did not
consider the Registry as a resource at all. Kerai [12] did examine Registry
changes for RDS products, but at a level much too high to be helpful for any
Investigator or developer to create an automated plugin. The authors only
noted parent Registry and filesystem locations and broad details on information
stored there.

7. Conclusions

We believe we have proven the value of forensic research into RDS beyond
doubt. Without understanding such artefacts in a case involving TeamViewer,
an Investigator would not be able to say with any level of certainty who was
responsible for any suspected actions.

Our work has highlighted a potential privacy concern in the sense of remain-
ing artefacts following an uninstallation. When they uninstall TeamViewer,
a user may expect that their associated connection history is also removed,
but we have proven this does not occur. Additionally, there were many files in
temporary locations which did not appear to be removed between application
startups as we would expect.

7.1. Suggestions for Future Work

Because of the prevalence of RDS but the lack of any formal forensic research
into them, there are a wide range of options for future work.

Focusing specifically on TeamViewer, research into other features and ver-
sions may yield even more artefacts of interest. One of the variables which we
could experiment with is the connection type. We looked at only standard and
LAN connections. TeamViewer is able to facilitate connections via its own
servers and has other approaches for direct connections, such as via port 80.

22 J. MANSON

TeamViewer software for non-Windows OS may be significantly different
enough to warrant its own work. Initial, unverified testing of our plugin against
an example Debian Linux installation found that many of the primary artefacts
are similar, such as the logs found under /opt/teamviewer/logfiles. We expect
the key difference to be amongst those artefacts stored in the Windows
Registry, as Linux does not have a direct equivalent.

Additionally, we could expand our work to cover volatile (in-memory) arte-
facts and network traffic analysis. Each of these, assuming a formal enough
methodology, may justify entire projects themselves.

Another interesting avenue to explore would be TeamViewer Anti-forensics,
with respect to the artefacts discovered during our research. Understanding
how usage of TeamViewer could be concealed, planted or corrupted, and the
detection of such activity would allow an Investigator to have further confi-
dence in their evidence. TeamViewer activity involves multiple parties, but an
Investigator may only have access to a single session endpoint and therefore
would not necessarily be able to corroborate evidence separately. Even if there
is access to both the Controller and Slave, conflicting facts may arise, and anti-
forensic techniques could resolve them.

Although TeamViewer is one of the more popular RDS solutions, several
others with significant market share exist. From a consumer perspective,
a comparison of the forensic privacy implications of TeamViewer with its
main competitors could be of significant value. Results could highlight rela-
tive weaknesses and help customers and organisations make informed deci-
sions regarding RDS use. For example, some software may store passwords or
other personal information in plaintext on a machine. Therefore a user may
need to adapt which passwords they use for it or, more likely, avoid it
altogether.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes on contributor

Jonathan Manson is a seasoned Cybersecurity Researcher and Software Engineer, with a BSc
(Hons) in Computer Science and an MSc in Advanced Security and Digital Forensics.

ORCID

Jonathan Manson http://orcid.org/0000-0002-0615-3003

JOURNAL OF CYBER SECURITY TECHNOLOGY 23

Glossary

Controller TeamViewer session participant that is controlling another. In some sources this
may be considered the Client. 5

NAT Network Address Translation. 15
Network Address Translation A process by which multiple devices can share public IP

space. 15
RAT Remote Access Trojan. 2
RCV RegistryChangesView. 7
RDS Remote Desktop Software. 2
Remote Access Trojan RDS used for malicious purposes. The software does not have to be

written with this purpose in mind. 2
Remote Desktop Software Software used to provide a virtual desktop environment of

one computer to one remotely. 2
Slave TeamViewer session participant that is being controlling by another (the Controller).

In some sources this may be considered the Server. 5
TeamViewer Master Server Server operated by TeamViewer that provides authentication

and routing of traffic. 4
UDP User Datagram Protocol. 15
VHD Virtual Hard Disk. 9
Virtual Hard Disk File format representing a virtual hard drive, often used in virtualisation.

9
Virtual Machine An emulation of a computer system using virtualisation software. 7
VM Virtual Machine. 7

References

[1] Muir M, Leimich P, Buchanan WJ. A forensic audit of the tor browser bundle. Dig Inv.
2019;29:118–128.

[2] Ernest GD, Timothy AA, Kpangkpari G. The use of remote access tools by system
administrators today and their effectiveness: case study of remote desktop,
virtual network computing and secure android app. Int J Comput Appl.
2016;136:10.

[3] Office for National Statistics. Coronavirus and homeworking in the uk. https://www.
ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployee
types/bulletins/coronavirusandhomeworkingintheuk/april2020, Office for National
Statistics., Tech. Rep. July 2020.

