
Dimensional Analysis Based Causal Ordering

Abstract

This paper presents a novel approach for generating
causal dependencies between system variables, from an
acausal description of the system behaviour, and for
identifying the end causal impact ; in terms of whether
a change in the value of an influencing variable will
lead to an increase or a decrease in the value of the
influenced variables . This work is based on the use of
the conventional method for dimensional analysis de-
veloped in classical physics . The utility of the work is
demonstrated with its application to providing causal
explanations for selected physical systems . The res-
ults reflect well the common-sense understanding of the
causality in these systems .

Introduction
Knowledge of causality is essential in handling many
application problems . In model-based diagnosis, for
example, when one or more variables are observed to
have an abnormal value, it is necessary to find out
what internal variables (which are perhaps unmeasur-
able) could have been causing the observed abnormal-
ities, what other variables might be affected, and what
other observations would be spuriously correlated to the
observations of these variables . An explicit expression
of the causal relations amongst system variables will
enable the diagnostic system to generate convincing ex-
planations for its findings .
Having recognised the great application potential,

significant work has been developed for deriving a
causal ordering between variables in a physical sys-
tem (de Kleer & Brown 1984; Iwasaki & Simon 1986 ;
1994 ; Top & Akkermans 1991 ; Lee & Compton 1994 ;
Trave-Massuyes & Pons 1997) . However, most of these
existing approaches only address the issue of what vari-
ables may affect what other variables, without identify-
ing the directions of causal effects in terms of whether
an increase in the value of an influencing variable will
lead to an increase or a decrease in the value of the in-
fluenced variables . Also, some limitations remain when
attempting to utilise the existing causal ordering tech-
niques to draw inferences on the causal relations among
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variables in a dynamic system, e.g ., requiring system
models being self-contained (Iwasaki & Simon 1994 :
Trave-Massuyes & Pons 1997) . Therefore, a technique
which may reduce such restrictions is clearly very de-
sirable .
To better understand causal relations between sys-

tem variables, it is useful to investigate what repres-
ents the fundamental features of physical quantities and
their relationships . When describing the behaviour of a
physical variable, the most distinct characteristic is its
physical dimensions. For this reason, dimensional ana-
lysis (Buckingham 1914 ; Huntley 1952) has long been
serving as a basis upon which to create quantitative sys-
tem models and/or to perform model-based simulation
in classical physics and control engineering . Recently,
it also has been applied to developing a method for
qualitative reasoning (Bhaskar & Nigam 1990), though
this method does not establish an explicit causal order-
ing among system variables . Inspired by this observa-
tion, this paper presents a novel approach for analysing
causality in physical systems by means of dimensional
analysis . Given the structural and behavioural descrip-
tion of the system considered, and the knowledge of the
dimensions of the system variables, the proposed tech-
nique can be applied both to produce a causal ordering
amongst the variables and to provide an identification
for the directions of causal effects on the changes of
variable values .
The rest of this paper is structured as follows . The-

oretical foundations are introduced in the next section,
showing the basis upon which to develop the present
work . The causal ordering algorithm based on the di-
mensional analysis is then described in section 3 . Illus-
trative examples of this method are given in section 4 .
The paper is concluded and further work pointed out
in section 5 .

Dimensional Analysis
Underlying Theories

Informally, dimensional analysis (Buckingham 1914 ;
Huntley 1952) is a method by which information about
a physical variable can be deduced from that on cer-
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tain other variables, given a dimensionally consistent
relationship between them . Based on the laws of mo-
tion formulated by Newton, three units are regarded as
fundamental, namely, length (L), mass (M) and time
(T) (Huntley 1952) . These are termed base units in
this paper . Any other physical unit is regarded as a
derived unit, since it can be represented by a combin-
ation of these base units . Each base unit represents
a dimension . For instance, the units of velocity and
acceleration are derived ones and have two dimensions
because they are defined by reference to two of the base
units - length and time . The units of force, momentum
and power are a composite of all the three base units,
and therefore have three dimensions . In what follows, a
variable whose unit is a base unit is called a base vari-
able, otherwise the variable is called a derived variable .
In this paper, the mass (MLT) system is adopted for
the expression of physical dimensions . However, it is
not the unique option . For instance, the study of elec-
tricity and magnetism has shown the value of including
other dimensions as base units .
The present work makes use of the following three

most basic properties of dimensional analysis .
Principle of dimensional homogeneity. Given that y =
Ei ai fi(xi) represents a physical law governing the beha-
viour of a certain system, with y and xi being the system
variables or their temporal derivatives and ai being the
corresponding parameters, all the aifi(xi) must have the
same dimensions as y .

