

Research Article

1

2

3

4

5

6 7

8 9

10

11

12

13

14

15

16 17

18

19

A Jug-Shaped CPW-Fed an Ultra-Wideband Printed Monopole Antenna for Wireless Communications Networks

Sarosh Ahmad^{1,2,*}, Umer Ijaz¹, Salman Naseer³, Adnan Ghaffar⁴, Muhammad Awais Qasim², Faisal Abrar², Naser Ojaroudi Parchin^{5,*}, Chan Hwang See⁵, and Raed Abd-Alhameed⁶

- ¹ Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganes, 28911, Madrid, Spain; (saroshahmad@ieee.org)
- ² Department of Electrical Engineering and Technology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan; (umer.ijaz@gcuf.edu.pk, imawais16@gmail.com, imfaisalabrar@gmail.com)
- ³ Department of Information Technology, University of the Punjab Gujranwala Campus, Gujranwala 52250, Pakistan;(salman@pugc.edu.pk)
- ⁴ Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland, 1010, New Zealand; (aghaffar@aut.ac.nz)
- ⁵ School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, UK; (N.OjaroudiParchin@napier.ac.uk; C.See@napier.ac.uk)
- ⁶ Faculty of Engineering and Informatics, University of Bradford, Bradford, UK; (r.a.a.abd@bradford.ac.uk)
- * Correspondence: Sarosh Ahmad (saroshahmad@ieee.org), Naser Ojaroudi Parchin (N.OjaroudiParchin@napier.ac.uk)

Abstract: A type of telecommunication technology called an ultra-wideband (UWB) is used to pro-20 vide a typical solution for short-range wireless communication due to large bandwidth, low power 21 consumption in transmission and reception. Printed monopole antennas are considered as pre-22 ferred platform for implementing this technology because of its alluring characteristics like light 23 weight, low cost, ease of fabrication, integration capability with other systems, etc. Therefore, a com-24 pact size an ultra-wideband (UWB) printed monopole antenna with improved gain and efficiency 25 is presented in this article. Computer simulation technology microwave studio (CSTMWS) software 26 is used to build and analyze the proposed antenna design technique. This broadband printed mon-27 opole antenna contains a jug-shaped radiator fed by a coplanar waveguide (CPW) technique. The 28 designed UWB antenna is fabricated on a low-cost FR-4 substrate with relative permittivity of 4.3, 29 loss tangent of 0.025, and a standard height of 1.6 mm, sized at 25 mm × 22 mm × 1.6 mm suitable 30 for wireless communication system. The designed UWB antenna works with maximum gain (peak 31 gain of 4.1 dB) across the whole UWB spectrum 3–11 GHz. The results are simulated, measured and 32 debated in detail. Different parametric studies based on numerical simulations is involved to arrive 33 to the optimal design through monitoring the effects of adding cuts on the performance of the pro-34 posed antennas. Therefore, these parametric studies are optimized to achieve maximum antenna 35 bandwidth with relatively best gain. The proposed patch antenna shape is like a Jug with handle 36 that offers greater bandwidth, good gain, higher efficiency, and compact size. 37

Keywords: Printed Monopole; CPW-fed; UWB; Wireless Communication.

38 39

40

1. Introduction

An ultra-wideband (UWB) is a telecommunications technology that is utilized in radio communication networks to achieve high-speed bandwidth connections with minimal energy consumption. Primarily, the UWB was intended for commercial radar. Wireless personal area networks (WPANs) and consumer electronics are two main applications of UWB technology. UWB wireless develops an emerging skill with limited smart structures such as radar, wireless communications, and medical engineering domains 46

Citation: Lastname, F.; Lastname, F.; Lastname, F. Title. *Sensors* **2021**, *21*, x. https://doi.org/10.3390/xxxx

Academic Editor: Firstname Lastname

Received: date Accepted: date Published: date

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/). after its initial achievement in the middle of the 2000s [1]. Until to 2001, UWB was signif-47 icantly used for military purposes. The Federal Communications Commission (FCC) per-48 mits the public to use UWB bandwidth for commercial purposes after 2002. Furthermore, 49 the FCC approved the usage of the UWB spectrum, which is allocated between 3.1-10.6 50 GHz in the United States [2]. The low spectral density of UWB is responsible for short-51 range of communication. This function, however, demands high gain antennas with rela-52 tively stable radiation characteristics [3]. Planar antennas, primarily monopoles, are used 53 in UWB electrical devices [4,5], for its compact sizes, low profile, and low cost, as well as 54 its ultra-wide impedance bandwidth. Moreover, when these antennas are placed near me-55 tallic surfaces, they can cause severe impedance mismatch. Low-profile antennas also 56 transmit limited frequency signals with low gain and poor directivity [6,7]. 57

