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Collimated Whole Volume Light Scattering in
Homogeneous Finite Media

Zdravko Velinov, and Kenny Mitchell

Abstract—Crepuscular rays form when light encounters an optically thick or opaque medium which masks out portions of the visible
scene. Real-time applications commonly estimate this phenomena by connecting paths between light sources and the camera after a
single scattering event. We provide a set of algorithms for solving integration and sampling of single-scattered collimated light in a
box-shaped medium and show how they extend to multiple scattering and convex media. First, a method for exactly integrating the
unoccluded single scattering in rectilinear box-shaped medium is proposed and paired with a ratio estimator and moment-based
approximation. Compared to previous methods, it requires only a single sample in unoccluded areas to compute the whole integral
solution and provides greater convergence in the rest of the scene. Second, we derive an importance sampling scheme accounting for
the entire geometry of the medium. This sampling strategy is then incorporated in an optimized Monte Carlo integration. The resulting
integration scheme yields visible noise reduction and it is directly applicable to indoor scene rendering in room-scale interactive
experiences. Furthermore, it extends to multiple light sources and achieves superior converge compared to independent sampling with
existing algorithms. We validate our techniques against previous methods based on ray marching and distance sampling to prove their
superior noise reduction capability.

Index Terms—raytracing, color, shading, shadowing, texture.

✦

1 INTRODUCTION

INDOOR scenes in video games, AR, VR and other interactive
experiences are constrained by the room geometry. Destruction,

fire, dust and smoke are gameplay elements that are often incor-
porated in those experiences. The microscopic particles created
in these events can fill up the entire room and lead to light
scattering. This phenomenon is observed as light shafts stretching
from windows, doorways or other elements of the geometry.

Most previous solutions targeting real-time rendering focused
on scattering in outdoor scenarios and did not account for the room
geometry. The overall effect of these solutions is that the outdoor
environment is greatly obscured by dense fog which might be
undesired look for a certain experience. Furthermore, the rendering
algorithm should incur low computational cost to deliver noise-
and artifact-free images within the allotted rendering time.

Integration of the light scattered towards a camera can be
expensive since an unbiased solution can potentially involve solving
an integral with infinite number of dimensions [1], expressed as a
Neumann series. Most real-time applications limit the evaluation
to a single scattering event. Integration is performed by taking a
set of samples along the camera ray defined by pinhole perspective
projection. Visibility and transmittance at each scattering event
along the camera ray is determined by performing multiple
intersection tests against the scene geometry and evaluating the
distance traveled through the medium to reach a light source.

Many techniques were proposed in the real-time rendering
community to efficiently estimate the single-scattering integral of
radiative transfer [2]. They range from numerical integration by a
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Monte Carlo integrator or ray marching for estimation based on
projection on Fourier basis functions or moments [3], [4] which
can be further filtered. These basic frameworks are derived by
separating geometry from radiance evaluation.

By considering the many facets of integration of single
scattering in indoor scenes, we propose a set of techniques for
sampling and integration of radiance. We explain most elements of
our techniques with respect to rectilinear box-shaped medium.
However, these ideas are general enough to extend to other
geometry and they already seamlessly integrate within existing
real-time game engines. Our central idea is to use the remarkably
simple solution of unoccluded radiance in a medium constrained
by a polygonal shape to derive

1) an algorithm for analytic integration of the unoccluded
single scattering in box-shaped medium,

2) importance sampling algorithm matching exactly the dis-
tribution of the geometry-dependent transmittance along a
camera ray,

3) an optimized Monte Carlo integration method exploiting
variable caching for computing the radiance scattered
inside the medium from a collimated light source towards
the camera.

We are now going to clarify the nature of those three main
contributions. Each of them can be considered separately since they
are applicable within very different rendering frameworks.

1.1 Analytic Integration of Unoccluded Single Scattering
and Ratio Estimators

The types of lighting conditions discussed in this work involve
directional lights, used to approximate illumination by a very distant
light source such as a star illuminating a planet, and collimated
light sources masked by a gobo. We exploit the assumption of
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Fig. 1. We present a set of algorithms for efficiently computing single scattering by a box-constrained medium which are applicable to rendering
real-time volumetric lighting effects in indoor scenarios. Our techniques correctly separates the indoor environment from the rest of scene while
rendering at real-time frame rates with improved performance and variance reduction (a). Furthermore, they generalize to multiple scattering and can
improve convergence in scenes with multiple collimated light sources (b).

collimated light to construct a skewed coordinate system with axes
corresponding to a pair of light and camera rays and origin at
the camera position. We intersect the box-shaped medium against
the plane of this coordinate system and form linear segments.
We will call them trapezoid segments for brevity. Radiance is
analytically integrable, assuming homogeneous medium within
those segments. We apply this integration in estimators that split
the computation into two terms: unoccluded single-scattering term
and an ratio term accounting for visibility. Our integration method
solves the first term, while we use existing techniques to estimate
the ratio between the occluded and unoccluded radiance in the
second term. We investigate integration with single-scattering ratio
estimators and approximate estimators based on moments [4]. This
framework forms our first integration approach. The application
of a ratio estimator enables standalone use of this technique
since it can be easily combined with existing sampling schemes,
such as equidistant and distance sampling algorithms. Previous
approaches used it for shadowing BRDFs [5] or considered it as
an approximation when in fact it can asymptotically converge to
the correct solution of the integral. We furthermore show that it
generalizes to multiple scattering and progressive rendering.

1.2 Whole Volume Importance Sampling
Our second contribution is an importance sampling scheme appli-
cable in Monte Carlo integrators. Sampling is carried according
to the geometry of the entire medium, thus incorporating both
camera and light rays in the computation. This differs from classic
techniques that limit sampling only according to transmittance
along the current light or camera ray, depending on the integrator.
The resulting sampling strategy can deliver images with lower
variance compared to existing methods. This technique is applicable
on its own in path tracing frameworks where existing approaches
enable combining multiple sampling strategies [6].

1.3 Optimized Monte Carlo Integrator
The third contribution regards the implementation of the integrator
using our sampling scheme. Our method is split into two steps:
geometry traversal and segment selection. The geometry of
the medium is successfully broken down into trapezoid-shaped
segments by traversing the edges of the box from corner to corner
to connect the incident and outgoing exit points from the medium.
The repeated traversal for each sample can be avoided by caching
variables describing each segment. Based on this data a segment can
be selected and samples can be drawn proportional to transmittance

accounting for both the light and camera ray in paired fashion.
This is the main optimized algorithm which we developed with
real-time rendering application in mind. The final computation is
significantly simplified and delivers performance improvements
over ray marching.
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Fig. 2. AR application. Our technique deployed to an optical see-through
AR headset experience as an additive lighting effect where virtual light
shines through virtual windows onto the real world. The finite extent of
the medium allows the distant buildings in the environment to be still
visible and not obstructed by a thick fog.

Mixed reality room-scale experiences are one potential target
for our technique. The additive nature of light shafts allowed us
to successfully deploy the technique in a non blocking optical
see-through AR setup (Fig. 2). We further see our techniques as
general enough to incorporate them in video games and even as a
sampling strategy in path tracing frameworks.