" Product theorem . If the value of a variable can be derived
from measurements of given base variables u, v, w, . . ., that
value can then be written in the form of Cu°vow-1 . . .,
where C, a,)3 ) 7, . . . are constants .
Buckingham's II-theorem. Given physical quantities
u, v, w, . . . such that f(u, v, w, . . .) = 0 is a complete equa-
tion (that reflects the underlying physical laws charac-
terising the physical situation), then its solution can be
written in the form F(II1, 112, . . ., Iln_,) = 0, where n is
the number of arguments of f and r is the number of basic
dimensions needed to express the variables u, v, w, . . . ; for
all i, IIi is a dimensionless number .
xi having the same dimensions with y means the fol-

lowing : the exponents of the three base units (dimen-
sions) that make up these two variables must be the
same.
From the product theory, given the use of the mass

system, the dimensions of any physical variable can be
represented in the general form of M'LOTI . Such a
representation of a variable is referred to as the dimen-
sional representation of that variable . Following this
representation, for example, the physical quantity force
can be dimensionally represented by MLT-2 , pressure
by ML-1 T-2 and velocity by LT-1 .

In general, a dimensionless product II can be ex-
pressed as follows :

Hi = yi X (xii, . . .xai . )
where xl, . . ., x,. are termed the repeating variables,
yl, . ., y,. are termed the performance variables and
jaijIl < i < n - r, l < j < r} are the exponents .
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II-calculus
The II-calculus (Bhaskar & Nigam 1990) is developed
mainly for the purpose of reasoning about physical
devices, processes and systems . It is especially useful
for deriving the causal structure of the device's beha-
viour, given the input and output of a device, by means
of partial derivatives . This technique is briefly summar-
ised below . For simplicity, each dimensionless number,
IIi is called a regime, and a collection of regimes is called
an ensemble (typically, in modelling physical systems,
an ensemble can be seen as a distinct component) . If
xk is a variable that occurs in both regimes Ili and 11 j ,
then the xk will be referred to as a contact variable
between these two dimensional products . The set of
variables xj, 1 <_ j _< r that repeat in each regime is
called the basis of an ensemble . The size of the base of
an ensemble, r can be determined directly by the num-
ber of base units that are involved in the dimensional
representations of variables in that ensemble .
The analyses can be divided into three levels based

on the relationships among the dimensionless products .
1 . Intea-regime analysis . The analysis is within a regime

and provides the following method for calculating partial
derivatives :

Basic Notations

ayi/8xj = -(aijyi)/xj

2 . Inter-regime analysis . The analysis is across regimes and
gives the following method for calculating partial deriv-
atives :

[ .9yi/,9yjlxp = (-iP/ajP)(yi/yj)

where xP is a contact variable for regimes IIi and IIj .
3 . Inter-ensemble analysis. The analysis is across ensembles

and extends the inter-regime analysis to calculate inter-
ensemble partial derivatives . However, no explicit for-
mula for such calculation is generally available .

When the sign of a partial derivative, 9yilOxj (or
[,9yilayj]'P ), is obtained, the causal effect between
ayi and axj can then be inferred . For instance, if
ayilaxj > 0, then an increase in xj will lead to an
increase in yi ; if 9yil8xj < 0, then an increase in xj
will lead to a decrease in yi . However, the calculation
of the inter-ensemble partials is not straightforward . It
will need some knowledge about connections between
components, since an ensemble (of regimes) comes from
a component in a device . This issue will be discussed
further in the next section .

The Proposed Approach

To start with, the dimensional representation of a vari-
able x is hereafter denoted by D(x) . Therefore, for
force f, pressure p and velocity v, the following holds :
D(f) = MLT-2 , D(p) = ML-1 T-2 and D(v) = LT-1 .

Definition 1 . Two physical variables xl and x2 are
equivalent to each other if and only if they have the
same dimensional representation, i .e . D(xl) = D(x2)-
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This definition denotes the unique dimensional rep-
resentation of physical variables within a given system .

Definition 2. A system variable is regarded to be
exogenous if it is controlled only by factors external to
the system ; other variables are called non-exogenous .
An equation that indicates a variable to be exogen-
ous is called an exogenous equation; other equations are
termed non-exogenous equations.

This definition includes the understanding that if a
variable is exogenous, its derivative is treated as exogen-
ous as well . Exogenous variables are determined during
the modelling process . They jointly set up the scope of
the physical system being modelled, separating it from
the rest of the world. Such variables play an import-
ant role in causal ordering and, indeed, in any system
modelling approaches .

In systems modelling, variables are normally repres-
ented as a function of time. Hence, the base unit time
(T) is regarded more fundamental than the other two
base units length (L) and mass (M). The following
definition reflects this understanding .

Definition 3. For a given variable, x, the number
of different base units appearing in its dimensional rep-
resentation, excluding the dimension time if it has neg-
ative power, is called the degree of commitment of the
variable, denoted as cd(x) ; the algebraic sum of the ex-
ponents of all the base units involved is called the degree
of factorisation of the vaxiable, denoted as fd(x) ; and
the algebraic sumof the exponents of the base units, ex-
cluding that of dimension time if it has negative power
is called the degree of factorisation excluding negative
time of the variable, denoted as fd-t(x) .

