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Abstract: This study employs a novel 3D engineered robotic eye system with dielectric elastomer
actuator (DEA) pupils and a 3D sculpted and colourised gelatin iris membrane to replicate the
appearance and materiality of the human eye. A camera system for facial expression analysis (FEA)
was installed in the left eye, and a photo-resistor for measuring light frequencies in the right. Unlike
previous prototypes, this configuration permits the robotic eyes to respond to both light and emotion
proximal to a human eye. A series of experiments were undertaken using a pupil tracking headset to
monitor test subjects when observing positive and negative video stimuli. A second test measured
pupil dilation ranges to high and low light frequencies using a high-powered artificial light. This data
was converted into a series of algorithms for servomotor triangulation to control the photosensitive
and emotive pupil dilation sequences. The robotic eyes were evaluated against the pupillometric
data and video feeds of the human eyes to determine operational accuracy. Finally, the dilating
robotic eye system was installed in a realistic humanoid robot (RHR) and comparatively evaluated in
a human-robot interaction (HRI) experiment. The results of this study show that the robotic eyes
can emulate the average pupil reflex of the human eye under typical light conditions and to positive
and negative emotive stimuli. However, the results of the HRI experiment indicate that replicating
natural eye contact behaviour was more significant than emulating pupil dilation.

Keywords: pupil interfacing; human-robot interaction; dielectric elastomer actuation; soft robotics;
uncanny valley

1. Introduction

This practical study follows on from two previously published position papers on the
application of dilating robotic pupils in HRI [1,2]. Human eyes are commonly referred
to as ‘windows to the soul’ as they reflect and encapsulate love, life and sentience, [3].
Pupil size and dynamics (pulsation rate and frequency) are important components of eye
contact interfacing during human communication as they act as subconscious visual cues
of emotional state and attention [4,5]. However, pupil dilation alone is not an accurate
representation of an emotional state as the effect is synergistic, incorporating other facial
features such as eyebrows, mouth and cheeks to display recognisable human emotions [6].
This condition is significant in HRI as engineers continually neglect dynamic pupils in
robotic eyes, which make RHRs eyes look cold and lifeless [7,8]. Therefore, pupil dilation
is a crucial consideration in the development of RHRs with embodied artificial intelligence
(EAI) for HRI as pupils emit visual signals during face-to-face communication. Direct
eye contact is the primary mode of interpersonal interfacing in human interaction as it
establishes attention, emotional state, trust and security [9].

The irregularities commonly observed in traditional glass and acrylic prosthetic eyes
have the potential to reduce visual authenticity and instigate the uncanny valley effect
(UVE). However, previous robotic eye prototypes with dilating pupils are incapable of
responding to both light and emotion, which is not indicative of the sensory capabilities of
the human eye [1]. This consideration is significant per the Uncanny Valley (UV) hypothesis,
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which suggests that RHRs fall into the UV as they lack organic nuances such as pupil
dilation and accurate lip-sync. The code, video footage and CAD materials for this project
are available in the GitHub repository in the supplementary materials section.

2. The Importance of Eye Contact Interfacing in HRI

Prolonged direct eye contact is considered an aggressive or domineering behaviour in
humans and primates, and in some cultures gaze avoidance is associated with dishonesty
and mistrust [10]. The results of a recent study [11] into gaze interfacing in HRI concluded
that replicating normal eye contact behaviour in HRI is vital for natural communication
with humans. This approach is vital towards developing RHRs for naturalistic HRI, as
a lack of eye contact can produce adverse feedback [12]. Similarly, if an RHR maintains
constant eye contact, it creates an unnerving experience per the UVE, as this is not a
normal gaze behaviour. Furthermore, eye contact in HRI plays a crucial role in instigating
the flight-or-fight response, as RHRs appear inhuman and the innate human drive is to
approach the robotic agent with caution [13,14]. Irregular gaze in HRI has the potential to
heighten the UVE if robotic eyes do not move within the natural parameters of the human
eyes [15].

Nevertheless, establishing positive eye contact in HRI is dependent on circumstantial
factors [16]. For instance, many Eastern cultures perceive direct eye contact as a domi-
neering behaviour, and women, children and lower-class citizens actively avoid making
eye contact with their superiors as an act of submission and respect. Conversely, eye
contact avoidance in Western cultures is typically associated with lying and underhanded
behaviour. However, cultural divergence in eye contact interaction in HRI is observable
in numerous Eastern and Western RHRs. For example, Eastern produced RHRs such as
Vyommitra, 2020: IND, Jiang Lilai, 2019: CHN, Telinoid, 2006: JAP, JIA JIA, 2016: CHN,
Junko Chihira, 2016: JAP, Geminod H1, 2006: JAP, Otonaroid, 2014: JAP, YANG YANG,
2015: CHN, Geminoid DK, 2011: JAP Kodomoroid, 2014: JAP, Actroid DER-2, 2006: JAP,
ChihiraAico, 2015: JAP, Erica, 2018: JAP, SAYA, 2009: CHN, ALEX, 2019: RUS and An-
droid Robo-C, 2019: RUS are all void of gaze tracking systems to form natural eye contact
interaction with humans.