2 OVERVIEW

The main problem being solved is how to efficiently integrate
radiance within a well-defined medium’s bounds specified as a
rectilinear box-shaped medium (Fig. 3). We are going to use this
medium representation to clearly separate indoor and outdoor
geometry allowing the distant landscape to be still visible from a
room in our environment (Fig. 2) , but retain the compelling effect
of light scattering in a room filled with microscopic dust and smoke
particles.

The main concern when performing this procedure is how to
avoid corner cases and reuse computations. Scattering within a
participating medium is governed by the equation of radiative
transfer [2]. We will consider paths representing single-scattering
events, which connect each point along the camera ray to the light
source. Furthermore, we determine the bounds of the integration
domain w.r.t. the medium geometry. In the case of a directional
light source and a pinhole camera, the entire integration domain
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Fig. 3. Box medium section. (a)The complete medium is intersected
by the light-view plane, resulting in a (b) section with complex geometry.
The light exit point lies on the first face along the box slice. Following the
boundary according to the shown direction (orange arrows), the camera
view vector lies on the third face. The combination of the exit points
and box corners forms a set of trapezoid segments. The illustrates the
maximum possible corners lying between the light and camera exit point
that can result in segments that contribute to the final integral. Refer to
Tab. 1 for symbols explanation.

lies on a single plane for each individual pixel on the imaging plane
of the camera sensor.

The plane is defined by the direction of the camera ray and light
source. We will call each of these planes a light-view plane. We
outline the section of the box formed by intersecting the (yellow)
light-view plane against the (blue) medium geometry in Fig. 3.
The shape of the section can be a point or a polygon with three
to six edges. Moreover, scattering happens only in the (green)
section between the camera and closest occluder or medium exit
point. Combining those factors makes it non-trivial to construct an
algorithm that handles all corner cases and performs all operations
analytically. We chose to solve this problem by iteratively breaking
down the section into trapezoid-shaped domains that allow analytic
integration. The iterative loop is executed by selecting the starting
point pL which is the exit point of the ray starting at the camera
origin and pointing towards the light source. The algorithm then
traverses the outline of the section until it reaches the exit point of
the camera ray pC.

The vectors parallel to each segment of the boundary can be
determined in advance in the coordinate system of the box where
each of the three parallel pairs of faces is orthogonal to one of
the axes. This is accomplished by finding the vectors that are both
orthogonal to the specific axis and lie on the light-view plane1. We
use each q in the process of traversing the outline to determine
the next direction that lies on the adjacent face. Their direction is
selected to progress the computation towards the exit point of the
camera ray. Each of these vectors is parallel to the orange arrows
in Fig. 3 and they outline the direction of traversal.

The specified geometry allows analytic integration for unoc-
cluded geometry by following the integral form of the radiative
transfer equation (RTE) [2]. However, shadowing needs to be
further applied to recreate the appearance of crepuscular rays
cast from doorways, windows and other geometry masking out
light. We are going to discuss three techniques to achieve it. The
first approach takes the analytic integration of the single-scattered
radiance in a section of the box determined by the camera ray
and directional light source and pairs it with a ratio estimator

1. We name these face vectors as they lie on a specific face without being
explicitly assigned to a certain position

or approximate estimator based on projection on moments. Both
approaches use the same basic framework of analytically computing
the unoccluded radiance and then numerically integrating the ratio
between unoccluded and occluded radiance. In the case of moment-
based estimation it uses a heuristic formula which leads to an
approximate solution, while ratio estimators with a sampling-based
numerical integrator are capable of computing an asymptotically
converging correct solution. Even in multiple scattering cases.

The second approach exploits the fact that the integral over all
segments can be analytically inverted. Thus an efficient sampling
strategy can be derived that accounts for scattering within the
entire section of the box. The derived sampling function and
probability density function (PDF) can be used in general path
tracing frameworks.

Finally, an efficient integrator is developed that exploits the
sampling method to analytically integrate radiance using caching to
avoid executing at every iteration the geometry traversal algorithm
outlined in Fig. 3. Its optimized equation allows cancellation of
the exponential part of the integrand since the probability density
function in use matches that component perfectly. We used this
integrator for real-time rendering applications on the GPU.

The following section will proceed with explanation of how
our methods fit within ratio estimators and Monte Carlo integrators
(Sec. 3) used to solve the equation of radiative transfer [2].
Following those general concepts, the discussion proceeds with
geometry traversal and integration of individual segments of the
box section (Sec. 4). Sampling is derived afterwards by inverting
the integral analytically (Sec. 5). Finally, a Monte Carlo integrator
is defined using the sampling algorithm (Sec. 6).

3 THEORETIC FOUNDATION AND RELATED WORK

Light scattering in uncorrelated participating medium is tradition-
ally modeled using the radiative transfer equation (RTE) [1], [2].
Graphics rendering systems estimate the solution of its integral
form [1], [7], [8]. Volume rendering systems based on path
tracing [8] solve light transport by alternating between generating
path segments representing a scattering event and then connecting
them to a light source, and selecting a new direction of light
propagation with probability proportional to a phase function.
Photon tracing systems [9] solve radiative transfer by accumulating
the contribution of a set of points spread throughout the medium,
and a system working at interactive rates was shown by Jimenez et
al. [10].

One common simplification is to treat the medium as locally
or completely homogeneous. Then path segments are generated
by drawing distance samples from distribution with exponential
probability density function proportional to transmittance along
the current path segment, also known as distance sampling [1], [8].
However, this simplification also gives rise to more sophisticated al-
gorithms tracing well-defined primitives, such as points, beams [11],
planes and volumes [12], even surfaces [13]. Unconverged images
using those custom integrators show structured artifacts in the
shape of the primitive which is less desirable than noise introduced
by path tracing approaches.

In real-time graphics most methods are constrained to single
scattering. We first assume homogeneous medium and ignore light
emitted by the medium, leading to the equation

L(po,ωo) = Ls(ωo)e−σt tSC+∫ tSC

0
dt e−σt t

∫
S
dωi σs f (ωi,ωo)L(po− tωo,ωi). (1)
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The total radiance L(po,ωo) arriving at the camera is a sum of the
in-scattered radiance L(po− tωo,ωi) from all directions S at each
point along the current ray and radiance arriving after scattering off
a surface Ls(ωi,ωo) – both exponentially attenuated by the medium
according to Beer’s law based on the extinction σt and distance.
The ray is selected to end either at the surface tS or exit point from
the medium tC depending on what is closest (tSC = min(tS, tC)).
Radiance at each scattering event is weighted by the scattering
coefficient σs and phase function f (ωi,ωo), depending on the
incident ωi and outgoing ωo light direction. Single scattering
means that only direct light illumination is computed at each
scattering event (L(po− tωo,ωi) = Li e−σt dm(t,ωi)). The distance to
the medium boundary dm(t) leads to spatially-varying transmittance
dependent on its geometry. Another common assumption that we
will follow is uniform illumination (Li = const). Multiple light
sources can be linearly combined. See App. A for a detailed
derivation.