For example, given the dimensional representation of
force D(f) = MLT-2, the degree of commitment of
force cd(f) = 2, the degree of factorisation fd(f) =
1+1+(-2) = 0 and the degree of factorisation excluding
negative time fd-t(f) = 1 + 1 = 2.
A functional relation between two variables which is

represented by an equation is reversible (or symmetric
as referred to in (Iwasaki & Simon 1994)), if x is ex-
pressed as a function of y and y can also be expressed
as a function of x. However, causal relations are ir-
reversible, i.e ., that x causes y clearly does not imply
that y causes x. The purpose of causal ordering is to
find the causal relations among the variables in a given
model, which will convert a set of reversible equations
into a set of irreversible constraints amongstthe system
variables.
The question is, given a set of system variables, how

to determine which variable may have a higher degree
of freedom to change its value? A variable is of a higher
degree of freedom if it is more independent of, or less
dependent upon the change of values of other system
variables. Intuitively, variables with a lower cd and/or
a lower fd-t value appear to be of a higher freedom de-
gree and hence more independent, unless otherwise spe-
cified . For example, suppose that a given system model
includes the following two variables, force f and velo-
city v, with D(f) = MLT-2 and D(v) = LT-1 . This
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dictates that cd(f) = 2, fd-t(f) = 2 and cd(v) = l,
fd-t(v) = 1 . If these two variables appear in the same
equation and none of them is regarded as special (e .g .
exogenous), then using the above heuristic, f is treated
as more dependent than v. A natural deduction of this
is that force can be regarded as depending on velocity at
any given time instance, but not vice versa. This agrees
with commonsense understanding of the physical rela-
tion between these two physical quantities . The con-
ditions mentioned here are very important. Otherwise,
the use of the heuristic may result in counter-intuitive
conclusions. For instance, consider a simple, autonom-
ous pendulum, without taking into account any special
constraints, it may be concluded that the gravitational
force would depend on the bob's velocity. This is not
true because the gravitational force should have been
initialised as an exogenous variable . Given these two
variables appearing in the same equation, the correct
explanation should be therefore that the bob's velocity
depends on the gravitational force.

In addition, variables that have a dimension of time
with negative power seem to be more independent, and
the higher the negative exponent of the time dimension
that a variable has, the less reliant its current value
is upon the current values of other variables. In dy-
namic systems, this implies that, given two variables of
different amounts of power on the time dimension and
both being involved within one equation with the same
cd and fd-t, the change of value of the variable with
a more negative time exponent tends to occur before
that of the other variable. For example, the change of
physical quantity velocity v(D(v) = LT-1) causes the
change of quantity length s(D(s) = L), given s = vt
(i .e . motion with a constant speed), where t stands
for the absolute time . This again matches the intuitive
understanding of the mechanics.

Generally speaking, a system is composed of some
components . The behaviour of a system is determined
by the behaviour of its components together with the
specifications of their inter-connections, with the beha-
viour of each component being generally expressed as
a set of equations. In this paper, the inter-connections
between system components are specified using struc-
tural constraints which are imposed by the topological
or geometrical linkages among these components . Such
constraints imply the causal relations between the vari-
ables used to describe the boundary conditions of the
components . This knowledge cannot be obtained from
dimensional analysis, but from the design knowledge of
the system (Bhaskax & Nigam 1990) .

Definition 4. Given an ordinary equation
or a structural constraint relating system variables
u, v, . . . ; x, y, . . ., which may be quantitative or qualitat-
ive and may include temporal derivatives, (x, y, . . .] =
[u, v, . . .] is named a symbolic causal equation, which
signifies that the variables on the left hand side (LHS)
causally depend on the variables on the right hand side
(RHS) (if such a causal relationship between the system
variables considered can indeed be established) . The or-
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der of the variables appearing on each side is arbitrary .
It is worth noting that, given an ordinary equation, it

is not necessary to impose restriction over the number
of the variables appearing on either side of its corres-
ponding symbolic causal equation . This differs from
the conventional representation of the irreversible (or
asymmetric) causal equation (Iwasaki & Simon 1994),
in which a constraint is imposed such that there is only
one variable that is allowed to appear on the LHS.