[4] Russon M-A. Us fuel pipeline hackers ’didn’t mean to create problems’, https://www.
bbc.co.uk/news/business-57050690, publisher=BBC News, May 2021, cited 2021 May
14.

[5] Miramirkhani N, Starov O, Nikiforakis N. Dial one for scam: a large-scale analysis of
technical support scams. In 22nd Annual Network and Distributed System Security
Symposium (NDSS). 2016. (Vol. 16, p. reprint).

[6] Riley D. Remote assistance cloud software firm teamviewer to raise up to $2.54B
in IPO. SiliconANGLE, https://siliconangle.com/2019/09/11/remoteassistance-
cloud-software-firm-teamviewer-raise-2-54b-ipo, September 2019, cited 2021
May 14.

24 J. MANSON

https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/bulletins/coronavirusandhomeworkingintheuk/april2020
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/bulletins/coronavirusandhomeworkingintheuk/april2020
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/bulletins/coronavirusandhomeworkingintheuk/april2020
https://www.bbc.co.uk/news/business-57050690
https://www.bbc.co.uk/news/business-57050690
https://siliconangle.com/2019/09/11/remoteassistance-cloud-software-firm-teamviewer-raise-2-54b-ipo
https://siliconangle.com/2019/09/11/remoteassistance-cloud-software-firm-teamviewer-raise-2-54b-ipo

[7] Cision. TeamViewer supports medical technology providers digitalizing the healthcare
sector - siemens healthineers already uses teamviewer globally. PR newswire. https://
www.prnewswire.com/news-releases/teamviewersupports-medical-technology-
providers-digitalizing-the-healthcare-sector–siemens-healthineers-already-uses-
teamviewer-globally-301221426.html 2021, cited 2021 May 04.

[8] Enlyft. TeamViewer commands 33.39% market share in remote access. enlyft, https://
enlyft.com/tech/products/teamviewer, May 2021, cited 2021 May 01.

[9] Yang TY, Dehghantanha A, Choo KKR, et al, Windows instant messaging app forensics:
facebook and skype as case studies. PloS one. 2016;11(3). https://doi.org/10.1371/
journal.pone.0150300

[10] Lee B. Teamviewer forensics (tested on v15). ben’s IR notes, https://benleeyr.wordpress.
com/2020/05/19/teamviewer-forensics-tested-on-v15 May 2020, cited 2021 May 01.

[11] Haq A. Digital forensic artifact of teamviewer application. medium, https://medium.
com/mii-cybersec/digital-forensic-artifact-of-teamviewer-application-cfd6290dc0a7
2011, cited 2021 May 14.

[12] Kerai P, “Remote access forensics for vnc and rdp on windows platform,”
Ph.D. dissertation, Edith Cowan University, 2010.

[13] TeamViewer Support. Change logs teamviewer, https://community.teamviewer.com/
English/categories/change-logs-en, April 2021, cited 2021 May 14.

[14] Kerai P, Vekariya VM, “An exploration of artefacts of remote desktop applications on
windows,” 2016, possibly an unpublished thesis also.

[15] Altschaffel R, Clausing R, Kraetzer C, et al., “Statistical pattern recognition based
content analysis on encrypted network: traffic for the teamviewer application,” in 7th
International Conference on IT Security Incident Management and IT Forensics. IEEE,
March 2013, pp. 113–121.

[16] TeamViewer. How to use: all you need to know, https://www.teamviewer.com/en/
documents, December 2020, cited 2021 May 14.

[17] TeamViewer Community. What is a teamviewer ID? Teamviewer community, https://
community.teamviewer.com/English/kb/articles/49515-what-is-ateamviewer-id,
December 2021, cited 2021 May 14.

[18] MITRE. Cve-2018-16550 [teamviewer brute-force bypass.], MITRE, Tech. Rep.,
September 2018, Online 2021 May 14: https://cve.mitre.org

[19] WhyNotSecurity. Teamviewer, https://whynotsecurity.com/blog/teamviewer, February
2020, cited 2021 May 14.

[20] MITRE. Cve-2018-14333 [teamviewer password storage.], MITRE, Tech. Rep., July 2018,
Online 2021 May 14: https://cve.mitre.org

[21] Dennis M. Demystify TVS file format. jerry’s guide, http://www.jerrysguide.com/
tips/demystify-tvs-file-format.html May 2016, cited 2021 May 01.

[22] Mahr A, Cichon M, Mateo S, et al, Zooming into the pandemic! A forensic
analysis of the zoom application. F Sci Inter: Digital Investigation. 2021;36
(30110):7.

[23] Majeed A, Zia H, Imran R, et al., Forensic analysis of three social media apps in windows
10, in 12th International Conference on High-capacity Optical Networks and Enabling/
Emerging Technologies (HONET). IEEE, 2015, pp. 1–5.

[24] Quick D, Choo KKR. Google drive: forensic analysis of data remnants. J Network Comput
Appl. 2014;40:179–193.

