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ABSTRACT 

In the present work, a novel flexibility-based nonlocal frame element for size-dependent 

analyses of nano-sized frame-like structures is proposed. The material small-scale effect is consistently 

represented by the stress-driven nonlocal integral model and the element equation is constructed within 

the framework of flexibility-based finite element formulation. The merits of both stress-driven nonlocal 

integral model and flexibility-based finite element formulation render the proposed nonlocal frame 

element “consistent” and “exact”. Therefore, the “one-element-per-member” modeling approach is 

applicable. The modified Tonti’s diagram is utilized to show the overview of the element formulation 

and to summarize the formulation step. The element state determination process as well as the 
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displacement recovery procedure are also discussed. Three numerical examples are employed to show 

accuracy, characteristics, and applications of the proposed nonlocal frame element. The first example 

shows the model capability to eliminate the “constant-force” paradoxical responses inherent to the 

Eringen’s nonlocal frame model and the simplified strain-gradient frame model; the second presents and 

characterizes the essence of the material small-scale effect on global and local responses of a propped 

cantilever nanobeam; the third investigates the material small-scale effect on the tensile response of an 

auxetic metamaterial. All analysis results demonstrate that the material nonlocality associated with the 

stress-driven nonlocal integral model consistently yields a stiffer system response.  

Keywords: nanoframe; stress-driven nonlocal elasticity; small-scale effect; flexibility-based frame 

element; finite element; auxetic metamaterials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

In nanoscience and nanotechnology, frame-like structures have found a broad spectrum of 

novel applications such as atomic force microscopes [1-2], resonators [3-4], gyroscopes [5-6], 

actuators and sensors [7-8], auxetic metamaterials [9-11], and carbon nanotube networks [12-13]. 

Both experimental studies and atomistic/molecular dynamic simulations have confirmed the 

essence of the material small-scale effect on mechanical responses when the dimension of a 

structure ranges from nanoscale to microscale [14-19]. Long-range inter-atomic forces associated 

with the discrete nature of materials is responsible for the material small-scale effect inherent to 

nano-sized structures [20]. Classical (local) elasticity theory fails to represent the material small-

scale effect since the discrete nature of materials cannot be homogenized into a continuum. The 

atomistic/molecular dynamic modeling approach could be a viable and natural choice to 

characterize mechanical responses of nano-sized structures [17-19], however, it is computationally 

expensive and time consuming. Therefore, only systems with small numbers of molecules and 

atoms can practically be analyzed using this approach [21]. To compromise between model 

accuracy and model efficiency, several researchers have enriched classical elasticity theory with 

the ability to account for the material small-scale effect, thus leading to a family of enhanced 

elasticity theories, such as strain gradient [16, 22-24], couple stress [25-28], and nonlocal elasticity 

models [29-32]. What all enhanced elasticity theories share is the addition of material length scales 

to characterize the material nonlocality associated with long-range inter-atomic forces. As the most 

popular among these enhanced elasticity theories, the strain-driven nonlocal theory proposed by 

Eringen [29] considers the material small-scale effect through an integral convolution statement 

between the strain fields and a scalar kernel function representing the material nonlocality. 

Consequently, the essence of this nonlocal theory is in its assertion that the stress at a given point 

is induced not merely by the strain at a particular point but also by strains at all other points 

throughout the elastic body. It worth remarking that Vaccaro et al. [33] has recently adopted the 

essence of Eringen nonlocal theory [29] to develop a rational nonlocal elastic foundation model 

and named it the displacement-driven nonlocal foundation model. Different structural-mechanics 

models have cooperated with this nonlocal theory to include the material small-scale effect [34-

42]. However, several researchers have noticed peculiar responses obtained with these small-scale 

structural-mechanics models and considered them as a “paradox” [43-46]. Romano et al. [47] 



diagnosed the root of this paradox and concluded that adoption of the strain-driven nonlocal theory 

could lead to an ill-posed structural-mechanics problem. Furthermore, Vaccaro et al. [48] clearly 

demonstrated that the bending moment response obtained with the strain-driven nonlocal beam 

model does not satisfy differential and boundary equilibrium conditions, thus providing a physical 

insight into the ill-posed structural-mechanics problem. As a result, several researchers have 

recently turned their focus from the strain-driven nonlocal model to the strain-gradient-type 

constitutive model as an alternative to develop rational structural-mechanics models [23-24, 49-

53]. In essence, the strain-gradient-type constitutive model asserts that the stress at a generic point 

is induced not only by the strain but also by the derivatives of the strain (strain-gradient). The 

strain-gradient structural-mechanics models was proven to be well-posed within the framework of 

variational formulation by Niiranen et al. [54]. However, non-classical boundary conditions 

associated with the higher-order governing differential equation usually occur for strain-gradient 

structural-mechanics models and there is no consensus on their physical meaning. As a result, 

different views on the non-classical boundary conditions could alter obtained responses [53]. 

By interchanging source and output quantities of the strain-driven nonlocal integral 

constitutive model, Romano and Barretta [31] developed an innovative nonlocal integral 

constitutive model and named it the “stress-driven” nonlocal constitutive model.  The basis of this 

innovative nonlocal model is in its affirmation that the strain at a reference point depends not only 

on the stress at a particular point but also on stresses at all other points throughout the elastic body. 

As shown by Romano and Barretta [55] and Apuzzo et al. [56], the stress-driven nonlocal 

constitutive model leads to a well-posed structural-mechanics problem. To ease the model 

application, the consequent differential form of the stress-driven nonlocal constitutive model was 

consistently derived by Romano and Barretta [31] and Vaccaro et al. [57]. Although the resulting 

governing differential equation possesses the higher-order derivative term, the necessity of the 

additional boundary condition is satisfied by the supplementary constitutive boundary condition. 

Also, unlike in strain-gradient structural-mechanics models, there is no ambiguity in the non-

classical boundary condition. Consequently, researchers worldwide have recently adopted the 

stress-driven nonlocal constitutive law both in the integro-differential form and the equivalent 

differential form to develop reliable structural-mechanics models for characterization of nano-

sized structures [58-65]. 