For convenience, two binary predicates Beless and
Inequation are introduced . Formula Bedess(xr, x2)
states that xr is less independent than x2 . Formula
Inequation(xr,x2) states that variables xr and x2 ap-
pear in the same equation within a given system model .
Conjecture. Let xr and x2 be two variables in a

given equation :
Beless{xr,xz) ~ cd(xl) > cd(xz)

V(cd(xl) = cd(xz) n fd~(xi) > fd~{xz))
V(cd(xr) -- cd(xz) n fd~(xi) = fd~(xz)

~fd(xi) > fd(xz))
Given two variables x r and x2, if neither

Beless(xr, x2) nor Beless(xz, xr) holds, the two vari-
ables are deemed to be dimensionally equivalent . A
joint use of predicates Beless and Inequation allows the
following notion to be defined .
Definition 5 . A variable, x is called the most de-

pendent variable in a given equation if it satisfies :

-~~y(Inequation(x, y) n Beless(y, x))
In order to deal with dynamic systems which always

involve differential equations, two further notions have
to be introduced . One is the well-known Integral Caus-
ality (Iwasaki & Simon 1994), which states that the
value of a variable depends on the derivative of itself.
The other is a weaker form of the differential causal-
ity rule also used in (Iwasaki & Simon 1994), which is
herein referred to as the Conditional Differential Caus-
ality Rule . This rule requires that the most dependent
temporal derivative or derivatives if there are more than
one, among all the derivatives within a differential equa-
tion, be causally dependent on all the other variables
and derivatives in that equation . For instance, given a
differential equation :

f(xr~xz,xs~x4~xs) = 0

if beless(xi,x2), then xi is causally dependent on x2 as
well as on x3, x4 and xs . If, however, xi and x2 are di-
mensionally equivalent, then both are causally depend-
ent on the variables x3, x4 and x5 .
The Conditional Differential Causality Rule is weaker

because a) it does not require differential equations to
be represented in first order, canonical form, which is
required by some causal ordering methods (Iwasaki &
Simon 1994; Lee & Compton 1994), and b) it allows
more than one most dependent derivative to co-exist
on the left hand side of a symbolic equation . A differ-
ential equation is said to be in canonical form if and
only if there is only one derivative in the equation, and
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the derivative is the only term appearing on the left
hand side of the equation (Iwasaki & Simon 1994) . In
addition, for the present approach, a derivative does
not necessarily have to appear on the left hand side un-
less it is also a most dependent derivative among all the
derivatives within the same equation .

Causal Ordering Algorithm
Having defined the basic notations for representing po-
tential causal relationships amongst variables in a sys-
tem model, an efficient algorithm is devised to rearrange
the model into a set of symbolic irreversible causal equa-
tions . This results in the following dimensional analysis
based causal ordering algorithm, where the identifica-
tion of variables' dimensions are done by performing a
simple pattern matching procedure .
1 . For each component in the system, do
(a) List the n variables that appear in the set of original

equations, which define the behaviour of the compon-
ent, and identify their dimensional representations .

(b) For each non-exogenous variable, calculate its cd, fd~
and fd; for each exogenous variable, set its cd, fd~ and
fd to zero .

(c) For each non-exogenous equation, let V = Vi + Vz be
the set of variables in it, such that Vi contains all the
derivatives and Vz contains the others, do

i . If the cardinality of Vi, ~ Vi ~ = 0, partition the set Lz
into two subsets Left and Right. Let Left contain all
minimal elements of the partial order beless:

Left = {x~~3y E Vz Beless(x,y)}

and Right contain the remaining variables :

Right = Vz - Left

ii . If ~ V ~ > 0, partition the set Vi into Right and Left in
the same way as partitioning Vz as in (c .i), and then
set

Right = RightU Vz
iii . For the two sets of variables, Left and Right, if both

are not empty, rearrange their elements to form the
corresponding symbolic causal equation, putting vari-
ables in set Right to the right hand side (RHS) of the
symbolic equation and those in set Left to the left
hand side {LHS) .

iv. If ~Right~ > 1, then set

Vi = {v ~ v E Right n v_is~llerivative}

Vz = Right - Li
and go to (i) (in order to identify, if any, further de-
tailed causal relations amongst such variables) .

2 . For every derivative variable dx in the system model, cre-
ate a symbolic equation such that [x] _ [dx] .

3 . For any two components which are connected, gener-
ate additional symbolic equations by directly putting the
boundary variables of one component to the right hand
side and those of the other to the left hand side, with
respect to the causal implication indicated by the given
structural constraints .
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This algorithm produces a set of symbolic equations,
which specifies the causal relations among all the sys-
tem variables. It is mainly composed of two parts, the
first (steps 1 and 2) dealing with equations within a
single component and the second (step 3) coupling any
two components . In this way, the algorithm is "context-
free" within one component and becomes "context-
dependent" between components . For different struc-
tural constraints (geometric or topological) between the
components, the causal behaviour of the device may
therefore be different accordingly. Thus, some variables
may be treated as non-exogenous when one component
is considered, while they may be treated as exogenous
when another component is coupled to it . Structural
constraints identify the causal relations among the vari-
ables involved .
The symbolic causal equations resulting from apply-

ing the algorithm can be interpreted as a causal graph,
which is a directed graph with the nodes being system
variables and the links being created by the following
method :