The traditional method for solving this equation is using Monte
Carlo integration employing importance sampling. The integrand
is evaluated at a fixed number of samples and weighted by the
probability density of each sample (PDF(t ′)),

L(ωo,ωi) =Ls(ωi,ωo)e−σt tSC+

σs f (ωi,ωo)Li
1
N

Nsample

∑
k=0

e−σt (t ′+dm(t ′))

PDF(t ′)
V (t ′,ωi), (2)

The visibility function V (t,ωi) accounts for occlusion by opaque
geometry. Ray marching [14] is considered as the most basic
method of integrating single-scattering along a ray by performing
equidistant sampling using the truncated RTE. The offline ren-
dering community has extensively studied sample generation in
participating media. The most straightforward sampling approach
is distance sampling based on inversion of the transmittance term
which is performed in closed form for homogeneous media [1].
It works with bidirectional path tracing [15] and Metropolis light
transport [16]. Kulla and Fajardo [17] proposed equi-angular
sampling which distributes samples closer to the light source in
participating media. More advanced techniques were developed
in the case of connecting multiple paths throughout participating
media [18]. We propose another approach to integrate the radiative
transfer by using importance sampling. Our sampling strategy,
which we call whole volume distance sampling, accounts for the
complete shape of the medium when distributing samples along the
camera ray. In comparison, traditional distance sampling generates
samples with probability proportional only to transmittance along
the current (camera) ray.

Other approaches consider different integration methods of
this equation with improved performance. Analytic solutions
and approximations exist for a camera and point light source
immersed in unoccluded participating media [19], [20]. Very
early works rely on shadow volumes for integration [21]. In
the real-time community different implementations exist of this
basic approach [22], such as rendering shadow planes [23] and
interleaved sampling with the programmable shading pipeline [24].
Moro et al. [25] further optimized shadow plane placement
and used 3D textures to store cloud densities. Wyman and
Ramsey [26] proposed a hybrid between ray marching and shadow
volumes employing bilateral upsampling in the shadowed regions.
Munoz [27] extensively studied integration strategies to derive a
set of algorithms with improved convergence properties. Sampling
in a set of points and gradient-based interpolation was studied

for rendering heterogeneous medium [28]. Radial basis functions
(RBF) were used for low-frequency approximation of density fields
and illumination by low-frequency environment light sources [29].
Other approaches use voxelized shadow volumes for scattering [30],
[31]. More specialized methods were proposed to re-parameterize
the integral in epipolar coordinates [32], [33] or linearly rectifying
the integration domain [3]. Epipolar coordinates were further used
with a min-max tree to speed-up traversal [34]. We outline an
algorithm in our work based on Monte Carlo integration that
exploits the analytic solution of unoccluded radiance under the
above-stated assumptions in a finite medium to cancel out the
transmittance component and estimate only visibility.

Ratio estimators are another approach to estimate radiance
based on unoccluded radiance estimate and a ratio of the visibility
divided by the sum of all weights. Previously, Heitz et al. [5]
applied Monte Carlo ratio term on unoccluded area light approxi-
mations. Predating this work, techniques based on filtering shadow
maps computed volumetric single scattering [3], [4] using an
approximate ratio term and exact unoccluded term. In our work we
derive and study variations of ratio estimators that asymptotically
converge to the correct solution in the form of a product between
unoccluded analytic expression or Monte Carlo estimate, and the
ratio of two Monte Carlo estimates (occluded and unoccluded).The
more widely discussed and related to previous works is its single-
scattering variant,

V̂ (ωi,ωo) =
∑

Nsample
k=0 e−σt (t ′+dm(t ′))V (t ′,ωi)/PDF(t ′)

∑
Nsample
k=0 e−σt (t ′+dm(t ′))/PDF(t ′)

L(ωi,ωo) =Ls(ωi,ωo)e−σt tSC+

σs f (ωi,ωo)Tbox(ωi,ωo, tS)V̂ (ωi,ωo)Li, (3)

where the distance (t ′ = S(ξ (k/(Nsample−1)))) is generated by an
importance sampling function S(x) which transforms samples from
uniform distribution ξ (x) to the target distribution. Estimation is
separated in two terms. The first term is the unoccluded integral
Tbox(ωi,ωo, tS). It is essentially an integral over transmittance at
each point along the camera ray where light source radiance Li is
separated out. Our analytic computation of the single-scattering
radiance in a box section corresponds to that term (Sec. 4). The
second term is a ratio between the current occluded and unoccluded
estimate. Evaluation is performed numerically at a finite number of
samples Nsample. In the case of completely unoccluded section, the
estimator converges in a single sample, since the ratio term, which
is dependent on visibility V̂ (ωi,ωo, t ′), equals 1. Ratio estimators
can be further generalized to multiple scattering by evaluating both
the unoccluded and occluded light transport component. A generic
formula for the analytic unoccluded term in that particular case
does not exist for complex medium, therefore it can be analytically
integrated after each scattering event and combined with next
scattering events using stochastic methods. Other surfaces can be
handled either by folding them into the ratio term or splitting the
evaluation using the linearity of light transport. More details are
explained in the supplemental material, since this step does not
significantly alter the ratio estimator framework. It has to be noted
that progressive rendering requires accumulation of three surfaces
containing both unoccluded terms (estimated and analytic) and the
occluded term. Otherwise, the denominator in the estimator will not
be properly canceled and it will lead to bias. Further information
about potential bias and convergence behavior is explained in the
supplemental material.
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The previously proposed estimators using Fourier coeffi-
cients [3] and moments [4] compute the ratio term V̂ based on
heuristics. These approaches were inspired by earlier works on
filtering shadow maps [35]. In those previous works computation
is targeted towards outdoor scene rendering. Estimators of radiance
scattered in the atmosphere were extensively studied in the graphics
literature [36], [37], [38], [39]. Our techniques, on the other hand,
are focused on indoor scenes constrained by the room geometry.
We use the integral separation according to a ratio estimator using
both numerical and approximate moment-based estimation [4]
and combine it with our unoccluded single-scattering solution in
rectilinear box medium.