In literature, nonlocal finite element models have been formulated by several researchers [34, 

36, 39, 66-70] and have been mainly applied to single nano-sized bars and beams. Most of them 

have adopted the differential form of the strain-driven nonlocal model, thus resulting in 

paradoxical and inconsistent responses in some cases. To remedy these problematic responses, the 

integro-differential form of the strain-driven nonlocal model has recently been revisited by several 

researchers and the stiffness-based finite element formulation has been employed to construct the 

model equation [66-69]. Due to the approximate nature of assumed displacement interpolation 

functions, a large number of elements are usually required to obtain a converged solution even for 

a simple beam system [67-69]. Furthermore, a special element assembly procedure is required to 

account for the material nonlocality throughout the domain and the resulting structural stiffness 

matrix is fully populated, thus increasing the computational expense [67-69]. It is worth remarking 

that besides the nonlocal finite element method, the so-called “nonlocal operator” method 

proposed by Rabczuk et al. [71] and Ren et al. [72] has recently been employed to characterize 

nano-sized structures [73-74]. This innovative numerical method was originally developed for 

solving partial differential equations of field problems (e.g. solid mechanics, electromagnetics) and 

is consistent with the method of weighted residuals and the principle of variation. 

To narrow the research gap in the area of nonlocal finite element models, the development of 

a rational nonlocal frame model with computational efficiency is sought. As mentioned by 

Numanoglu and Civalek [75] and Russillo et al. [76], nano-sized skeleton structures have found a 

wide spectrum of novel applications in nanoscience and nanotechnology: auxetic metamaterials [9-

11], carbon nanotube networks [12-13], cellular nanostructures [77], and electro-thermal actuator 

bent-beams [78]. An efficient nonlocal frame model plays an essential role in modeling and 

characterizing responses of these nano-sized skeleton structures. Up to now, only a few nonlocal 

frame models have been proposed in the research community [75-76, 79]. For example, 

Numanoglu and Civalek [75] developed a nonlocal frame element based on Eringen’s nonlocal 

differential model and the Galerkin weighted residual method. Hozhabrossadati et al. [79] also 

employed Eringen’s nonlocal differential model and the Galerkin weighted residual method to 

construct a nonlocal grillage element. It is worth emphasizing that Eringen’s nonlocal differential 

model is adopted by Numanoglu and Civalek [75] and Hozhabrossadati et al. [79] to develop their 

nonlocal frame models. Therefore, paradoxical and inconsistent responses can possibly be 



obtained with these nonlocal frame models. Recently, Russillo et al. [76] proposed a “paradox-

free” nonlocal frame element. In this element formulation, exact displacement interpolation 

functions were obtained from the homogeneous solution to the stress-driven nonlocal differential 

equilibrium equation, thus yielding the “exact” element stiffness matrix as well as the “exact” 

element mass matrix. However, the focus of the study was mainly on vibration analyses of nano-

sized frames and the general framework of the finite element formulation was not thoroughly 

presented. Therefore, there is still room to add a rational nonlocal frame element into the research 

community and hence the primary interest of the present work.  

The nonlocal frame model proposed in the present work is a marriage of the stress-driven 

nonlocal integral model and the flexibility-based finite element formulation. It is observed that the 

deformation-force relation (compliance form) in the stress-driven nonlocal integral model is very 

well suited to the nature of flexibility-based finite element formulation. Furthermore, the element 

load can be added naturally within the framework of flexibility-based finite element formulation 

and this feature is not valid in the stiffness-based finite element formulation employed by Russillo 

et al. [76]. To date, the flexibility-based finite element formulation has been extensively employed 

to develop a more computationally efficient numerical platform for nonlinear analysis of structures 

[80-84]. Several drawbacks inherent in the standard stiffness-based finite element formulation 

were shown to be eliminated in the flexibility-based finite element formulation [80]. The enhanced 

accuracy of the flexibility-based model is associated with the merit of employed force 

interpolation functions. This merit relies on the fact that the internal force distributions along the 

element length can be exactly determined even for the nonlocal material, thus leading to the 

“exact” finite element model. Therefore, the “one-element-per-member” modeling approach is 

valid for the proposed nonlocal frame element. To the authors’ best knowledge, the present work 

proposes for the first time the flexibility-based stress-driven nonlocal frame model. The 

advantages of both stress-driven nonlocal integral model and flexibility-based finite element 

formulation are fully considered by the proposed frame model. 

The structure of this research work is as follows: first, the stress-driven nonlocal integral 

constitutive models for axial and bending responses are introduced. Then, the theoretical 

framework of flexibility-based finite element formulation is discussed and the flexibility-based 

stress-driven nonlocal frame model is formulated within the framework of the matrix virtual force 



principle. The modified Tonti’s diagram is utilized to show the overview of the model formulation. 

The element state determination process as well as the displacement recovery procedure are also 

presented. Finally, an assessment of model accuracy and a demonstration of model application and 

effectiveness are conducted via three numerical examples. The first example shows the model 

capability to eliminate the “constant-force” paradoxical responses inherent to the Eringen’s 

nonlocal frame model [34, 37] and the simplified strain-gradient frame model [52-53]. The second 

presents and characterizes the essence of the material small-scale effect on global and local 

responses of a propped cantilever nanobeam. The third investigates the material small-scale effect 

on the tensile response of an auxetic metamaterial. It is worth emphasizing that every frame 

member in all examples is represented only by a single proposed frame element, thus requiring no 

finite-element discretization. The proposed frame element is implemented in the general-purpose 

finite element platform FEAP [85]. 

 

2. Stress-Driven Nonlocal Integral Model: Axial and Bending Responses 

 The stress-driven nonlocal integral model proposed by Romano and Barretta [31] is employed 

in this study to represent the small-scale characteristic present in nano-sized structures. In this nonlocal 

model, the strain at a point is induced by stresses at all points throughout the domain via a convolution 

integral statement. For the present emphasis of a planar Euler-Bernoulli frame, the expressions of the 

stress-driven nonlocal models for axial and bending responses are given by Barretta et al. [59] and 

Vaccaro et al. [48], respectively as: 

 ( ) ( ) ( )
( ) ( )

, c
xxL

N x
x x x l dx

E x A x
ε ψ= −∫  (1)   

 ( ) ( ) ( )
( ) ( )

, c
xxL

M x
x x x l dx

E x I x
κ ψ= −∫  (2)   

where  ( )xε ( )xκ

( )N x   and bending moment  

( )M x ; ( )xxE x  is the elastic modulus; ( )A x  is the section area; ( )I x  is the second moment of 

area; L is the frame length; ( ), cx x lψ −



nonlocality;  x x−  is the Euclidean distance between two material points  x and  x ; and cl  is the 

nonlocal characteristic length.   