For any pair of variables, x and y, create a directed
link from x to y if they jointly appear in one original
equation or one structural constraint, and x is in the
RHS set and y in the LHS set of the corresponding
symbolic equation .
Formally, a directed graph G = (V, E) consists of

a finite non-empty set V of elements called nodes and
a set E of ordered pairs between the elements of V
called links. For simplicity, the set of all links point-
ing away from (pointing to) v, v E V, is denoted
by Eout(v) (Ein(v)), and the set of all nodes associ-
ated with Eout(v) (Ein(v)), excluding v, is denoted by
L0 t(v) (Vin(v)) . A node, v, is called an end node if
E,,ut(v)I = 0 or JEin(v)1 = 0.
In describing the behaviour of some system compon-

ents or their relationships, the defining sets of equations
and/or structural constraints may include more than
one most dependent variable . This algorithm puts all
such most dependent variables or derivatives into the
LHS of the resulting symbolic causal equations, rather
than artificially choosing just one of them to be put in
the LHS. Although this may sound conservative, this
treatment has so far appeared to produce reasonable
and intuitive results. There are at least two reasons
that support the present approach . Firstly, some of the
variables in a model may represent physical quantit-
ies that stand in a fully equivalent position . It is too
difficult, if not impossible, to tell the causal relations
among them . Secondly, should there be additional in-
formation available on the description of the system,
this may be utilised to discriminate further causal re-
lations without being forced to assume one of the vari-
ables to be the most dependent and later to retract
such assumptions. This approach is, therefore, more
flexible compared to the approach where only one vari-
able is allowed to be derived variable regarding any one
equation, an approach that is typically employed in the
existing causal ordering techniques .

^Mnn , -_L.. A . . . .. 0-ai-A

It should be noted that step (l .c .iv) is a recursive
procedure, allowing the algorithm to maximise the ex-
ploitation of dimensional information embedded in the
system variables. This is justified on the ground that
for any pair of variables that are both involved in one
equation and, hence, are inter-related, if they are of a
different independent level, then one is dependent on
the other. However, in some cases this treatment may
generate certain causal relations that are too detailed
to be necessary for the explanation of the system con-
sidered.
Another point worth mentioning is that the above

algorithm requires no explicit equations, quantitative
or qualitative, to be actually given, but an implicit in-
dication of there being a relation between the variables
involved . This is due to the fact that the causal re-
lationships among the variables appearing in a given
relation are generated by analysing the dimensions of
these variables alone.

Algorithm Extension
The above algorithm, as with other existing causal or-
dering methods, only returns a description of cause-
effect relationships between system variables given a set
of reversible equations os relations and a set of struc-
tural constraints . No identification of the causal impact
in terms of whether an increase in the value of an in-
fluencing variable may lead to an increase or a decrease
in the value of the influenced variables is provided . In
general, this kind of identification can be derived from
taking the partial derivative of the influenced variable
with respect to the influencing variable . The question
is how to calculate this kind of partials and what con-
ditions are required of such calculation . Fortunately,
a useful technique, the II-calculus (Bhaskar & Nigam
1990), which is also based on the dimensional analysis,
has been developed for deriving such identification for
a given physical system . Although the method based
on qualitative confluences (de Kleer & Brown 1984)
may also be used for this purpose, the employment of
confluences requires specialised restatements of phys-
ical laws, whilst the regimes used in the H-calculus are
directly derivable from dimensional analysis without ex-
plicit knowledge of physical laws .

To apply 11-calculus, a crucial step is the selection
of r basis variables in a model component. In general,
there are (k) choices ; however, many of these do not
yield an ensemble . Although some heuristics that may
help for such selection are given in (Bhaskar & Nigam
1990), a more explicit method is provided here, which
covers those heuristics as specific cases:

1 . For any component, write the set of all variables in the
component as S, set S, . where r is the size of the
basis;

2. Find a variable x in S, satisfying

-3y E S Beless(x, y)

(a) If there is only one such variable, then this variable is
selected and is put into set S,. ;



(b) If there are more than one such variable, then choose
any one of them and put it into the set Sr .

(c) Set S=S-S,
3. If JSrI = r then stop, the set S,. is the basis for the cor-

responding component; otherwise go to step 2.