TABLE 1
List of Definitions

Symbol Definition
B3×4 box coordinates linear transform matrix (cf. Sec. 4.1)
∗̃ point or vector in box coordinates (see below)

ωi, ω̃i
incident light vector in world and box coordinates
(cf. Fig. 3)

ωo, ω̃o
outgoing light vector in world and box coordinates
(cf. Fig. 3)

po, p̃o camera origin in world and box coordinates (cf. Fig. 3)
dL distance to exit point from origin along light ray (cf. Eq. (4))
pL, p̃L light ray medium exit point (cf. Eq. (4))
p1,p2,p3 positions of corners in world coordinates (cf. Fig. 3)
tC distance to exit point along camera ray (cf. Eq. (5))
pC, p̃C camera ray medium exit point (cf. Fig. 3)

tC,1, tC,2
distance to corner projected on camera ray
(cf. Fig. 4, Fig. 5)

tS, tSC
distance to surface and furthest point in medium
(cf. Fig. 4, Fig. 5)

w̃ vector along box face (cf. Sec. 4.4)
L radiance scattered at a point in space (cf. Eq. (1))
Ls radiance scattered by a surface (cf. Eq. (1))
Li radiance emitted by a light source (cf. Sec. 3)
σs single-scattering coefficient (cf. Eq. (1))
σt extinction coefficient (cf. Eq. (1))
f phase function (cf. Eq. (1))
V visibility of light source (cf. Eq. (2))
Ṽ term estimating total visibility (cf. Sec. 3)
V̂ ratio term (cf. Eq. (3))
Nsample number of samples (cf. Eqs. (2) and (3))
K cached variables (cf. Sec. 4.2)

ξ (x) generator of uniformly distributed values
(cf. Eqs. (2) and (3))

T integral over transmittance (cf. Sec. 4.2)
q face vector (cf. Sec. 2)
d1 . . . distance between corner and camera ray (cf. Sec. 4.4)
dE,S,dE,E distance to corner at start and end of trapezoid (cf. Sec. 4.4)

t, t ′ distance along camera ray
(variable and random – cf. Eqs. (2) and (3))

dm variable distance to medium exit point (cf. Eq. (2))
P probability (cf. Sec. 5.2)
r random value (cf. Eqs. (2) and (3))

4 INTEGRATION OF UNOCCLUDED RADIANCE

We are now ready to discuss our first contribution. The first method
performs radiance integration in a section of the box enclosed
between the camera origin and the view and light ray. Integration
is only performed by evaluating transmittance at each scattering
event along the camera ray. The radiance integration method is
going to be central in our ratio estimator-based solutions and some
of its intermediate results are essential to explain the importance
sampling scheme. We are first going to discuss the coordinate
system as it is essential to understand how the algorithm is being
evaluated. Then we are going to discuss the main loop of the

algorithm to give a perspective why the different steps are required
and then we are going to explain the underlying procedures in
detail. We provide pseudo-code for all algorithms in App. E.

4.1 Coordinate system
All operations are performed in box coordinates where the x-, y-
and z-axis of each point are within range [−1,1]. If the camera
origin lies outside the box, it is moved to the first intersection with
the box, or the contribution is assigned to 0 when the camera ray
does not intersect the box. The orientation, scale and translation of
the box medium is expressed as a matrix B3×4. The origin of the
light ray is transformed in box coordinates (p̃o = B3×4 [po 1]T), and
the incident light vector is similarly expressed in non-normalized
box coordinates (ω̃i = B3×4 [ωi 0]T). The intersection of the light
ray with the box determines the starting point of the traversal
algorithm,

dL = IntersectBox
(
p̃o, ω̃i

)
p̃L = p̃o +dL ω̃i. (4)

The intersection algorithm based on the slab test [40], [41] is
explained in App. B. Since that information doesn’t change, it
can be assigned as a shader constant in the final implementation.
The exit point along the camera ray is needed as a destination
point of the traversal, as seen in Fig. 3. It can be computed by
rasterization of the box or in a similar fashion in box coordinates
(ω̃o = B3×4 [ωo 0]T) by performing an intersection,

tC = IntersectBox(p̃o,−ω̃o)

p̃C = p̃o− tC ω̃o. (5)

4.2 Integration algorithm
The exit points along the light ray and camera ray give us the
starting and end point and determine the boundaries of the box
section that will be traversed by the algorithm. The main objective
is to break down the box section defined by the intersection of the
light-view plane against the box into multiple segments (Fig. 3).
Since the light source is assumed to emit uniform light, the integral
can be split into a product of integral over transmittance and emitted
radiance from the light source.

Three is the number of iterations performed by the algorithm
which corresponds to the maximum number of edges involved in
a box section. The main explanation for this fact is that a box is
composed of three parallel planes and any set of rays constrained
to a line segment inside the box can intersect at maximum three
faces. We are going to outline the main steps in each iteration and
discuss them in detail in their own subsections. Each iteration starts
by finding the next corner. Then the distance to the corner and
along camera ray is computed. They are used to integrate radiance
analytically for a trapezoid segment,

Tk = Ttrapezoid (tC,S, tC,E ,dE,S,dE,E) .

The trapezoid is geometrically defined by the distance of the
starting point (tC,S) and end point (tC,E) along the camera ray
combined with distance from the starting point (dE,S) and end point
(dE,E) to the edge of the box. Each iteration advances the distances
along the camera ray and recomputes the distance to the edge.
Transmittance of all segments is summed to derive the final integral
(Ttotal = ∑

3
k=1 Tk). The sampling methods and optimized Monte

Carlo algorithm use this procedure. They further pre-cache a set of
variables (K) and the individual integral values for each trapezoid
segment (T ).
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4.3 Selecting the direction of traversal to next corner
The direction of traversal of the boundary outline is defined as the
intersection of the light-view plane with the box which leads to
progress towards the exit point along the camera ray. We will call
face vectors the direction of each line formed by this computation.
They are associated with a pair of parallel faces. We compute them
in advance before traversing the outline to determine the position
of each light segment. They are computed to be perpendicular
to each axis (x-, y- and z-axis) and the light-view plane. The
direction of these vectors is selected to follow the direction of
progress towards the camera ray exit point or the shortest path to
the same point. The direction of progress is determined in skewed
coordinates determined by the incident and outgoing light direction
vector. The exit point is projected on the outgoing light direction
and its sign is taken as a direction of progress. Detailed derivation
is provided in the supplemental material and the appendix. The
default case is to multiply by the progress along the camera ray
(v = gprogress(a,−ω̃o)). When the light plane is parallel to the
camera ray direction, traversal is not performed, instead the integral
over transmittance is directly computed. Therefore, this case is
not considered by the algorithm. Another possibility is that the
vector connecting the two points is parallel to the light plane
(|v|< ε). Then the direction along the camera ray is selected instead
(v =−(a · ω̃o)). The final face vector is determined by multiplying
the value representing the direction of progress (q = va).

The resulting face vectors are used when selecting the next
direction of traversal. At each corner there is a choice between one
of three directions corresponding to each face vector associated
with each axis. A face vector is selected only if the current position
lies on an edge that connects a face corresponding to it and progress
can be made over the remaining coordinates by traversing that face
vector. The rest of the algorithm finds the smallest distance that
must be traversed based on all coordinates given the selected face
vector.

4.4 Computing the next corner
The next algorithm forms trapezoid segments by simultaneously
computing in the skewed light-view coordinate system the length of
the two line segments connecting its projection on the camera ray
with the corner and camera origin. First, overstepping past the exit
point along the camera ray (p̃C) is prevented by finding the progress
along the edge and clamping it to fall within the line segment (tcut =
min

(
1,gprogress

(
p̃C− p̃, w̃

))
). Then the end point along the edge is

computed (p̃edge = p̃+ tcut w̃). Next, the projected distance along
the camera ray is computed (tC,E = gprogress

(
p̃edge− p̃o,−ωo

)
) in a

similar manner to form the distance vector between the line and
the edge. The result of the computation is the distance along the
camera ray (tC,E ). Combining it with the origin (p̃o) and outgoing
light direction (ωo) yields the final point (p̃cam ← p̃o− tC,E ω̃o).
The distance from the camera ray and the edge is computed as
the difference between the point on the camera ray and edge
which is projected on the scaled incident light ray vector (dE,E←(
p̃edge− p̃cam

)
· ω̃i,s2 ). The incident light vector ω̃i,s2 is corrected

following the procedure in App. C.