However, the cost and size of the UWB antennas increases with discreet filters [8]. 58 Frequencies from 5.2-5.8 GHz were notched by etching an omega type slot on the surface 59 of the antenna in [9]. Similarly, in [10] U- and inverted U-shaped slots were embedded in 60 printed monopole to stop multiple frequencies. A curved shaped slot is introduced in [11] 61 to achieve notching features in WiMAX and WLAN bands. To attain notching character-62 istics in 5.10-5.94 GHz, S-shaped slot is applied in the feedline of the monopole antenna 63 in [12]. Split ring resonators can act both as a band stop and band pass filters for different 64 frequencies [13]. In [14] uplink and downlink satellite frequency bands were rejected by 65 introducing a single SRR slot in the patch of the antenna. WLAN band is rejected by in-66 serting split ring resonators in [15]. Three different frequencies were notched in [16] by 67 embedding multiple split rings near the feedline of the antenna model. Notching has been 68 achieved by using SRR in [17]. Tri-notching using frequency selective surface (FSS) of an 69 ultra-wideband antenna with gain augmentation was reported in [18]. Another compact 70 size UWB planar antenna using truncated ground plane was presented in [19]. The an-71 tenna covers large bandwidth but the size was still large as compared to our design. A 72 broadband overleaf shaped antenna using beam tilt characteristics is presented in [20]. 73 The reported size of the antenna is large as well as small bandwidth achieved as compared 74 in Table 1. Another Vivaldi antenna resonative over a wide frequencu range is reported 75 in [21]. The antenna is antipodal and the miniaturization had been achieved by using ex-76 ponential strip arms technique. 77

Ref. No.	Frequency Range (GHz)	Area (mm²)	Electrical Size (λ₀²)	<mark>Antenna</mark> Type	Substrate Material	Effi- ciency (%)	Gain (dB)
[11]	3.4-7, 8-11.4	40 <mark>×</mark> 30	0.94×0.705	Split Ring Resonator Patch	FR-4	<95	<5
[12]	3.1-10.6	38.31 <mark>×</mark> 34.52	0.82×0.74	Monopole	FR-4	<95	<5
[13]	4.05-5.1, 6- 13	32×36	0.89 <mark>×</mark> 1.01	Circular Patch	FR-4		<4
[14]	2.5-19.8	36×25	0.62×0.43	<mark>Slotted</mark> Patch	FR-4		<3
[15]	2.8-18	50 <mark>×</mark> 38	0.96 <mark>×</mark> 0.73	Tapered Slotted Patch	FR-4		<4.32
[16]	1.9-5, 6-10.6	48×55	0.63×0.72	<mark>Monopole</mark>	FR-4		<5
[17]	1.2-9.8	53 <mark>×</mark> 63.5	0.21 <mark>×</mark> 0.25	Anti-Spiral Shaped Patch	FR-4	<85	<5.2

Table 1. Comparison with the previous research.

[18]	2.6-10.58	38.3×34.5	0.33×0.3	<mark>Sharp triple</mark> notched	FR-4		<5
[19]	1.5-10.4	64 <mark>×</mark> 37.4	0.32 <mark>×</mark> 0.19	Planar patch	F4BM		>2
[20]	2-5	100×78	0.67 <mark>×</mark> 0.52	<mark>Leaf</mark> Shaped Patch	Taconic TLY-5		>3
[21]	0.83-9.8	161×140	0.45×0.39	<mark>Ex-poten-</mark> tial Strip Arms	$\varepsilon_r = 2.3$		>2.5
[This Work]	3-11	25×22	0.25×0.22	Printed Monopole	FR-4	>85	<4.1

In this research article, a simple CPW based an ultra-wideband antenna having im-80 pedance bandwidth ranging from 3 GHz to 11 GHz (8 GHz) for wireless communication 81 networks is presented. It is very hard to achieve UWB band with compact size, however, 82 in this design, the UWB band is achieved through a CPW technique and the design opti-83 mization. The total size of the designed UWB antenna is 25mm × 22mm × 1.6mm. This 84 printed broadband monopole antenna is manufactured using a less-priced FR-4 Duroid 85 material. The antenna presents good efficiency with suitable gain. This article is described 86 as: the presented antenna design is presented in section II. Results and discussion in sec-87 tion III, and the conclusion in section IV. 88