Although temporal derivatives are allowed in the
causal graph generated by the above causal ordering
algorithm, only the relations among variables are con-
sidered in the II-calculus . In order to integrate the II-
calculus into this algorithm, the causal graph is needed
to be modified to remove the derivatives . For this pur-
pose, the transitivity that causality possesses as a basic
characteristic is used . The transitivity states that that
x causes y and y causes z implies that x causes z. Thus,
two causal links: a link from avariable x to a derivative
dy and a link from the derivative dy to a variable z can
be replaced by a link from the variable x to z . With
this transitional procedure, if z is itself also a derivative
and there is a link from z to another variable u, then
the path from x to u can be replaced by a single link
from x to u, and so on . The graph resulting from the
use of the transitivity shows the dependencies amongst
system variables only, excluding all the temporal deriv-
atives . Such graphs are hereafter named derived causal
graphs .
Given G = (V, E) being a causal graph including

some derivatives as its nodes, a derived causal graph
G' = (V', E'), which does not include any derivative as
its node, can be obtained from G using the following
procedure:

1 . Set V' = V and E' = E.
2. Select a derivative node dx in V', do

(a) If dx is not an end node, set

E'

	

=

	

E' - {Eont(dx) U Ei',(dx)} U
{u -> vju E Vi',, (dx),v E V,,ut(dx)}

(b) If dx is an end node, set

E' = E' - IE'ut(dx) U E;� (dx)}

(c) Set V' = V' - {dx} .

3. If there are no derivative nodes left, stop; otherwise go to
step 2

A derived causal graph can then be analysed by
means of the II-calculus, in order to obtain a causal
graph with impact signs, in which links are annotated
with a causal influence effect sign, + or -. The + sign
from variable x to variable y signifies that x causes y
to change in a monotonically increasing way, and the -
sign between them indicates that x causes y to change
in a monotonically decreasing way. Such information is
obviously very useful for performing many qualitative
reasoning tasks (de Kleer & Brown 1984 ; Forbus 1984 ;
Bhaskar & Nigam 1990 ; Lee & Compton 1994 ; Kuipers
1994) .
Thechange from an ordinary causal graph to the cor-

responding causal graph with impact signs may appear
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lQout

Figure 1: Bathtub System

Table 1 : Meaning of the variables

to loose some of the representational power of the ori-
ginal, since derivatives are eliminated . However, the de-
rivation of the new graph does not necessarily destroy
the old one. Detailed causal links involving derivatives
can be reserved by recording the original causal graph,
although there is no information on the actual effect of
how an influencing variable may cause the influenced
variable to change there.

Results
The above causal ordering algorithm has been imple-
mented . To illustrate the basic ideas, this section
presents some of the results from test-runs using anum-
ber of different system models .

Integral Causality
The proposed algorithm supports the Integral Causal-
ity rule (Iwasaki & Simon 1994). In fact, the fd value of
dx/dt is always less than that ofx, i.e . Beless(x, dx/dt)
holds in general. For instance, the temporal derivat-
ive of distance s is velocity v, whilst D(s) = L and
D(v) = LT -1 which gives fd(s) = 1 and fd(v) = 0 .
The resulting explanation is of course very intuitive,
showing that distance depends on velocity as mentioned
before .

Bathtub Model
This simple system, as shown in figure 1, which is
slightly revised from that given in (Iwasaki & Simon
1994) consists of five system variables as listed in table
1 .
The only differences between these two models are

that instead of using the depth of the water in the tub,
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Variable Variable Meaning
oin the input ow rate

Qout the output ow rate
D the mass of water in the tub
P the pressure at the bottom
K the size o the valve opening



Table 2: Dimensional values for Bathtub

Figure 2: Causal graph for the bathtub

the mass of water is used to describe the volume of the
water in the tub , and that no assumption of variable
K being exogenous is made . The system is modelled
by:

Qovt = c1KP

	

D

	

=CP
D

	

= C3(Qin - Qout)

	

Qin = C4

As this system is composed of only one compon-
ent, no structural constraints are involved . Given this
model, it is straightforward to work out the dimensions
and the cd, fd_t and fd values for each system variable .
The results are listed in table 2 .
With the input flow rate Qin being an exogenous,

running the dimensional-analysis based causal ordering
algorithm leads to the following symbolic equations:

[P]

	

= [K, Qout]

	

[Qout] _ [K]
[P]

	

_ [D]

	

[D']

	

- [Qin,Qout]
[Qoutj _ [Qin

	

[D]

	

-[D

which can be depicted as shown in figure 2. This indic-
ates :

The input flow rate affects the rate of change of the
mass and the output flow rate, the latter also affects
the rate of change of the mass and the pressure at the
bottom of the tub. The size of the valve opening de-
termines the output flow rate and the pressure at the
bottom of the tub, with the latter also depending on
the mass of water in the tub.

It is important to notice that, without the assump-
tion of variable K being exogenous, which is required
by the existing approaches as presented in (Iwasaki &
Simon 1994 ; Trave-Massuyes & Pons 1997) (in order
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to make the system model self-contained), the present
algorithm can still produce acausal ordering for the sys-
tem variables. It is, perhaps, more important to notice
that although most cause-effect links produced herein
are the same as those obtained using either of the exist-
ing approaches, there exists a significant difference . The
present work gives an explanation that the change of the
pressure at the tub bottom is caused by the change of
the output flow rate . This matches physical and intu-
itive understanding of the modelled system (Gawthrop
& Smith 1996) which involves a single component .