 In this study, the following Helmholtz bi-exponential function is adopted as a scalar kernel 

function: 

 ( ) 1,
2

c

x x
l

H c
c

x x l e
l

ψ
−

−

− =  (3)   

 As shown by Barretta et al. [62], the Helmholtz bi-exponential function of Eq. (3) satisfies the 

following properties: 

 ( ) ( ), , 0H c H cx l x lψ ψ= − ≥ : parity-positivity-symmetry (4) 

   ( ) ( )
0

lim ,
c

H c
l

x l xψ δ
+→

= : limit impulsivity (5) 

   ( ) ( ) ( )
0

lim ,
c

H c
l

x x l f x dx f xψ
+

+∞

→
−∞

− =∫  (6) 

 The implication of Eq. (4) ensures that the employed scalar kernel function is a positive 

distance decaying function and attains its maxima at x x=  while the requirements of Eqs. (5) and (6) 

ensure that the integro-differential constitutive relations of Eqs. (1) and (2) become the local 

compliance constitutive relations when the nonlocal characteristic length cl  approaches zero 

( 0cl
+→ ). It is worth mentioning that Barretta et al. [59] and Romano and Barretta [31] consistently 

transformed the integral convolution of Eqs. (1) and (2) into equivalent differential forms by employing 

the Helmholtz bi-exponential function of Eq. (3) as the scalar kernel function. The present study gains 

particular merit of this achievement since the constitutive relation in the differential form can be 

applied with ease and the analytical solution to the problem can be obtained. This feature is crucial to 

the verification and assessment of the proposed numerical model. Besides the Helmholtz bi-exponential 

function, other functions such as Gaussian, modified Bessel can be used as a scalar kernel function as 

long as they satisfy the requirements of Eqs. (4), (5), and (6). 

For the ease of the subsequent model formulation, the integro-differential constitutive relations 

of Eqs. (1) and (2) are written in the matrix form as: 

 ( ) ( ) ( ) ( ),H c
L

x x x l x x dx= −∫d ψ f D  (7) 



where the vector ( ) ( ) ( ) T
x x xε κ=   d collects the frame section deformations; the vector 

( ) ( ) ( ) T
x N x M x=   D compiles the frame section forces; the diagonal matrix 

( ) ( ) ( ) ( ) ( )
1 1

xx xx

x dia
E x A x E x I x
 

=  
 

f  collects the frame section flexibility coefficients; 

and the diagonal matrix ( ) 1 1,
2 2

c c

x x x x
l l

H c
c c

x x l dia e e
l l

− −
− − 

 − =
  

ψ  contains the scalar kernel 

function. 

3. Flexibility-Based Nonlocal Frame Formulation 

3.1 Equilibrium 

3.1.1 Strong form  

A nonlocal simply-supported frame under end loads ( 1 2 3, , andQ Q Q ) and distributed 

loads ( ( ) ( )andx yw x w x ) is shown in Fig. 1a. For the sake of simplicity, axially and vertically 

distributed loads are assumed uniform along the whole length of the frame 

( ( ) ( )0 0andx x y yw x w w x w= = ). However, the model formulation is also valid for the case of non-

uniformly distributed loads.   

A differential segment dx taken from the frame is shown in Fig. 1b. Considering all 

equilibriums of this differential segment provides the following relations: 

 
( )

0 0x

dN x
w

dx
+ =  (8) 

 
( )

0 0y

dV x
w

dx
− =  (9) 

 
( ) ( ) 0

dM x
V x

dx
+ =  (10) 

Based on the Euler-Bernoulli beam hypothesis, the shear force ( )V x  plays no role in the 

model formulation and can be eliminated by combining Eqs. (9) and (10) into a single expression as: 

 
( )2

02 0y

d M x
w

dx
+ =  (11) 



For the sake of conciseness, equilibrium conditions of Eqs. (8) and (11) are written in the 

matrix form as: 

 ( ) 0T x + =L D w  (12)   

where 0 0

T

x yw w =  w  represents the element load vector; and the diagonal matrix 

2

2

d ddia
dx dx
 

=  
 

L   contains differential operators.  

 

3.1.2 Force interpolation functions 

 Within the framework of flexibility-based finite element model, the nonlocal frame element is 

formulated. In this type of finite element formulation, the element section forces ( )xD  are considered 

as primary variables and must satisfy the equilibrium requirement of Eq. (12) in the point-wise sense. 

To fulfill this requirement, equilibrated force interpolations are necessary and their derivation is to be 

presented hereafter.  

 The nonlocal simply-supported frame of Fig 1a with its support reactions is shown in Fig 2a. 

Considering all equilibriums of the cut frame segment shown in Fig. 2b yields the following internal-

external force relations. 

 ( ) ( )1 0xN x Q L x w= + −  (13) 

 ( )
2

2 3 01
2 2 y

x x Lx xM x Q Q w
L L

    = − + + + −    
     

 (14) 

 It is worth emphasizing that the internal-external force relations of Eqs. (13) and (14) 

respectively satisfy the differential equilibrium conditions of Eqs. (8) and (11), thus fulfilling the 

fundamental requirement of the flexibility-based finite element model.  

 In the matrix form, Eqs. (13) and (14) can be expressed together as: 

 ( ) ( ) ( )x x x= +Q wD N Q N w  (15) 

where the vector 1 2 3
TQ Q Q=   Q  contains element nodal forces associated with the simply-

supported system; and the force-interpolation matrices ( )xQN  and ( )xwN  are defined as: 



 ( ) ( ) ( )
01 0 0

and
0 / 20 1 / /

L x
x x

x L xx L x L
−  

= =    −− +   
Q wN N  (16) 

 In literature, the element nodal forces 1 2 3, , andQ Q Q  are known as basic forces and are 

associated with the system without rigid-body modes (the basic system). It is worth mentioning that 

exclusion of all rigid-body modes from the system kinematics is necessary for establishing the 

equilibrated internal-external force relations of Eqs. (13) and (14). Besides the simply-supported 

system, the clamped-free (cantilever) system can be also employed a basic system. Details on this issue 

are thoroughly discussed in Elias [86].  