4.5 Radiance computation in a trapezoid segment
We now outline how radiance is integrated for each segment. Each
segment is a trapezoid section defined by two parallel bases along
the incident light vector (ω̃i) and two legs containing the line
segments: along the camera ray and medium boundary. Essentially,
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Fig. 4. Sample distribution when the box section includes a single
trapezoid segment. (a) Light and view exit points lie on the same face
which leads to (b) samples being placed towards the back section where
the attenuation is lower. Distance is along the camera ray (−ωo) and
follows the direction outlined in red.

a linear segment in a skewed coordinate system. The domain has a
slope,

c = 1+
dE,E−dE,S

tC,E − tC,S
.

The final expression is a product of transmittance to the start
of the segment and integral over transmittance in the linear
segment, which has remarkably simple solution and continues
to be compatible with distance sampling,

Ttrapezoid = e−(tC,S+dE,S)σt

∫ tC,B−tC,S

0
e−σt ct dt

= e−(tC,S+dedge,S)σt (1− e−σt (tC,B−tC,S)c) = El (1−Eu). (6)

The distance along the camera ray is clamped by the distance to
the surface to account for occlusion along the camera ray (tC,B =
clamp(tS, tC,S, tC,E)). In the limit when the slope approaches zero
(c→ 0), the computation turns into a linear equation (T = (tC,B−
tC,S)El). The same expression is used to avoid numerical issues
when the size of the segment approaches zero (tC,E−tC,S < ε). Note,
that it is possible to reduce the number of exponent evaluations by
extracting the product of the lower and upper bound part (El ·Eu)
outside of the evaluation and assigning it as lower bound part at
each consecutive evaluation (El). There are two cases when the
incident ω̃i and outgoing light ω̃o vectors are parallel and require to
be solved separately. The same procedure applies without traversing
the outline. When they are facing opposite directions (ω̃i · ω̃o < 0),
the end distance goes to zero,

Tbox = Ttrapezoid(0, tC,dL,0). (7)

and when they are facing the same direction it is the sum of the
distance to both exit points along the incident dL and outgoing light
vector tC,

Tbox = Ttrapezoid(0, tC,dL,dL + tC). (8)

The integration algorithm as explained requires an estimator
capable to account for shadowing. We chose to implement both
a ratio estimator and an approximate moment-based estimator in
our work. Another approach is to use Monte Carlo integration.
We are going to explore it in the following and compare it against
moment-based estimation and ratio estimator in the Results section.

Integration can be trivially extended to a collimated light source
with a gobo (convex binary map or stencil) by offsetting the starting
point of the integration to lie on the gobo edge and limiting it to
the far end of the gobo. The result is exponentially attenuated
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Fig. 5. Sample distribution when a box section includes two trape-
zoid segments. (a) Light exit point lies on the first face along the box
slice and the camera view vector lies on the second face which leads
to (b) a change of absorption and redistribution of samples. Distance is
along the camera ray (−ωo) and follows the direction outlined in red.

by the distance from the camera origin to the start of the gobo.
Multiple lights can be also combined thanks to the linearity of light
transport. An example of both effects is illustrated in Fig. 1. We use
our unoccluded radiance computation to compute weights for the
multiple lights sampling following Monte Carlo integration similar
to Shirley and Wang [42]. We demonstrate this novel generalization
to rendering light scattered in finite medium in Fig. 1 (b). More
details regarding gobo masking and multiple light integration are
available in the supplemental material.

5 WHOLE VOLUME DISTANCE SAMPLING

The two important elements required to incorporate a sampling
strategy in path tracing or single-scattering integrators are a
sampling function and probability density function (PDF). The
sampling function distributes samples according to the probability
defined by the PDF. In the following we discuss both functions
separately.

5.1 Importance sampling function
Sampling according to transmittance dependent on medium geom-
etry is achieved in two steps. The first step is to build a histogram.
The integration of transmittance of each trapezoid segment is
according to the procedure explained above. Trapezoid is selected
using comparison against the cumulative density function (CDF)
of all segments. Considering the geometry along the entire camera
line segment is what separates our technique from existing distance
sampling techniques. CDF is computed by summing the integral
of transmittance up to that segment (∑k Tk) and dividing it by the
unoccluded integral of transmittance (Ttotal . . .) = Tbox(ω̃i, ω̃o, tS).
Then the appropriate sampling function for each trapezoid segment
is computed,

Shist(r) =


Ss (T1(r), p̃L, w̃1,0,dL) r < T1

Ttotal

Ss (T2(r), p̃1, w̃2, tC,1,d1)
T1

Ttotal
< r < T1+T2

Ttotal

Ss (T3(r), p̃2, w̃3, tC,2,d2) otherwise,

(9)

where the random value r ∈ [0,1] is transformed after selecting the
segment. Its value is multiplied by the unoccluded integral Ttotal,
then the integral over previous segments (∑i

k=1 Tk−1) is subtracted
and the whole result is normalized by the integral value of the
current segment Ti,

Ti(r) =
Ttotal r−∑

i
k=1 Tk−1

Ti
; T0 = 0. (10)

The outcome is an intermediate random value in range [0,1].
The next step is to determine the distance along the camera ray
within the segment. Position of corners (p̃1, p̃2, p̃3) and distance
vectors between corners (w̃1, w̃2, w̃3) are required to determine
the distance between camera ray and box boundary (Eq. (9)).
The computation of these components (Sec. 4.4) is performed
similarly to the analytic radiance integration algorithm (Sec. 4.2).
The final sampling method accounts for distance to the edges (dE,S,
dE,E) and distance along the camera ray (tC,S, tC,E ) in a paired
fashion. It differs from distance sampling that accounts only for
transmittance along the current path segment [8]. The proposed
importance sampling scheme is equivalent to distance sampling
only when evaluating a single segment where the distance to the
boundary is constant (dE,S = dE,E). More details are available in
the supplemental material. Our importance sampling considers the
connection from each path segment to box boundary which is
bound by trapezoids. The bases are the path segments of each
pair of vertices along the camera ray to the exit point along
the light ray. The legs are the box boundary and camera ray.
Computation requires similarly the slope (c), bounding of the
distance along the camera ray (tC,B) and upper bound component
of the trapezoid segment radiance integral (Eu) computed like
previously explained. The inversion method is used to derive the
sampling component. Random values r are selected by transforming
from uniform distribution to distance by a scaled logarithm function
(− log(1− (1−Eu)r)/(σt c)). Note, that the values differ for each
trapezoid segment and they are dependent on geometry. In the case
when the slope approaches zero (c→ 0), the sampling simplifies to
multiplication by the distance between starting and end point. The
result of the algorithm is distance offset by the starting distance
tC,S, representing distance from the origin along the camera ray.
Visibility can be determined by sampling towards the light source
from the point at that distance. Successive accumulation is used to
solve the Monte Carlo integral (Eq. (2)).