However, the conventional causal ordering theories,
e.g . (Iwasaki & Simon 1994) would provide an explan-
ation that the change of the pressure at the tub bottom
determines the change of the outflow rate, resulting in a
feedback loop within the system . Nevertheless, the de-
rivation of this feedback loop relies upon an additional
constraint that assumes that the mass (or depth) of
the water in the tub remains constant . This assump-
tion implies that another component, say, a regulator
is needed to control the output flow rate . From this
point of view, the outflow rate will become exogenous
for the original single-component system model. Given
this being the case, the application of the present causal
ordering algorithm will then generate a causal graph in-
volving the same feedback loop. In addition, the causal
link between Qin and Qout will no longer become ex-
plicit . Also, the causal influence direction between the
valve opening K and the outflow rate Qout will be re-
versed, which correctly indicates that the required out-
flow rate will determine the size of the valve opening
(which is exactly the job of the regulator component) .
Another interesting observation from the causal

graph of figure 2 is that a causal link between Kand P
is established, which is not achieved using either of the
above mentioned existing approaches . From this graph,
a derived causal graph can be generated using the al-
gorithm extension, in order to obtain the influence sign
for each link, by means of applying the 11-calculus .

In this example, there are five quantities and three
dimensions . Qin, D and K are selected as the basis by
the algorithm extension .
The resultant It are:

Ill = QOUt/Qin, 112 = PK7/2/DQin

Then the relative intea-regime partials can be calcu-
lated such that
" From Il l: C9Qout/aQin > 0
" From II2: OP/8K < 0, OPIOD > 0, 8P/BQin > 0

Given Qin as a contact variable, the corresponding
inter-regime partials are:

[aP/aQout]Qin = (aP/aQin)l(aQout/aQin) > 0

and

[aQ,,,t/OKJQin = (OQout/(9Qin)/(aK/aQin) > 0

This leads to the causal graph with signs as shown in
figure 3.

Variables Dimensions cd fd-t fd

Qin©~ 0 0 07D M 1 1 1
P ML-'T-2 2 0 -2
K L 1 2 2



Figure 3: Causal graph with signs for the bathtub

It is worth noting that no signs are obtained for the
derived causal links from Qin and Qout to D . This is
because, for example, the link from Qin to D comes
from the path Q in -+ D' -+ D while both Qin and D
are in the basis of the same regime . These sign-free links
are correct, however, since D depends on both Qin and
Qout . An increase in Qin does not necessarily cause the
increase in D, unless it is known that the outflow rate
is less than the inflow rate, a decrease in Q,,,,t does not
have to result in an increase in D, and so on.

Pressure Regulator
The pressure regulator model is adopted from (de Kleer
& Brown 1984) . The function of the pressure regulator
is to maintain a constant pressure at its output . This
device consists of two components : a pipe with an ori-
fice and a spring valve as shown in figure 4. Each com-
ponent is modelled individually first and the two com-
ponents are then coupled to form the system model,
subject to given structural constraints. The meaning of
the system variables is listed in table 3 .

Figure 4: The pressure regulator
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The component of the pipe with an orifice can be
modelled by the following equations:

Pout = CiQ

	

Q= (C2Pin + C3Aopen)IC4P
Pin = C5

	

P = C6

Where Pin and p are exogenous, and cl - c6 are positive
constants. The spring valve componentcan be modelled

by:

Table 3: Meaning of the variables

-kdx = c7dP

	

P= c8

	

k = c9

Where c7 - c9 are positive constants and k and P are
exogenous variables, and so is the derivative dP. The
dimensional values for each variable are worked out as
shown in table 4.
There are two structural constraints between the two

components . One is the connection that transmits the
outlet pressure in the pipe to the piston in the spring
valve component. That is, the rate of change of the
pressure on the piston, dP is determined by the out-
let pressure in the pipe, P,,,t . This connection also
yields the initialisation that the pressure'on the piston
is exogenous. The other constraint is that the motion of
the piston affects the orifice opening; more specifically
as the spring is compressed, the orifice reduces. This
constraint indicates that the displacement x determines
the opening Aopen . Running the dimensional-analysis
based causal ordering algorithm results in the following
symbolic equations:

[Pout]

	

_ [Q]
[Aopen] _ [Pin, P]
[dP]

	

_[Pout]
[P]

	

_ [dPJ

Table 4: Dimensional values

[Q]

	

_[Pi., P, Aopen]
[dxj

	

= [k, dPj
[Aopen] _ [x]
[xj

	

= [dxj

This leads to the causal graph as shown in figure 5, in
which there is a feedback loop:

Q--~ Pout-+dP -+dx --+ x-4Aopen -?Q
From this causal graph, a derived causal graph

without derivatives involved can be generated by the
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Variable Variable Meaning
P..t the outlet pressure
Pin the inlet pressure
p the fluid density
Q the once ow rate