 

3.2 Section Constitutive Relation: Stress-Driven Nonlocal Integral Model 

 In the case of a prismatic frame with homogeneous material ( ( ) ( )xxE x A x  = xxE A  and 

( ) ( )xx xxE x I x E I= ), the matrix nonlocal constitutive relation of Eq. (7) can be written in the form 

similar to that of the local frame model as:  

 ( ) ( )NLx x=d f D  (17) 

where ( )NL xD  represents the nonlocal section force vector and is defined as: 

 ( ) ( ) ( ) ( ) ( ),NL NL NL
H c

L

x x x l x dx x x= − = +∫ Q wD ψ D N Q N w  (18) 

with ( )NL xQN  and ( )NL xwN  being defined as: 

 

( ) ( ) ( )

( ) ( ) ( )

,

,

NL
H c

L

NL
H c

L

x x x l x dx

x x x l x dx

= −

= −

∫

∫

Q Q

w w

N ψ N

N ψ N
 (19) 

As observed in Eq. (17), the flexibility form of the section constitutive relation confirms that 

the stress-driven nonlocal integral model is very well suited and natural to the flexibility-based finite 

frame formulation. The section constitutive relation of Eq. (17) together with the internal-external force 

relation of Eq. (16) enable the expression of the section deformations ( )xd  in terms of the external 

forces Q  and w via the convolution integration. 

 



3.3 Compatibility: Element Flexibility Equation 

 In a scalar approach to structural-mechanics problems, the compatibility condition can be 

written in an alternative manner using the virtual force principle. The fundamental expression of the 

virtual force equation is:  

 * * * 0int extW W Wδ δ δ= + =  (20) 

where *Wδ  is the total complementary virtual work; *
intWδ  the internal complementary virtual work; 

and *
extWδ  the external complementary virtual work. 

 In the present interest of the nonlocal simply-supported frame shown in Fig. 1a, *
intWδ  and 

*
extWδ  can be defined as: 

  ( ) ( )* T
int

L

W x x dxδ δ= ∫ D d   (21) 

 ( ) ( )* T T
ext

L

W x x dxδ δ δ= − −∫ w u Q V   (22) 

where 1 2 3
TV V V=   V  represents the basic element deformation vector and its conjugate-work 

vector is the basic element force vector Q .  

 The virtual element distributed load vector ( )xδw  can be arbitrarily chosen to be zero 

without loss of model generality. Therefore, the virtual force relation of Eq. (20) becomes: 

  ( ) ( ) 0T T

L

x x dxδ δ− =∫ D d Q V   (23) 

 Eq. (23) describes the compatibility relation between the section deformations ( )xd  and the 

basic element deformations V through the integral statement with the aid of an equilibrated virtual 

force system ( ( )xδD  and δQ ).  

 Substituting Eqs. (17) and (16) into Eq. (23) and accounting for the arbitrariness of δQ  

provide the following element flexibility relation: 

 NL NL+ =wF Q V V   (24) 



where ( ) ( )NL T NL

L

x x dx= ∫ Q QF N f N  is the nonlocal element flexibility matrix; and 

( ) ( )NL T NL

L

x x dx
 

=  
 
∫w Q wV N f N w  collects the basic element deformations due to the applied 

uniform distributed loads 0 0

T

x yw w =  w . 

 Equilibrium of Eq. (15), compatibility relation of Eq. (24), and constitutive relation of Eq. (17) 

establish a complete set of basic ingredients required for the flexibility-based nonlocal frame 

formulation and are summarized in the modified Tonti’s diagram of Fig. 3 [87]. 

 The inversion of the element flexibility relation of Eq. (24) yields the basic element stiffness 

relation as: 

 NL+ =wQ Q K V   (25) 

where the matrix 
1NL NL −

 =  K F  represents the basic element stiffness matrix; and the vector 

2 2
0 0 0/12 /12

TNL NL
x y yw L w L w L = = − w wQ K V  collects the basic element forces 

associated with the uniformly distributed loads ( 0xw  and 0yw ). It is worth noting that these basic 

element forces are the same as those obtained for the local frame model due to statical determinacy of 

the simply-supported system. Therefore, the superscript NL appended to the vector wQ  can be 

dropped.  

3.4 Rigid-Body Mode Transformation 

 To cooperate with the flexibility-based nonlocal frame model in the framework of stiffness-

based finite element platform, injection of all rigid-body modes into the simply-supported system (the 

basic system) of Fig. 1a is required. This rigid-body-mode injection can be achieved through the rigid-

body-mode transformation matrix RBMΓ . The statical and kinematical relations between the systems 

with and without rigid-body modes as shown in Fig. 4 give the following transformation expressions: 

 T
RBM= + wP Γ Q P   (26) 

 RBM=V Γ U   (27) 



where the vector 1 2 3 4 5 6
TP P P P P P=   P is the element force vector associated with the 

system with rigid-body modes (the complete system) and the vector 

1 2 3 4 5 6
TU U U U U U=   U is its conjugate-work displacement vector; the vector 

0 0 0/ 2 0 0 / 2 0
T

x y yw L w L w L = − wP  collects the element forces required to 

equilibrate with  the uniformly distributed loads  ( 0xw  and 0yw ); and the rigid-body-mode 

transformation matrix RBMΓ  is defined as: 

 

1 0 0 1 0 0
0 1/ 1 0 1/ 0
0 1/ 0 0 1/ 1

RBM L L
L L

− 
 = − 
 − 

Γ   (28) 

 Based on Eqs. (25), (26), and (27), the complete element stiffness equation is: 

 NL= + wP K U F   (29) 

where NL T NL
RBM RBM=K Γ K Γ  is the complete element stiffness matrix (congruent transformation); 

and T
RBM= − +w w wF Γ Q P  is the element force vector due to the presence of the uniformly 

distributed loads  ( 0xw  and 0yw ) and is simply equal to that obtained for the local frame model. 