5.2 Probability density function

The PDF matches perfectly the exponential component in the
integral equation and cancels it (Eq. (2)). The probability of
selecting each trapezoid segment is equal to the ratio of radiance
scattered within the segment and the maximum (unoccluded)
radiance (P(x ∈ [tC,i−1, tC,i]) = Ti/Ttotal). Taken on its own this
function is defined over continuous domain (x ∈ [tC,i−1, tC,i]) and
fits the definition of probability density function (PDF). The
conditional probability of selecting a given distance, provided
that a segment is selected, is equal to the transmittance at the
particular point divided by the integral over transmittance within the
segment (P(x|x ∈ [tC,i−1, tC,i]) = T ′

i /Ti = e−σt (x+dm(x))/Ti). We
can assemble the final probability density function by considering
where the point x is with respect to the three projected corners of
the box on the camera ray (tC,1, tC,2, tC,3),

PDF(x) =


T1

Ttotal
· T

′
1 (x)
T1

x < tC,1
T2

Ttotal
· T

′
2 (x)
T2

tC,1 < x < tC,2
T3

Ttotal
· T

′
3 (x)
T3

otherwise

(11)

We provide a straightforward validation of the equation in App. D.
Further validation is performed by comparing the sample distribu-
tion against the probability density function. Examples are shown
in Fig. 4 and Fig. 5. The probability density is transmittance over
the unoccluded integral in both cases. The probability density of
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the sampling function is computed numerically by using stratified
random samples from uniform distribution. These samples are
collected in 256 bins and normalized against the sample count to
produce the final probability density function. It is visible that the
numerical and analytically computed PDF match in both cases.
The function is also affected by geometry and it is not necessarily
monotonically decreasing as seen in the first example (Fig. 4). The
presence of a corner leads to a function that is not smooth with
a clear difference in its rate of change around the distance of the
projected corner (Fig. 5). A distance sampling function will fail
in the cases when the exit point along the camera ray is much
closer than the distance from the origin towards the light source
(Fig. 4). It will also deviate in all cases where the distance to the
box boundary is not constant (dE,S ̸= dE,E).

6 OPTIMIZED MONTE CARLO INTEGRATION

Finally, we provide an optimized integrator incorporating our
sampling strategy with variable caching to reduce the number of
redundant computations. Monte Carlo integration according to our
implementation is performed by connecting a set of light rays along
the camera ray. Each vertex is selected by performing importance
sampling derived by choosing a trapezoid segment and inverting
the analytic integration algorithm. Repeated traversal of the outline
of the box is avoided in the final algorithm by caching values.
Unoccluded integration follows the algorithm from Sec. 4 and
caches values in a matrix K. The cumulative distribution histogram
is built by first computing the probability of selecting a segment
(Gk = Tk/Ttotal). Then probabilities are summed up to the given
segment (Hk← ∑

k
i=1 Gi). When performing sampling, the random

values must be rescaled to fit the range of the selected trapezoid
segment. The multiplicative weight is computed as the inverse
probability (Dk = 1/Gk). While the summand is the previous CDF
histogram value scaled by the multiplicative term (Mk←−Hk−1Dk).
Combined with the cached values (K), it is enough to compute
sample location based on random values selected from uniform
distribution (r← ξ (k/Nsample)). Monte Carlo integration is per-
formed over a number of samples (Nsample). Each sample from
random distribution (r) is compared against the step functions of
the histogram (s← step(H1,r)+ step(H2,r)). The sample is then
transformed in segment coordinates (rs← r Ds +Ms). Distance is
sampled according to the importance sampling (Sec. 5.1). However,
the upper bound integral part (Ks,1 = 1−Eu), slope (Ks,2 = σt c),
size of segment along camera ray (Ks,3 = tC,B − tC,S), starting
position along the camera ray (Ks,4 = tC,S) are all cached in advance.
The exponential function is cancelled by the probability density
function. Therefore, the integration loop accumulates only visibility
(Vtotal =Vtotal+V (po− t ωo)). The final integral over visibility Vtotal
is re-weighted by the number of samples Nsample, scattering coeffi-
cient σs and phase function f (ωi,ωo) to compute the solution of
the radiative transfer integral (L = 1

Nsample
σs f (ωi,ωo)Vtotal Ttotal Li).

Only in the single-scattering case a ratio estimator with the same
importance sampling scheme yields the same integration algorithm.

7 IMPLEMENTATION AND RESULTS

Now that we have a complete picture of how our techniques
are built from theoretic perspective, we can discuss the practical
implementation details and how they impact execution performance
and quality. Furthermore, we compare our estimators and samplers
against existing techniques and provide details about how they

integrate and perform in more practical approximate frameworks
targeted at high-performance graphics.

Multiple integration algorithms were outlined within this work.
Our aim was to use them in a real-time application built on Unity.
Thus we have implemented everything as Unity scripts using the
shading language in this engine. Our implementation does not rely
on special features from this engine, so it can be ported to any
rendering framework. Additionally, we provide a supplemental
HTML page using JavaScript and WebGL for rendering that will
assist reproduction of our work. We did not re-implement our
technique in any offline rendering framework, but as we stated, we
see it as a viable sampling strategy for that kind of application.

The stochastic integration algorithms using our techniques are:
Monte Carlo with whole volume distance sampling (MCWVDS),
ratio estimator with distance sampling (REDS) and ratio estimator
with equidistant sampling (REES). MCWVDS is implemented
following the optimized algorithm explained in Sec. 6. Ratio
estimators use the basic framework defined in Sec. 3 paired
with the analytic unoccluded radiance computation outlined in
Sec. 4. REDS incorporates traditional distance sampling to generate
samples proportional to transmittance along the current path
segment, while REES distributes samples at equal distance which
is jittered by noise. Those stochastic integrators converge to the
same solution of single-scattering. Additionally, we implemented
an approximate estimator based on moments following the method
described by Peters et al. [4]. We defer to the code bundled with
this previous publication for more details. This method relies on
heuristics, so regardless of the sample count, it will deviate from
the correct solution when dealing with complex occluders. Finally,
we implemented ray marching (RM) which distributes samples at
equal distance and jitters them with random offsets and distance
sampling (MCDS) distributing samples according to transmittance
along the current path segment and ignoring the overall shape of
the medium. Both methods directly intersect the box at each step
of the evaluation following the algorithm discussed in App. B
to determine the distance from the scattering event to the box
boundary along the light ray.