2. Antenna Design Analysis

The schematic diagram of the designed ultrawideband antenna is presented in Figure 91 1. The structure of the UWB antenna involves the jug-shaped printed monopole with han-92 dle at the right side of radiator is designed, sized at Ls × Ws × hs. The printed monopole 93 is fed by a coplanar waveguide (CPW) feedline of length 'Lf' and width 'wf'. The width 94 of the CPW feedline is kept 3 mm to attain 50- Ω input impedance. The antenna is design 95 on a less priced FR-4 substrate having relative permittivity (ε_r) of 4.4 and loss tangent 96 (tano) of 0.025. The design is simulated in computer simulation technology (CST-2018) 97 software. On the front view of the substrate a rectangular ground plane is designed having 98 dimension Lg× Wg and the ground plane. The third dimensional (3D) view of the antenna 99 is depicted in Figure 1, and its optimized dimensions are given in Table 2. 100

79

102

103

104

105

Figure 1. Schematic diagram of the presented UWB Antenna.

0.24

0.95

a	able 2. Different design parameters of the presented Antenna.						
	Parameters	Values (mm)	Parameters	Values (mm)			
	Ls	25	Ws	22			
	Lf	14.65	Wf	1.58			
	Lg	12.14	Wg	10.85			
	L1	3.02	L2	2.75			
	L3	6.73	L4	3.96			
	L5	3.05	L6	4.64			

T

2.1 Different Design Steps

g

u

Figure 3 shows the S11 behavior for the different design steps of the designed mono-106 pole is given in Figure 2. In the first step, the basic design consists of a simple rectangular 107 printed monopole radiator excited by a coplanar waveguide (CPW) feedline as shown in 108ANT I. Then in the second step, the simple rectangular radiator is truncated from its upper 109 and lower sides to keep its shape like a body of the Jug that helps to keep the S11 [dB] close 110 to -10dB but the antenna only operates at 3.5 GHz and 10.5 GHz. Again, in the third step, 111 a semi-circular shaped patch is introduced in the ANT II that keeps some portion of the 112 UWB band below -10dB but the antenna works from 3.3 GHz to 9 GHz and 9.3 GHz to 12 113 GHz as can be seen in ANT III (Fig. 3) and this is not a required frequency band. Now, in 114order to achieve the whole UWB spectrum from 3 GHz to 11 GHz, a C-shaped resonator 115 is introduced in the final step to make the shape like a handle of the jug as shown in ANT 116 IV. 117

y

hs

1.58

1.6

The design process of the printed monopole antenna is explained as follows:

The primary antenna design (ANT I) shown in Figure 3 (a), contains a $50-\Omega$ CPW feedline, 121 a jug-shaped monopole, and the ground plane. The printed monopole's width and length 122 are calculated using (1) and (2) [13], as follows: 123

$$Wp = \frac{\lambda_o}{2(\sqrt{0.5(\varepsilon_r + 1)})} \tag{1}$$

where ε_r and λ_o are the relative permittivity and the wavelength of the substrate in free 125 space at the operating frequency. The best option of Wp tends to the perfect impedance 126 matching. The length of the printed monopole can be evaluated by using equation (2). 127

$$Lp = \frac{c_o}{2f_o\sqrt{\varepsilon_{eff}}} - 2\Delta L_p \tag{2}$$

where c_o , ΔL_p , and ε_{eff} are the velocity of light, change in the length of the printed monopole due to its fringing effect, and the effective dielectric constant, respectively. The effective relative permittivity can be calculated using equation (3): 131

$$\varepsilon_{eff} = \frac{\varepsilon_{r+1}}{2} + \frac{\varepsilon_{r-1}}{2} \left(\frac{1}{\sqrt{1+12\frac{hs}{W_p}}}\right) \tag{3} 132$$

where hsub is the height of the substrate. At the end, the fringing effect can be calculated 133 using equation (4): 134

$$\Delta Lp = 0.421 h_s \frac{(\varepsilon_{eff} + 0.300)(\frac{W_p}{h_s} + 0.264)}{(\varepsilon_{eff} - 0.258)(\frac{W_p}{h_s} + 0.813)}$$
(4) 135

with the placement of $\varepsilon_r = 4.3$, hs = 1.6 mm in (1)-(4), the initial parameters of the rectangular printed monopole are Lp = 15 mm and Wp = 12 mm. 137

138

Figure 2. Design Steps of the presented ultra-wideband Antenna, (a) rectangular printed monopole140only (ANT I), (b) Truncated monopole (ANT II), (c) Addition of semi-circular printed monopole141(ANT III), (d) Presented design (ANT IV).142

144

145

146

147

148

149

150

Figure 3. S11 [dB] of the different design steps of the presented UWB antenna shown in Fig. 2.