4. Element State Determination 

For nonlinear analyses of frame structures, the flexibility-based frame model requires a special 

procedure to compute the element resisting forces and element stiffness matrix. Several researchers 

have proposed different element state determination procedures for nonlinear flexibility-based frame 

models. For the present study of linear structural analyses, the flexibility-based element state 

determination becomes much simpler and is explained following the framework of the procedure 

proposed by Limkatanyu and Spacone [88]. All integrations required in the element state determination 

are computed numerically using the Gauss-Lobatto quadrature. The merit of the Gauss-Lobatto 

quadrature is that the element ends are included in the integration points. Therefore, the extrapolation 

process to obtain element-end forces and deformations is not required like in the Gauss-Legendre 

quadrature. The step-by-step procedure of the element state determination is presented as follows: 



I. At each integration point i ( /i ix Lξ = ), perform the convolution integrations of Eq. (19) 

numerically to compute the nonlocal force-interpolation matrices ( )NL
iξQN  and ( )NL

iξwN : 

( ) ( ) ( )

( ) ( ) ( )
1

1

,

,

GL

GL

N
NL

i j H i j c j
j

N
NL

i j H i j c j
j

J w l

J w l

ξ ξ ξ ξ

ξ ξ ξ ξ

=

=

= −

= −

∑

∑

Q Q

w w

N ψ N

N ψ N
 

where J = L/2 is the Jacobian for [ ], 1, 1ξ ξ ∈ − ; jw  is the weight function at integration point j  

( /j jx Lξ = ); and GLN  is the number of integration points.  

II. Compute the element flexibility matrix NLF  and the basic element deformations NL
wV  due to the 

element loads w: 

( ) ( )
1

GLN
NL T NL

i i i
i

J w ξ ξ
=

= ∑ Q QF N fN  

( ) ( )
1

GLN
NL T NL

i i i
i

J w ξ ξ
=

 
=  

 
∑w Q wV N f N w  

III. Invert the element flexibility matrix NLF  to obtain the basic element stiffness matrix 

1NL NL −
 =  K F  . 

IV. Compute the basic element forces associated with the element loads w: 

NL NL=w wQ K V  

 As mentioned previously, these basic element forces are identical to those obtained for the 

local frame model due to statical determinacy of the simply-supported system. Therefore, this step can 

be skipped. However, the computed basic element forces NL NL=w wQ K V  can be employed to verify 

the accuracy of the basic element stiffness matrix NLK  and basic element deformations NL
wV  

determined numerically in step II. 

V. Construct the complete element stiffness equation from the basic stiffness equation using the rigid-

body-mode transformation: 

NL= + wP K U F  



where NL T NL
RBM RBM=K Γ K Γ  and T

RBM= − +w w wF Γ Q P . 

VI. Once the element nodal displacements U are obtained, the basic element deformations V and basic 

element forces Q can be obtained as: 

RBM=V Γ U  and NL+ =wQ Q K V  

VII. The nonlocal sectional forces ( )NL
iξD  at integration point i can be computed as:  

( ) ( ) ( )NL NL NL
i i iξ ξ ξ= +Q wD N Q N w  

VIII. The sectional deformations ( )iξd  at integration point i can be obtained as: 

( ) ( )NL
i iξ ξ=d f D  

 5. Displacement Recovery Procedure  

 Within the framework of flexibility-based finite element formulation, the axial-displacement 

( )u x  and vertical-displacement ( )v x  fields cannot be determined in a direct manner since there is 

no displacement interpolation function required in the formulation process. This is in opposition to the 

stiffness-based finite element formulation in which the displacement fields are related to nodal 

displacements through the displacement interpolation functions. Therefore, integrations of the 

following compatibility relations are required to recover the axial-displacement ( )u x  and vertical-

displacement ( )v x  fields: 

 ( ) ( )du x
x

dx
ε =  and ( ) ( )2

2

d v x
x

dx
κ =   (30) 

 Sectional deformations ( ( )xε  and ( )xκ ) at GLN  integration points can be obtained using 

the nonlocal constitutive relation of Eq. (17) and are collected in terms of GLN  axial-strain and 

bending-curvature values  as ( )j jε ξ= ε  and ( )j jκ ξ= κ  where /j jx Lξ =  represents a natural 

coordinate. Using the Lagrange interpolation technique, the axial-strain ( )xε  and bending-curvature 

( )xκ  fields can be approximated in terms of GLN  values of sectional deformations ( ( )j jε ξ= ε  

and ( )j jκ ξ= κ ) as:    



 ( ) ( )
1

GLN

j j
j

x lε ξ ε
=

=∑  and ( ) ( )
1

GLN

j j
j

x lκ ξ κ
=

=∑   (31) 

where ( )il ξ  represents the Lagrange polynomial defined as: 

 ( )
( )
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i
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l
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ξ
ξ ξ

= ≠

= ≠

−
=

−

∏

∏
  (32) 

and has the following property: 

 ( )j i ijl ξ δ=   (33) 

 Based on Eqs. (30) and (31), the axial-displacement ( )u x  and vertical-displacement ( )v x  

fields can be recovered as: 

 

( ) ( )

( ) ( )

1
1

2 3
1

GL

GL

N

j j
j

N

j j
j

u x L l d c

v x L l d c c

ξ ε ξ

ξ κ ξ ξ

=

=

 
= + 

 
 

= + + 
 

∑∫

∑∫
  (34) 

where 1c , 2c , and 3c  are constants of integration and can be determined by imposing geometric 

boundary conditions. It is noted that the displacement recovery procedure employed herein is based on 

sectional deformations ( ( )j jε ξ= ε  and ( )j jκ ξ= κ ) automatically computed during the element 

state determination. Therefore, this deformation-based displacement recovery procedure is well suited 

and natural to the employed element state determination. However, it must kept in mind that a 

nonphysical wriggling displacement profile may be obtained when excessive integration points are 

employed. 

  

6. Numerical Examples 

In this study, three numerical examples are employed to assess the accuracy and demonstrate 

the application and effectiveness of the proposed nonlocal frame model. The first example shows the 

model capability to eliminate the “constant-force” paradoxical responses inherent to the Eringen’s 

nonlocal frame model and the simplified strain-gradient frame model; the second presents and 



characterizes the essence of the material small-scale effect on global and local responses of a propped 

cantilever nanobeam; the third investigates the material small-scale effect on the tensile response of an 

auxetic metamaterial. It is worth emphasizing that every frame member in all examples is represented 

only by a single proposed frame element, thus requiring no finite-element discretization. Forty Gauss-

Lobatto integration points are used for all numerical integrations in the element state determination and 

result in satisfactory numerical results especially for a small value of the nonlocal characteristic length 

lc.  