A,,pen the orifice opening
x the spring displacement
P the pressure on the piston
k [ the spring constant

Variables _Dimensions cd fd-t fd
Pout L- MT- ' 2 0 -2
Pin L- MT- 0 0 0
p ML- 0 0 0
Q L T- 1 3 2

A,,pen L 1 2 2
x L 1 1 1
P L - MT- 0 0 0
k MT- 0 0 0



Aopen -4

	

X +~

	

ttx

out
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Figure 5: Causal graph for the pressure regulator

algorithm extension given in the previous section. For
instance, the link from Pout to x comes from the path
Pout --+ dP --+ dx --> x, while the link from Pout to P
comes from the path Pout -+ dP -+ P.
In the pipe component, there are five variables and

three dimensions are involved . It is easy to select Qin,
p and Ape,, as the basis by the algorithm extension.
Similarly, P and k can be chosen as the basis for the
spring component. Applying the II-calculus to the de-
rived causal graph, partial derivatives and hence the
causal graph with impact signs for the pressure regu-
lator can be obtained . The result is shown in figure 6.
To show how the partials are calculated, for example,
consider the pipe component, in which there are two
regimes:

I1 = (QP1/2 )I (Aope.P,/2 )

	

112 = PoutlPin

The relative intea-regime partials can be calculated as
. From Hi : aQliV,n > 0, OQIOAopen > 0, OQlap < 0.
" From 112 : aPo.t/aPin > 0.
Given Pin as a contact variable, the corresponding
inter-regime partial is calculated by

lap--'10Q1 pi� = (0Povt/aPin)l(0Ql0Pin) > 0.

Figure 6 : Causal graph with signs for the pressure regulator

From the reaching causal graph, the behaviour of the
pressure regulator can be reasoned as follows:
An increase in Pin leads to an increase in Q. This
increase in Q leads to an increase in ,,,t.The increase

in P,,t leads to a decrease in the spring displacement
x . This decrease in x leads to a decrease in Ape, in the
pipe orifice component. The decrease in Aopen leads to
the decrease in Q. Finally, this decrease in Q leads to
a decrease in Paut .
This explanation confirms that there is a feedback

loop: an increase in Pout eventually leads to a decrease
in Pout . This reflects the correct desired functional-
ity of the system - to prevent the outlet pressure from
deviating from a preset constant value. The causal ex-
planations given here are intuitive. However, the causal
links from Pin to Aopen and from p to Aopen seem to
be a bit too detailed, caused by the use of the recursive
procedure of the algorithm. The value of Aopen is in-
deed affected monotonically by the values of both Pin
and p in general, although such influences are often ig-
nored in many applications due to their considerably
less significance in comparison with other causal links
generated within the system .

It is interesting to compare the present technique
with those proposed in (Iwasaki & Simon 1986 ; 1994 ;
Lee & Compton 1994; Trav&Massuyes & Pons 1997)
with respect to the treatment of multi-component
devices. In this work, if a device is composed of more
than one component, each component is considered sep-
arately first and the structural constraints among the
components are then taken into account while coup-
ling pairs of the components . The pressure regulator
example shows that this treatment is quite successful .
However, using the methods mentioned above, addi-
tional explicit equations should be given in order to
represent the component connections or specific func-
tionalities such as feedback loops. Finally, those ap-
proaches do not provide the impact signs of the actual
causal effects. The present work provides a method to
specify such impacts.

Conclusions
This paper has presented a novel approach to generate
a description of the causal relationships betvaeen sys-
tem variables and, also, to identify the actual impact of
the causal effects by attaching a calculated positive or
negative sign to each generated causal link . The sign
indicates whether a change in the value of an influen-
cing variable will lead to an increase or a decrease in the
value of influenced variables. The work rests its theor-
etical foundations on the conventional dimensional ana-
lysis developed in classical physics and the 11-calculus
reported in (Bhaskar & Nigasn 1990). The causal or-
dering derived depends not only on the relationships
among the system variables and their dimensional rep-
resentation, but also on the system initialisation and
the structural constraints .

Experimental results have shown that the present ap-
proach retains the most appealing characteristics of the
existing causal ordering approaches, and enjoys being
able to produce a causal explanation for considered sys-
tems, which reflects intuitive understanding of causal
dependencies amongst the system variables. However,



the present approach is not able to produce any causal
ordering between related varialbes which are dimen-
sionally equivalent, though such variables might stand
for quantities of the same physical position in the first
place.
The work requires a number of further investigations,

including: a) examining its application for more com-
plex systems; b) investigating the possibility of integ-
rating the present method with one or more other ex-
isting causal ordering algorithms, in order to maximise
their benefits to generate better causal explanations ;
and c) studying its application for the purpose of fault
diagnosis. The successful outcome of such future work
would certainly enhance the performance of qualitative
model-based reasoning systems.
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