With a simple rectangular monopole (ANT I), the antenna works only works at 3.5 GHz and 9.8 GHz as proved in Figure 4. By ANT II, the bandwidth of the antenna is increased but unable to achieve UWB band, Then, in the third step (ANT III), with the help of semi-circular printed monopole on the top of the truncated printed monopole, the antenna has achieved most of the UWB band. Since the antenna has achieved band from 3 GHz to 11 GHz.

2.2 Parametric study of the presented design

The presented design is finalized after performing a number of parametric optimiza-151 tions on different variables as shown in Figure 4. The first parametric study is performed 152 on the length and width of the ground plane. By increasing the length of the ground plane 153 'lg' from 10mm to 12mm the impedance matching of the antenna improves with suitable 154 bandwidth. And when the width of the ground plane 'wg' is varied from 9mm to 11mm 155 then the bandwidth of the antenna increased from 4.1 GHz to 8 GHz. The next parametric 156 study is performed on the width of the feedline 'wf'. Gradually increasing the width of 157 the feedline improves the impedance bandwidth from 5.8-8 GHz. A parametric study of 158 the C-shaped radiator is also performed. By varying the lengths 'L6 and L3' the bandwidth 159 of the antenna is improved as depicted in Figure 4. 160

(a)

170

Figure 4. Different parameters optimization, (a) variation in 'Lg', (b) variation in 'wg', (c) variation171in 'wf', (d) variation in 'L6', (e) variation in 'L3'.172

The surface current density of the UWB antenna at different frequency bands are 173 taken into consideration. This indicates that the antenna is playing a significant role in 174 making it to resonate at the desired frequency bands. For example, the surface current 175 density at 3.5 GHz is illustrated in Figure 5(a). The most of the current seems to flow 176 through the radiator at 3.5 GHz (see Figure 5(b)), while at 4.1 GHz the current only flows 177 through the C-shaped resonator and some amount of current through the feedline (see 178 Figure 5(c)). At 8 GHz the current flows through the outer lower edge of the printed mon-179 opole and some amount of current flow through the CPW ground at 10.5 GHz (see Figure 180 5(d)). 181

Figure 5. Surface current density, (a) at 3.5 GHz, (b) at 4.1 GHz, (c) at 8 GHz, (d) at 10.5 GHz.

2.3. Equivalent Circuit Model

A circuit model for the UWB presented antenna for wireless communications is pre-185 sented in Figure 6(a). The main purpose of the circuit model is to validate the scattering 186 parameters of the ultra-wideband antenna with the S11 obtained from the circuit model. 187 The circuit model is designed by using an advanced design system (ADS) software. The 188circuit model consists of four inductors, four capacitors, three resistors, and three resistor-189 capacitor (RC) circuits connected in series with one resistor and an inductor for each as 190 given in Figure 6(a). By varying the values of the resistors, the S11 of the circuit model can 191 be varied while by fluctuating the values of the capacitors and inductors, the S_{11} of the 192 <mark>antenna can be tuned.</mark> The values of the lumped components are given in Table 3. The <mark>S11</mark> 193 [dB] of the circuit model is illustrated in Figure 6(b). It covers the bandwidth from 3.1 GHz 194 to 11.5 GHz. 195

Figure 6. (a) Equivalent circuit model, (b) reflection coefficient of the equivalent circuit model.

184

196

197

198

202

199

200

Capaci-	Values	Induc-	Values	Resistors	Values (Ω)	High	Values (Ω)
tors	(pF)	tors	(nH)			Resistors	
C1	1	L1	7	R1	2	r1	1500
C2	0.1	L2	0.8	R2	65	r2	1000
C3	0.5	L3	0.5	R3	65	r3	500

Table 3. Values of the components used in the circuit model.