6.1 Example I: Paradox-Free Responses 

 An aluminum cantilever under different types of end loadings shown in Fig. 5 is utilized to 

present the ability of the proposed stress-driven nonlocal frame model to remedy the paradoxical 

responses associated with constant axial force (Fig. 5a), constant bending moment (Fig. 5b), and 

constant shear force (Fig. 5c). The beam length L is 20 nm and the beam-section shape is square with a 

dimension h of 1.67 nm, thus 
22.79A nm=  and 3 4648.16 10I nm−= × . The elastic modulus xxE  

of aluminum is 68.5 GPa as provided by Oskouie et al. [58] and the material length-scale parameter 

5cl nm=  is selected to represent the material small-scale effect. Four different frame models based 

on various constitutive relations are employed and assessed. The first is the local (classical) frame 

model; the second is the Eringen nonlocal frame model of Limkatanyu et al. [34] and Limkatanyu et al. 

[37]; the third is the simplified strain-gradient frame model of Sae-Long et al. [52] and Sae-Long et al. 

[53]; and the fourth is the stress-driven nonlocal frame model proposed in this study. In addition, the 

analytical responses obtained with the differential form of the stress-driven nonlocal bar and beam 

models as given by Barretta et al. [59] and Romano and Barretta [31] are presented as “benchmark” 

responses to verify the validity of the proposed flexibility-based stress-driven nonlocal frame model.   

6.1.1 Constant axial-force state 

 Under an axial force at its end ( 0 50xP nN=

-gradient frame model are identical to that obtained with the local (classical) frame 



 simplified strain-gradient model [52] can capture the material small-scale effect. 

This peculiar observation is associated with the paradox inherent to the Eringen nonlocal constitutive 

model and has been extensively discussed in the literature [46, 52]. Employment of the simplified 

strain-gradient model leads to a well-posed structural-mechanics problem [54] and succeeds in 

remedying the famous paradoxical response of a cantilever beam under an end concentrated load [53] 

but fails to capture the material small-scale effect under the constant axial-force state. This failure is 

associated with the fact that the simplified strain-gradient model employed by Sae-Long et al. [52] can 

only consider the axial-strain gradient ( / xε∂ ∂ ) along the length. Nonetheless, under constant axial-

force state, there is no axial-strain gradient ( / 0xε∂ ∂ = ) along the length, thus overlooking the 

material small-scale effect. For the stress-driven nonlocal integral model adopted herein, the material 

small-scale effect is considered through the convolution integral of Eq. (1) and leads to a stiffer 

displacement response. This stiffening system response is in good agreement with both experimental 

and analytical results reported by several researchers [14-16]. Fig. 6 also shows that the axial 

displacement profile obtained with the proposed nonlocal frame model can resemble the benchmark 

result, thus confirming the accuracy of the proposed nonlocal frame model.  

 Fig. 7 shows and compares the axial-force and axial-strain distributions associated with all 

frame models. Clearly, the axial-force and axial-strain distributions obtained with the proposed 

nonlocal frame model can resemble the benchmark responses, thus confirming the model validity. Fig. 

7a indicates that all obtained axial-force distributions are identical regardless of the selected section 

constitutive model. This observation stems from a statically determinate nature of the system and has 

been noticed by several researchers [52-53]. Contrastingly, the axial-strain distribution obtained from 

the proposed stress-driven nonlocal frame model is different from those obtained from the other three 

frame models as shown in Fig. 7b. Accounting for the material small-scale effect via the stress-driven 

nonlocal model drastically alters the distribution nature of the axial strain along the length. 

6.1.2 Constant bending-moment state 

 Under an end moment ( 0 1.0M nN nm= − ), the cantilever of Fig. 5b is under a constant 

bending-moment state (pure-bending state). Fig. 8 superimposes and compares the vertical 

displacement distributions of this cantilever for all frame models. Similar to the observation from the 



constant axial-force state, only the stress-driven nonlocal frame model is able to represent the material 

small-scale effect under the pure-bending state. As a result, the vertical-displacement distributions 

obtained with the Eringen nonlocal frame model and the simplified strain-gradient frame model are the 

same as that obtained with the local (classical) frame model. The implication of this observation is that 

under the pure-bending state, the material small-scale effect cannot be represented by either the Eringen 

nonlocal differential model [37] or the simplified strain-gradient model [53] but can only be detected by 

the stress-driven nonlocal model [31]. This bizarre observation is regarded as a paradox and its cause is 

the same as the one diagnosed for the aforementioned constant axial-force state. When compared to the 

benchmark response, the validity of the proposed nonlocal frame model is justified. The system-

stiffness enhancement associated with the material small-scale effect can clearly be noticed in Fig. 8 

and is in good agreement with both experimental and analytical evidences reported by several 

researchers [14-16].   

 The bending-moment and bending-curvature distributions obtained with all frame models are 

superimposed and compared in Fig. 9. Obviously, the bending-moment and bending-curvature 

distributions obtained with the proposed nonlocal frame model can resemble the benchmark responses. 

Due to a statically determinate nature of the system, all obtained bending-moment distributions shown 

in Fig. 9a are identical since they are merely governed by the equilibrium requirement. In accordance 

with the vertical-displacement distributions of Fig. 8, Fig. 9b indicates that the bending-curvature 

distribution obtained from the proposed stress-driven nonlocal frame model is distinct from those 

obtained from the other three frame models, thus confirming the ability of the proposed stress-driven 

nonlocal frame model to represent the material small-scale effect under the pure-bending state. It is 

worth observing that the bending-moment and bending-curvature distributions of Fig. 9 are similar to 

the axial-force and axial-strain distributions of Fig. 7. This observation stems from the fact that the 

section constitutive relations of Eqs. (1) and (2) are both subjected to constant section forces (constant 

axial force and constant bending moment). Therefore, the resulting axial-strain and bending-curvature 

distributions are alike. In other words, the problem associated with the constant axial-force state is 

identical to that associated with the constant bending-moment state.      