TABLE 2
Performance Benchmark

GPU Scene Sample count Method Time, ms

NVIDIA
Quadro

RTX 8000

Breakfast
room

1024 spp

RM 11.0±0.5
MCWVDS 10.4±0.1

Fireplace
room

RM 10.7±0.5
MCWVDS 9.5±0.5

NVIDIA
GeForce

GTX 980 Ti

Breakfast
room

256 spp

RM 10.3±0.2
MCWVDS 9.2±0.1

Fireplace
room

RM 10.2±0.1
MCWVDS 9.3±0.1

AMD
Radeon

Pro 560X

Breakfast
room

128 spp RM 37±4∗
MCWVDS 40±4∗

10242pixels ME 29±4∗
Fireplace

room
128 spp RM 24±4∗

MCWVDS 28±4∗
10242pixels ME 16±1∗

Performance benchmark. All integration techniques are bench-
marked in Tab. 2 at 1080p resolution. We captured times on three
different GPUs. Our MCWVDS integration approach depends
on a logarithmic function which is not directly supported by
the GPU and in the corner cases it fallbacks to linear segment
sampling through branching. Regardless, these computations are
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(f) MCWVDS 25.9 dB (g) RM 24.95 dB (h) REES 25.31 dB (i) MCDS 25.43 dB (j) REDS 25.89 dB

Fig. 6. Integrator comparison. Comparison of five estimators at low sample count (4spp). (a, f) Our Monte Carlo with whole volume distance
sampling (MCWVDS) integrator, (b, g) ray marching (RM) integrator with stratified (jittered) random sampling, (c,h) ratio estimator with equidistant
sampling (REES), (d,i) Monte Carlo with distance sampling (MCDS) integrator and (e,j) ratio estimator with distance sampling (REDS) integrator. (a,f)
Our importance sampling algorithm results in less visible noise compared to all other techniques and the unoccluded integration algorithm helps
reducing the noise when ratio estimators are used (c), (e).

less demanding than performing an intersection test to compute
the distance between the scattering event and box boundary and
then evaluating an exponential function used by ray marching.
We noticed clear performance improvements on NVIDIA GPUs
- possibly related to how the cached values are indexed. Precise
comparison between the code emitted for different GPU ISAs is
still difficult with the currently available tools. We used the GPU
profiler in Unity to measure only passes of our technique. Our
AMD setup (*) was on a MacBook Pro laptop where we captured
the complete frame times which lead to high timing variance.
GPU profiling in Unity was not available on that OS. It is also
possible to implement a variant of ray marching which uses our
technique to find the corners and replaces the intersection test with
linear interpolation along cached box slice edges. Moment-based
estimation [4] provides further performance improvements because
it approximates the integral with lower number of dimensions by
evaluating a heuristic formula dependent on depth and converting
the result into moments which are linearly integrated.
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(a) Single scattering
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(b) Multiple scattering

Fig. 7. Integrator convergence rate. Comparison of the integrators
shown in Fig. 6. Our main technique using whole volume importance sam-
pling achieves the fastest convergence rate. Ratio estimators combined
with our unoccluded radiance computation follow since they converge
quickly in unoccluded areas. Distance sampling in that case is closest
to the distribution of transmittance, but overall misses important parts
of the geometry which places it in second place and results in lower
convergence rate when it is used with Monte Carlo integrator. Ray
marching performs poorly at lower sample count, but it can outperform
distance sampling at higher sample count, when considering single
scattering.

Integrator comparison. We evaluated how our technique

integrates with different estimators on a simple scene with a single
box medium and a sphere occluder (Fig. 6). We compared it
against jittered ray marching (RM) which uses a slab test to find
the medium boundaries at each step (Fig. 6 (b)). This example is
considered as previous work since it relies on existing approaches.
Overall, it fails to distribute samples proportional to transmittance.
Our whole volume distance sampling technique MCWVDS (Fig. 6
(a)) follows closely the transmittance integrand. In the unoccluded
sections, it converges in a single sample, while in the rest of the
scene, it leads to noticeable variance reduction. Ratio estimator
using our unoccluded analytic integral computation (Alg. 2) and
ratio term using ray marching (REES) yields better convergence
in the unoccluded parts of the scene, but leads to overall poor
distribution of samples in the occluded parts. Distance sampling
is another previous work (Fig. 6 (d)). It distributes samples
proportional to the distance to the observer, however that does
not perfectly match the transmittance integrand component, leading
to higher variance. Combining this technique with a ratio estimator
and our analytic unoccluded radiance integration (Fig. 6 (e) REDS),
leads to improved variance reduction because in certain areas
the distribution of transmittance follows more closely exponential
decay. Ratio estimators are general enough that it is possible to
combine them with more sophisticated integration techniques [43].
We demonstrate multiple scattering with our importance sampling
and ratio estimators (Fig. 6 (f,g,h,i,j)) and show their potential
as integrators in path tracing frameworks. These example figures
were generated with the HTML page bundled in the supplemental
material.

Integrator convergence rate. Fig. 6 shows results at a fixed
number of samples per pixel. We further studied how the algorithms
behave when increasing the sample count in Fig. 7 (a). Overall,
our optimized integration algorithm (MCWVDS) achieves the
fastest convergence rate. Ratio estimator based techniques similarly
achieve lower variance in unoccluded areas which leads to higher
convergence rate. Finally, ray marching and distance sampling that
are considered as previous techniques perform the worst. Distance
sampling performs good at very low sample count, but the fact
that it relies on very simple assumptions regarding the geometry
leads to lower convergence rate at higher sample count. In the case
of multiple scattering distance sampling (Fig. 7 (b)), both ratio
estimators and our importance sampling algorithm lead to lower
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variance. The sample count reflects the number of camera rays
and after each scattering event only a single shadow ray connect
with the light source. The resulting integral corresponds to a single
sample when considering only single-scattering integration spread
over multiple path segments. Thus distance sampling retains its
advantage over ray marching, even when multiple camera ray
samples are taken into account. However, augmenting it with a
ratio estimator or using our sampling technique leads to noticeable
variance reduction.

(a)
RMSE 0.0686

PSNR 23.276 dB (b)
RMSE 0.0542

PSNR 25.317 dB

Fig. 8. Destruction scene. Comparison between (a) ray marching and
(b) Monte Carlo importance sampled box according to our sampling
approach at 4spp in a dynamic scene. RMSE and PSNR are computed
over the entire image.

Destruction scene. We tested our MCWVDS integration al-
gorithm on a dynamic scene involving destruction (Fig. 8) and
compared it against ray marching (RM). The relatively simple
geometry of the occluders and high extinction contribute to the
overall higher variance reduction introduced by our algorithm
compared to ray marching. We further evaluated our technique

(a) 26.319 dB (b) 26.602 dB

(c) 4x (d) 4x

Fig. 9. Breakfast room scene. Comparison between (a) ray marching
and (b) Monte Carlo integration with our importance sampling approach
at 48spp with PSNR computed over the entire image. Difference images
against ground truth of (c) ray marching and (d) Monte Carlo show the
distribution of samples.

MCWVDS against standard research test scenes. Results for the
breakfast room scene are shown in Fig. 9. Samples are preferentially
distributed close to the camera and thus resulting in noise reduction.
The more heavily occluded scene results in less variance reduction
than the destruction scene (Fig. 8) because it leads to deviation of
the integral from the probability density of the importance sampling
function. As a rule of thumb our sampling approach has advantage
in rooms with higher extinction, while ray marching allows taking
more samples in unoccluded sections at the back of the room.
Benchmark of the rendering performance is shown in Tab. 2.