3. Results and Discussions

In order to measure the scattering parameters of the fabricated prototype, the port of 205 the fabricated design is connected with a vector network Analyzer (VNA). The picture of 206 the prototype is visible in Figure 7(a). The $\frac{S_{11}}{GB}$ of the projected antenna is accessible in 207 Figure 7(b). Due to intolerances in the fabrication process and surrounding noises, there 208 are some variations in the measured results. The simulated and measured S_{11} [dB] are in 209 good agreement as both are covering the whole UWB band for wireless communications. 210

 Figure 7. (a) Printed UWB prototype, (b) comparison of simulated and measured reflection coefficients (S11).
 215

 216
 216

204

203

213

214

211

The simulated and measured (E & H)-plane of the UWB antenna at 3.5 GHz, 4.1 GHz, 8 217 GHz, and 10.5 GHz are given in Figure 8. It can be seen that there is an omnidirectional 218 pattern at the frequencies of 3.5 GHz and 4.1 GHz along E-plane while elliptical along H-219 plane and the antenna has sided radiation pattern in both planes at the frequencies of 8 220 GHz and 10.5 GHz. The simulated and measured gain graph is presented in Figure 9. It 221 can be noticed that the antenna has been attained the average peak gain ranges from 2-4.1 222 dB and the antenna's efficiency is attained more than 85% over the entire band. The com-223 parison with the previous research is given in Table 1. 224

225

231

232

233

Figure 8. (a) Simulated and measured 2D radiation pattern setup inside chamber; (b) at 3.5 GHz, (c) at 4.1 GHz, (d) at 8 GHz, (e) at 10.5 GHz.

Figure 9. Comparison of simulated and measured efficiency and peak gains [dB].

4. Conclusion

A simple jug-shaped an ultra-wideband (UWB) antenna is presented in this work. 237 The presented design is printed and measured results are also taken. The simulated re-238 sults are verified by a measured result of the ultra-wideband antenna. The designed UWB 239 antenna is printed on a less-priced FR-4 substrate with relative permittivity of 4.3, loss 240 tangent 0.025, and a standard thickness 1.6mm, sized at 25mm × 22mm × 1.6mm suitable for wireless communication system. The designed UWB antenna works with maximum 242 gain (peak gain of 4.1 dB) across the whole UWB spectrum 3–11GHz. The simulated and 243 measured reflection coefficients and radiation pattern are in close agreement. The de-244 signed antenna is a good applicant for wireless communication systems portable devices. 245

241

234

235

236

Author Contributions: Conceptualization, S.A., S.N; M.A.Q, F.A, methodology, U.I., A.G., CHS;248software, A.G., S.N., U.I; validation, M.A.Q., F.A., U.I, and S.N.; formal analysis, S.A., and A.G.;249investigation, A.G., N.O.P., S.N.; resources, A.G., U.I., S.A.; data curation, S.A., M.A.Q, and A.G.;250writing—original draft preparation, S.A., and A.G.; writing—review and editing, S.N., F.A.; super-251vision, NOP, CHS, and RAA; funding acquisition, NOP, CHS, and RAA.252

Funding: This work was supported by the ICTR&D program of MSIT/IITP, [2019-0-00102, AStudy253on Public Health and Safety in a Complex EMF Environment]. This workwas also supported by the254National Radio ResearchAgency, [Rapid measurement system for newtechnologyantenna].255

Acknowledgments: In this section, you can acknowledge any support given which is not covered 256 by the author contribution or funding sections. 257