 

 

 



6.1.3 Constant shear-force state 

 Under a vertical force at its end ( 0 0.1yP nN= ), the cantilever of Fig. 5c is under a constant 

shear-force state, thus resulting in a linear variation of bending moment. All obtained vertical-

displacement distributions of this cantilever are plotted and compared in Fig. 10. Obviously, the 

vertical-displacement distributions obtained from the local frame model and the Eringen nonlocal 

frame model are identical while the vertical-displacement distributions obtained from the simplified 

strain-gradient frame model and the proposed stress-driven nonlocal frame model are different and 

stiffer than their local counterparts. The failure of the Eringen nonlocal frame model to represent the 

material small-scale effect for this particular case is the famous paradoxical phenomenon [43] and had 

been noticed and diagnosed by several researchers [31, 45-47]. In a rigorous mathematical manner, 

Romano et al. [47] proves that adoption of the Eringen nonlocal constitutive model leads to an ill-posed 

structural-mechanics problem, thus admitting no solution. Unlike constant axial-force and bending-

moment states, accounting for the axial-strain gradient ( / xε∂ ∂ ) along the length renders the simplified 

strain-gradient frame model able to describe the material small-scale effect under constant shear-force 

state (linear bending-moment distribution). As shown in Fig. 10, the vertical-displacement response 

associated with the proposed stress-driven nonlocal frame model is stiffer than that associated with the 

simplified strain-gradient frame model. A similar observation is noticed by Oskouie et al. [89]. When 

compared to the benchmark response, the validity of the proposed nonlocal frame model is confirmed. 

    Fig. 11 plots and compares the bending-moment and bending-curvature distributions 

obtained with all frame models. Obviously, the bending-moment and bending-curvature distributions 

associated with the proposed nonlocal frame model can match the benchmark responses. All obtained 

bending-moment distributions shown in Fig. 11a are identical due to a statically determinate nature of 

the system. In accordance with the vertical-displacement distributions of Fig. 10, both strain gradient 

and stress-driven nonlocality drastically alter the distribution nature of the bending-curvature response 

as shown in Fig. 11b.  

6.2 Example II: Propped-Cantilever Nanobeam with Uniformly Distributed Load 

Fig. 12 shows a propped-cantilever iron nanobeam subjected to a uniformly distributed load 

with a magnitude of 0 20 /yw nN nm=

6 416.67 10I nm= × . As given by Lim 



and He [90] and Mahmoud et al. [91], the elastic modulus xxE of the iron nanobeam is 56.25 GPa. The 

material length-scale parameter cl  is 200 nm as used by Yang and Lim [92]. To investigate the 

material small-scale effect on this propped cantilever, both global and local bending responses obtained 

with the simplified strain-gradient frame model of Sae-Long et al. [52-53] and the proposed stress-

driven nonlocal frame model are compared to those obtained with the local frame model.  

Fig. 13 plots and compares all obtained vertical-displacement responses. The simplified strain-

gradient frame model and the proposed stress-driven nonlocal frame model consistently result in stiffer 

displacement responses when compared to the local frame model. However, the stiffening phenomenon 

associated with the material nonlocality is more pronounced than that associated with the material 

strain gradient. It is interesting to observe that all frame models yield the same location of maximum 

displacement at 600 nm from the clamped end. Therefore, the maximum-displacement location is only 

dictated by beam end geometric constraints. When compared to the benchmark response, Fig. 13 also 

confirms the validity of the proposed nonlocal frame model.  

Fig. 14 plots and compares the bending-moment and bending-curvature distributions obtained 

with all frame models. It is clear that the bending-moment and bending-curvature distributions 

associated with the proposed nonlocal frame model can match the benchmark responses. Unlike the 

cantilever of Example I, Fig. 14a shows that different section constitutive models result in distinct 

bending-moment distributions due to a statically indeterminate nature of the system. However, the 

distribution characteristic of the bending moment is marginally affected by the presence of the material 

small-scale effect (either the material nonlocality or the material strain gradient). The maximum values 

of positive and negative bending moment are more or less the same for all frame models. 

Contrastingly, Fig. 14b shows that the material small-scale effect drastically alters the distribution 

nature of the bending curvature and reduces the maximum values of positive and negative bending 

curvature when compared to those obtained with the local frame model. With the proposed stress-

driven nonlocal frame model and the simplified strain-gradient frame model, the obtained bending-

curvature distributions tend to be spread more gradually along the beam length. With the presence of 

the material small-scale effect, the system stiffness is increased as shown in Fig. 13 while the 

maximum value of bending curvature (positive and negative) is decreased as shown in Fig. 14b. The 



combination of these two consequences yields the reason why the distribution characteristic of the 

bending moment shown in Fig. 14a is marginally affected by the material small-scale effect.  

6.3 Example III: Small-Scale Effect on Tensile Response of an Auxetic Metamaterial 

 In recent years, researchers worldwide have paid considerable attention to studies of auxetic 

metamaterials due to their wide spectrum of novel applications and unusual mechanical properties [9-

11]. Among these unusual mechanical properties, a negative Poisson’s ratio is the most prominent and 

is related to the topology of their micro/nano architecture [9-11]. This example investigates the material 

small-scale effect on tensile response of an auxetic metamaterial. Fig 15 shows a two-dimensional 

quadrangular strip subjected to a tensile loading at its right end. This quadrangular strip is made of an 

auxetic metamaterial formed by re-entrant bow-tie cells consisted of titanium struts [54]. The elastic 

modulus xxE of the titanium strut is 110 GPa. The strut-section shape is square with a dimension h of 

1.0 nm, thus 
21A nm=  and 3 483.33 10I nm−= × . Each strut in re-entrant bow-tie cells is modeled 

by a single nonlocal frame element proposed herein. As a result, 35 nonlocal frame elements are 

employed to represent the quadrangular strip. To investigate the material small-scale effect on tensile 

response of the quadrangular strip, the nonlocal characteristic length cl  is varied through the 

normalized nonlocal parameter /cl Lλ =  ranging from 0 to 0.5.  

Following the variables defined in Fig. 15, strains in axial and lateral directions 

( andxx yyε ε ) and Poisson’s ratio ν  are computed as: 
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; ;yx
xx yy

x yL L
ε ε
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= =  and yy
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ε
ν

ε
= −   (35) 

where x∆  and y∆  represent axial and lateral deformations of the quadrangular strip, respectively; and 

xL  and yL  defines the length and width of the quadrangular strip, respectively. The normalized axial 

stiffness K  is defined as: 
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 (36) 



where NL
x∆  defines the axial deformation obtained with the proposed stress-driven nonlocal frame 

model while L
x∆  defines the axial deformation obtained with the local frame model under the same 

imposed end force 0xP . 