We implemented also a variant of the moment-based single-
scattering estimation [4] with our analytic unoccluded radiance
integration technique (Alg. 2). We call it moment-based estimation

(ME). Since it relies on our technique, we don’t consider it
completely as previous work. It was tested in a very simple outdoor
scenario where a set of basic shapes lie outside of the medium and
thus cast detached shadows (Fig. 10). In that very simple scenario,
the moment-based estimation matched really closely the results of
the integration.

(a) ME 54.217 dB (b) Reference

Fig. 10. Simple outdoor scene. Comparison between (a) moment-based
estimation paired with our unoccluded radiance integration algorithm and
(b) reference image using Monte Carlo integration in a simple outdoor
scene. Moment-based estimation matches closely the reference.

Fireplace scene. We further tested the moment-based estimation
technique against the fireplace room (Fig. 12) scene where the
quality was still acceptable, but overestimation artifacts became
more apparent. We noticed significant performance improvements
when using this technique (cf. Tab. 2).

(a) RM (b) MCWVDS (c) REDS

Fig. 11. Dodehedral medium. The general principles outlined for a
box-shaped medium extend trivially to other convex medium shapes. All
examples are rendered at 1spp.

Other medium shapes. We demonstrate in Fig. 11 that the
principles outlined for a box-shaped medium also extend to
other convex shapes. Concave shapes are also possible, but they
will require more complex integration procedure. We expand the
discussion in our supplemental material.

(a) ME 27.562 dB (b) Reference

Fig. 12. Fireplace scene. Comparison between (a) moment-based
estimation paired with our unoccluded radiance integration algorithm
and (b) reference image using Monte Carlo integration in a high-quality
indoor scene. The integration heuristic of the moment-based estimator
starts to deviate from the integral and results in overestimation and
artifacts.

Failure case of moments-based estimation. In the case of the
breakfast room scene (Fig. 13), the moment-based estimation
significantly deviates from the approximated integral and leads
to severe artifacts. We do not use noise metrics, such as PSNR and
RMSE, for those comparisons since the artifacts have very visible
structure caused by the heuristic formulas used by this approach [4].
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The original paper prescribes a set of heuristic terms to correct
for overestimation issues. However, they fail to remove the issue
and might further result in false shadows behind thinner objects
which is equally distracting as an artifact. Possible future work is
to enhance the heuristic to better match the integral.

Fig. 13. Failure case of moment-based estimation. Underestimation is
visible when using the prescribed corrective terms in the work by Peters
Peters et al. [4]. The false shadows are caused by the more complex
geometry that is not correctly estimated by the heuristic integration
scheme.

Supplemental video. We provide a supplemental video with
further comparisons of our techniques when the camera is in
motion. Convergence rate of the optimized Monte Carlo algorithm
(Alg. 8) is demonstrated by using a set of monotonically increasing
number of samples. Furthermore, we provide a fully dynamic
scene to outline the behavior in interactive scenes of our Monte
Carlo integration algorithm and our analytic unoccluded radiance
integration algorithm paired with the approach described by Peters
et al. [4]. Moment-based estimation might exhibit artifacts when the
heuristic deviates from the integral, but provides better performance.
While our approach based on Monte Carlo integration leads to
noise proportional to the number of samples. Denoising algorithms
alleviate this problem. We defer to existing surveys for more
details [44].

8 DISCUSSION

We presented a set of algorithms for integration and sampling
that are directly applicable to Monte Carlo integrators and ratio
estimators in indoor scenes. We demonstrated them predominately
with a rectilinear box-shaped medium and showed how to extend
them to generic shapes. Together, they can represent many scenes
in video games, AR and VR experiences. Ratio estimators were
used to shadow the unoccluded radiance computation by uniform
collimated light which is part of our first main contribution.
They provide greater flexibility regarding combining different
sampling strategies, but lower convergence rate than our final
technique. We are unaware of any prior work based on this kind of
stochastic estimator for finite participating media which we believe
is a valuable contribution on its own. The unoccluded radiance
computation was further used in a moments-based approximate
estimator that has better performance characteristics than all
proposed techniques, but leads to visual artifacts caused by its
heuristic nature. We leave as future work any perceptual studies that
would evaluate whether those artifacts are objectionable enough to
users of systems using our techniques.

We further derived a Monte Carlo sampling strategy which
takes into account the entire shape of the medium and we showed
the equivalence of estimators using it to a ratio estimator only
when considering single-scattering integration. That is an important
result showing where both theoretic frameworks lead to equivalent
expressions. In the multiple scattering case they significantly
deviate since the individual terms of the ratio estimator include

complex integrals. The superior convergence rate of our sampling
strategy was quantified in a series of experiments (c.f. Fig. 6, Fig. 7).
Our application targeted real-time performance and we optimized
the integrator for this particular case, however the sampling strategy
is compatible with path tracing frameworks, which makes it a
contribution on its own. The final optimized Monte Carlo integrator
has the potential to outperform previous approaches even at the
same sample count (c.f. Tab. 2) and it is our final contribution.

One major application of our approach is room-scale AR where
we surrounded the entire room by the volume to enable compositing
of light shafts. The main advantage being that the windows to the
outside virtual world are not affected by scattering and allow
gameplay elements to be visible even at a great distance outside
the room. This configuration was a useful building block to deliver
the AR experience shown in Fig. 2.

Limitations. We derived our techniques under the assumption
of homogeneous media, collimated light, uniform illumination and
sampling decisions based on a single scattering event. We will
provide in the next few paragraphs ideas about how to resolve
those limitations in the future.

We have shown how to handle convex media, however, concave
shapes will require more meticulous splitting to allow the use
of our sampling technique (Alg. 7). Ratio estimators can be
directly applied using the signed area to determine the sign for
each linear segment when analytically computing the integral
over transmittance. The approach can be extended to sampling
heterogeneous medium by breaking it down into multiple shapes.

Single-scattering estimators based on Fourier coefficients or
moments require the unoccluded term to be computed for all
geometry contributing to the radiance scattered towards the camera.
Taking the opposite route of starting with semi-infinite and
subtracting the contribution of the environment outside the box
leads to overall more complex equations which we demonstrate in
the supplemental material. Those approximations can consequently
lead to objectionable artifacts. Thus, we do not perceive this idea
as viable future direction. Furthermore, moment-based estimators
in general are more likely to fail with complex geometry since they
rely on heuristics to compute the single-scattering integral as seen
in Fig. 13. In the future, we are interested in developing heuristics
and integration schemes to prevent these artifacts.

We demonstrated our sampling strategies in single- and
multiple-scattering scenarios using the main principles of path
tracing frameworks. Thus, we are able to leverage existing
techniques to incorporate other types of luminaires by exploiting
the linearity of light transport.

Finally, we demonstrated throughout our work how to apply
finite media estimators to our specific problem. However, we think
that those general principles can be further developed and applied
to novel estimators and approaches to solving radiative transfer in
finite media and they will be a valuable starting point for future
research.
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