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Kirtania, Sharadindu G., Bachir A. Younes, Abdul R. Hossain, Tutku Karacolak, and Praveen K. Sekhar, "CPW-Fed Flexible Ultra-Wideband Antenna for IoT Applications" *Micromachines*, **2021**, vol. 12, no. 4, p.453.
- 2. I. Amdaouch, O. Aghzout, A. Naghar, and A. V. Alejos, F. Falcone, "Design of UWB compact slotted monopole antenna for breast cancer detection," *Advanced Electromagnetics*, **2019**, vol. 8, no. 5, pp. 1-6.
- 3. T. Saeidi, I. Ismail, W. P. Wen, and A. R. H. Alhawari, and A. Mohammadi, "Ultra-Wideband antennas for wireless communication applications," Int. J. Antenn. Propag., **2019**, vol. 19, p. 7918765.
- 4. Alhawari, Adam R.H., Sama F. Majeed, Tale Saeidi, Sajid Mumtaz, Hisham Alghamdi, Ayman T. Hindi, Abdulkarem H.M. Almawgani, Muhammad A. Imran, and Qammer H. Abbasi, "Compact Elliptical UWB Antenna for Underwater Wireless Communications" *Micromachines*, **2021**, vol. 12, no. 4, p.411.
- 5. P. Chaudhary, A. Kumar, "Compact ultra-wideband circularly polarized CPW-fed monopole antenna," *Int. J. Electron. Commun.*, **2019**, vol. 107, pp. 137-145.
- 6. Li, Xue-Ping, Gang Xu, Ming-Rong Ma, and Chang-Jiao Duan., "UWB Dual-Band-Notched Lanky-Leaf-Shaped Antenna with Loaded Half-Square-Like Slots for Communication System" *Electronics*, **2021**, vol. 10, no. 16, p.1991.
- 7. Jamal Mohammed Rasool, "Ultra-Wide Band Antenna Design for Robotics & Sensors Environment", 12th International Conference on Developments in e-Systems Engineering (DeSE), **2019**, pp. 668-672.
- 8. Iqbal, Amjad, Amor Smida, Nazih K. Mallat, Mohammad T. Islam, and Sunghwan Kim, "A Compact UWB Antenna with Independently Controllable Notch Bands" *Sensors*, **2019**, vol. 19, no. 6, p.1411.
- 9. A. Abbas, N. Hussain, J. Lee, S. G. Park and N. Kim, "Triple Rectangular Notch UWB Antenna Using EBG and SRR," IEEE Access, **2021**, vol. 9, pp. 2508-2515.
- 10. Abbas, Anees, Niamat Hussain, Min-Joo Jeong, Jiwoong Park, Kook S. Shin, Taejoon Kim, and Nam Kim, "A Rectangular Notch-Band UWB Antenna with Controllable Notched Bandwidth and Centre Frequency" *Sensors*, **2020**, vol.20, no. 3, p.777.
- 11. Yeboah-Akowuah, Bright, Eric Tutu Tchao, Masood Ur-Rehman, Mohammad Monirujjaman Khan, and Sarosh Ahmad. "Study of a Printed Split-Ring Monopole for Dual-Spectrum Communications," *Heliyon*, **2021**, p. e07928.
- 12. Md Shahidul Alam, Amin Abbosh, "Reconfigurable band-rejection antenna for ultra-wideband applications", *Microwaves Antennas & Propagation IET*, **2018**, vol. 12, no. 2, pp. 195-202.
- 13. Abdi, H., Nourinia, J., & Ghobadi, C, "Compact Enhanced CPW-Fed Antenna for UWB Applications," *Advanced Electromagnetics*, **2021**, vol.10, no.1, pp.15–20.
- 14. A. Upadhyay, R. Khanna, "A CPW-fed tomb shaped antenna for UWB applications," International Journal of Innovative Technology and Exploring Engineering (IJITEE), **2019**, vol. 8, pp. 67-72.
- 15. Z. A. A. Hassain, A. R. Azeez, M. M. Ali, and T. A. Elwi "A modified compact bi-directional UWB tapered slot antenna with double band notch characteristics," *Advanced Electromagnetics*, **2019**, vol. 8, no. 4, pp. 74-79.
- 16. P. Chaudhary, A. Kumar, "Compact ultra-wideband circularly polarized CPW-fed monopole antenna," *Int. J. Electron. Commun.*, **2019**, vol. 107, pp. 137-145.
- 17. Li, Xue-Ping, Gang Xu, Chang-Jiao Duan, Ming-Rong Ma, Shui-E Shi, and Wei Li, "Compact TSA with Anti-Spiral Shape and Lumped Resistors for UWB Applications" *Micromachines*, **2021**, vol. 12, no. 9, p.1029.
- 18. Kundu, S.; Chatterjee, A. "Sharp Triple-notched ultra wideband antenna with gain augmentation using FSS for ground penetrating radar," *Wirel. Pers. Commun*, **2021**, 117, 1399–1418.
- 19. Guo, L.; Min, M.; Che, W.; Yang, W. "A novel miniaturized planar Ultra-wideband antenna," IEEE Access, 2019, 7, 2769–2773.
- Delphine, A.; Hamid, M.R.; Seman, N.; Himdi, D. "Broadband cloverleaf Vivaldi antenna with beam tilt characteristics," Int. J. 299 RF Micro. Comput.-Aided Eng, 2020, 30, 22158.
- Honari, M.M.; Ghaffarian, M.S.; Mirzavand, R. "Miniaturized antipodal Vivaldi antenna with improved bandwidth using exponential strip arms," *Electronics*, 2021, 10, 83.
 302

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

258 259