 Figs. 16 and 17 present the material small-scale effect on the normalized axial stiffness K  

and Poisson’s ratio ν , respectively. As shown in Fig. 16, the normalized axial stiffness K  increases 

with increasing normalized nonlocal parameter λ , thus confirming the essence of the stiffening 

phenomenon for auxetic metamaterials at nanoscale. Fig. 17 shows that the magnitude of negative 

Poisson’s ratio ν  decreases with increasing normalized nonlocal parameter λ . This observation infers 

that the counterintuitive response of auxetic metamaterials becomes less pronounced when the material 

small-scale effect is considered.  

7. Summary and Conclusions 

 In this paper, an efficient frame element is developed for analyses of nano-sized frames. The 

stress-driven nonlocal integral model is adopted to represent the material small-scale effect inherent to 

nano-sized frames. For the present interest of frame analyses, this nonlocal constitutive model affirms 

that the deformation at any section is induced by its corresponding forces at all sections along the frame 

length via a convolution integral statement. The flexibility-based finite element formulation is 

employed to construct the proposed nonlocal frame element and is well suited to the stress-driven 

nonlocal integral model. With this type of finite element formulation, equilibrated force interpolation 

functions are used to express the element sectional forces in terms of the element forces, thus resulting 

in the “exact” element flexibility equation. The “exact” element stiffness equation is finally obtained 

based on the exact element flexibility equation using the rigid-body-mode transformation, thus 

rendering the “one-element-per-member” modeling approach applicable. To the best of authors’ 

knowledge, the proposed frame element is the first flexibility-based nonlocal frame model present in 

the research community and takes full advantage of “exact” force interpolation functions in the model 

formulation. The element state determination process as well as the displacement recovery procedure 

are also presented. Three numerical examples are employed to assess validity and effectiveness as well 

as to characterize and investigate the small-scale effect on both global and local responses of nano-

sized frames.  



 The first example considers an aluminum cantilever under three internal force states, namely: 

constant axial force, constant bending moment, and constant shear force. Only the proposed nonlocal 

frame model can capture the material small-scale effect on displacement responses for all internal force 

states while the simplified strain-gradient frame model is capable of representing such an effect only 

for constant shear-force state.  The widely used Eringen nonlocal frame model presents no material 

small-scale effect for all internal force states. As a result, the proposed stress-driven nonlocal frame 

model is “paradox free”. When material small-scale effect is considered, the displacement response 

predicted by the proposed nonlocal frame model is stiffer than that predicted by the local frame model. 

This system-stiffness enhancement is in good agreement with both experimental evidences and 

theoretical results reported in literature.  

 The second example focuses on a propped-cantilever iron nanobeam under uniformly 

distributed load. Both the stress-driven nonlocal frame model and the simplified strain-gradient model 

predict stiffer displacement responses when compared to the local frame model. However, the stiffening 

phenomenon associated with the material strain gradient is less pronounced than that associated with 

the material nonlocality. Different bending-moment distributions are obtained with different 

constitutive models due to a statically indeterminate nature of the system but their distribution 

characteristics are marginally affected with the presence of the material small-scale effect. The 

maximum values of positive and negative bending moment are approximately the same for all frame 

models. In opposition, the material small-scale effect drastically alters the distribution nature of the 

bending curvature. With the proposed stress-driven nonlocal frame model and the simplified strain-

gradient frame model, the obtained bending-curvature distributions tend to be spread more gradually 

along the beam length and their maximum values of positive and negative bending curvature are 

reduced.   

 The third example studies tensile response of an auxetic metamaterial quadrangular strip. Due 

to the topology of its micro/nano architecture, this auxetic metamaterial quadrangular strip possesses a 

negative Poisson’s ratio. With increasing nonlocal parameter, the axial stiffness of the quadrangular 

strip increases while the magnitude of negative Poisson’s ratio ν  decreases, thus emphasizing the 

essence of the material small-scale effect on the auxetic metamaterials at nanoscale.  

 One next step forward in this research direction is to include material and geometric 

nonlinearities into the nonlocal frame model and is the extension to the space frame. In addition, 



accounting for the surface effect would yield a more rational nanoframe model and is worth pursuing in 

future research work. It is expected that the proposed nanoframe model will be useful to scientists and 

engineers conducting research in the area of nanoscience and nanoengineering. 
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Fig. 1 (a) A nonlocal simply-supported frame under external loads;  

(b) A differential segment cut from the frame 
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Fig. 2 (a) A nonlocal simply-supported frame of Figure 1 (a) with support reactions; (b) A cut 

segment from the frame 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Fig. 3 Tonti’s diagram for flexibility-based stress driven nonlocal frame element 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Fig. 4 Element force and displacement degrees of freedom: (a) complete system; and                   
(b) basic system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Fig. 5 Example I: aluminum cantilever subjected to different loading states: (a) constant axial 

force; (b) constant bending moment; (c) constant shear force   

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 



 
 

Fig. 6 Axial displacement versus distance along the cantilever under constant axial-force state 
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Fig. 7 (a) Axial force and (b) Axial strain versus distance along the cantilever under constant 

axial-force state 

 
 
 
 
 
 
 
 



 
 

Fig. 8 Vertical displacement versus distance along the cantilever under constant bending-moment 

state 
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Fig. 9 (a) Bending moment and (b) Bending curvature versus distance along the cantilever under 

constant bending-moment state 

 
 
 
 



 
 
 

Fig. 10 Vertical displacement versus distance along the cantilever under constant shear-force 

state 
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Fig. 11 (a) Bending moment and (b) Bending curvature versus distance along the cantilever 

under constant shear-force state 
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Fig. 12 Example II: a propped-cantilever iron nanobeam  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Fig. 13 Vertical displacement versus distance along the nanobeam 
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Fig. 14 (a) Bending-moment distributions; (b) bending-curvature distributions along the 

nanobeam 

 
 
 
 
 
 
 
 
 



 
 

Fig. 15 Example III: quadrangular auxetic-metamaterial strip subjected to a tensile loading 

 
 
 
 
 
 
 
 
 
 



1

2

3

4

0 0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 a
xi

al
 st

iff
ne

ss

λNormalized nonlocal parameter
 

Fig. 16 Variation of normalized axial stiffness with normalized nonlocal parameter 

 
 
 
 
 
 
 
 
 
 
 



 

 
Fig. 17 Variation of Poisson’s ratio with normalized nonlocal parameter 
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