JOURNAL OF CYBER SECURITY TECHNOLOGY 25

https://www.prnewswire.com/news-releases/teamviewersupports-medical-technology-providers-digitalizing-the-healthcare-sector%26#x2013;siemens-healthineers-already-uses-teamviewer-globally-301221426.html
https://www.prnewswire.com/news-releases/teamviewersupports-medical-technology-providers-digitalizing-the-healthcare-sector%26#x2013;siemens-healthineers-already-uses-teamviewer-globally-301221426.html
https://www.prnewswire.com/news-releases/teamviewersupports-medical-technology-providers-digitalizing-the-healthcare-sector%26#x2013;siemens-healthineers-already-uses-teamviewer-globally-301221426.html
https://www.prnewswire.com/news-releases/teamviewersupports-medical-technology-providers-digitalizing-the-healthcare-sector%26#x2013;siemens-healthineers-already-uses-teamviewer-globally-301221426.html
https://enlyft.com/tech/products/teamviewer
https://enlyft.com/tech/products/teamviewer
https://doi.org/10.1371/journal.pone.0150300
https://doi.org/10.1371/journal.pone.0150300
https://benleeyr.wordpress.com/2020/05/19/teamviewer-forensics-tested-on-v15
https://benleeyr.wordpress.com/2020/05/19/teamviewer-forensics-tested-on-v15
https://medium.com/mii-cybersec/digital-forensic-artifact-of-teamviewer-application-cfd6290dc0a7
https://medium.com/mii-cybersec/digital-forensic-artifact-of-teamviewer-application-cfd6290dc0a7
https://community.teamviewer.com/English/categories/change-logs-en
https://community.teamviewer.com/English/categories/change-logs-en
https://www.teamviewer.com/en/documents
https://www.teamviewer.com/en/documents
https://community.teamviewer.com/English/kb/articles/49515-what-is-ateamviewer-id
https://community.teamviewer.com/English/kb/articles/49515-what-is-ateamviewer-id
https://cve.mitre.org
https://whynotsecurity.com/blog/teamviewer
https://cve.mitre.org
http://www.jerrysguide.com/tips/demystify-tvs-file-format.html
http://www.jerrysguide.com/tips/demystify-tvs-file-format.html

[25] Shashidhar NK, Novak D. Digital forensic analysis on prefetch files. Int J Inf Secur Sci.
2015;4(2):39–49.

[26] Shariati M, Dehghantanha A, Choo -K-KR. Sugarsync forensic analysis. Aust J Forensic
Sci. 2016;48(1):95–117.

[27] Teing YY, Dehghantanha A, Choo KKR. Cloudme forensics: a case of big data
forensic investigation. Concurrency and Computation: Practice and Experience.
2018;30(5):e4277

[28] Halkes G, Pouwelse J. Udp nat and firewall puncturing in the wild, in International
Conference on Research in Networking. Springer, 2011, pp. 1–12.

[29] TeamViewer Community. Log file reading, https://community.teamviewer.com/
French/kb/articles/108789-log-file-readingincoming-connection, April 2021, cited
2021 May 28.

26 J. MANSON

https://community.teamviewer.com/French/kb/articles/108789-log-file-readingincoming-connection
https://community.teamviewer.com/French/kb/articles/108789-log-file-readingincoming-connection

	Abstract
	1. Introduction
	1.1. Application forensics
	1.2. Remote desktop software
	1.3. TeamViewer
	1.4. Aims and scope

	2. Theoretical context
	3. TeamViewer technical summary
	3.1. Features
	3.2. Identifiers
	3.3. Connections
	3.4. Security
	3.5. Custom file types

	4. Methodology
	4.1. Design considerations
	4.2. Test protocol
	4.2.1. Setup
	4.2.2. Scenario creation
	4.2.3. Execution
	4.2.4. Analysis
	4.2.5. Software and tools

	5. Results
	5.1. Firewall rules
	5.2. Registry artefacts
	5.2.1. HKCR artefacts
	5.2.2. HKCU artefacts
	5.2.3. HKLM artefacts

	5.3. Filesystem artefacts
	5.3.1. Connection logs
	5.3.2. Program log

	Connection details
	Remote reboot
	Meetings
	Authentication attempts
	File transfers
	Session recording
	Outline placeholder
	5.3.3. TeamViewer configuration files
	5.3.4. Database files
	5.3.5. Session recording files
	5.3.6. Temporary files
	5.3.7. Remaining artefacts

	5.4. Autopsy plugin
	5.5. Summary of results

	6. Discussion
	6.1. Limitations
	6.2. Comparison to Literature

	7. Conclusions
	7.1. Suggestions for Future Work

	Disclosure statement
	Notes on contributor
	ORCID
	Glossary
	References