An RHR named Nadine, 2015: SG, is an exception to this list as the robot has an eye
contact interaction system; however, it is important to note that Nadine’s creator ‘Professor
Nadia Magnenat Thalmann’ is of Western origins. In comparison, Sophia, 2016: USA,
ALICE, 2008: USA, Han, 2015: USA, AI-DA, 2019: UK, BINA 48, 2016: USA, Fred, 2018: the
UK, Diego San, 2010, USA Jules, 2008: the USA, and Furhat, 2018: SWD implement eye
sensors to simulate human eye contact behaviour. Significantly, none of the above RHRs
has dilating pupils; therefore, the influence of pupil dynamics on natural gaze interaction
is unknown. Therefore, this study aims to explore this gap in the state-of-the-art robotic
eye technology and HRI.

3. Human Eye Dilation to Light and Emotion

The human iris contracts and expands the pupil to regulate light into the retinal gland
for precision imaging. This reflex is the primary function of the pupil and a key considera-
tion when developing a robotic eye. The iris is continually adjusting in diameter between
2–8 mm to changing light levels when the eyelids are open [17]. Therefore, the actuation
system employed in a synthetic iris has to be highly durable to withstand prolonged use.
The higher the brightness, the more the pupil aperture constricts to regulate the light
processed by the retina to prevent tissue damage to the sensitive pupil membrane. The
average diameter of pupil contraction in daylight conditions regulates between 2–4 mm,
and during low-level luminescence, the pupil diaphragm expands in size to enhance the
sensitivity of the retinal membrane between 4–8 mm in diameter [18]. Therefore, 3–5 mm
is the average pupil dilation range for the synthetic iris membrane to operate during
general light conditions. The spectral sensitivity of a healthy human eye ranges between
380 mn and 800 mn, with an average photopic value of 555 mn (optimal retinal response
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to light), [19]. However, the standard light-dependent resistor (LDR) operates between
400 mn and 600 mn [20]. Although the standard LDR is capable of incremental light
processing, a minor adjustment to the photosensitivity of the sensor is needed to account
for its inferior light sensitivity. This adjustment is made to the script to increase the output
signal from the LDR sensor to the computer. Muscular fibres within the iris membrane
control the transitioning between pupil states. [21] The capillaceous tissue strands of the
eye are transparent to permit light transference from the iris membrane into the retinal lens.
This is an important design factor in the development of a synthetic iris membrane as light
transference into the LDR is essential for an accurate photo-response and the control of
pupil actuation. To maintain a natural appearance, the LDR requires embedding within
the confines of the internal eye framework to reduce exterior sensor visibility which may
lessen the robotic eyes visual authenticity. In addition to light regulation, the human iris
responds to emotive stimuli. During elevated states of arousal, the pupil involuntarily
expands up to 8 mm in diameter [19].

However, a more recent study [22] measuring pupil dilation responses to emotion
argues that the maximum and minimum pupil dilation ranges to emotional stimulus
is 3.7 mm–7.6 mm (4.6 mm–6.4 mm average). The expansion and contraction of the iris
occur less frequently and in a shorter duration when reacting to emotion than during
light processing. Thus, the influence of highly emotional stimulus on pupil diameter is
proximal to that of low-light processing [20]. The cognitive load processing of external
optical stimulus has the most significant impact on pupil dilation [23]. However, audio and
touch stimulation also incite a pupil response if the stimulus registers as psychologically
arousing. In support of this, a recent study [4] measured the effects of emotive sound on
the pupil dilation response of 33 participants. The results of the study suggest that, on
average, pupil diameter increased 3–5% from natural ambient sound regulation (4 mm:
+0.2 mm/−0.2 mm). A similar study [24] examining eye dilation to touch sensitivity (skin
interfacing) concluded skin conduction stimulus evoked a pupil increase of 0.5 mm–1 mm
pupil expansion, 3–4%. Thus, pupil dilation to audio and touch stimulation instigates less
responsiveness than visual stimulus. However, replicating audible and touch sensitivity are
significant design considerations in emulating higher modes of human emotion. Figure 1
shows the effects of an external stimulus on pupil dilation size. These natural pupil ranges
and averages configure the variability of a synthetic iris to achieve a more organic pupil
emulation for the robotic eye system developed in this study. However, on average, humans
blink four times every minute, and the duration of each blink ranges between 1–4 ms [25].
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Figure 1. Human pupil diameter ranges to light and emotion: (A) total pupil range of the human
eye; (B) average dilation range in daylight conditions; (C) average pupil dilation in low-level light;
(D) average light dilation range; (E) emotive pupil dilation range; (F) the average pupil dilation
frequency to emotion.

4. Previous Prototype Robotic Eyes with Dilating Pupils

The following section will analyse a selection of robotic eye prototypes with pupil
dilation to examine the advantages and suitability of each system for adaptation into the
robotic eye developed in this research. A robotic eye [26] for RHRs named, Pupiloid, has
a 3D printed system shutter-style mechanism for emulating pupil dynamics. The design
features a speech processing application to autonomously respond to emotive utterances.
However, there are numerous design issues with the Pupiloid prototype: Firstly, the shutter
mechanism consists of multiple plastic blades that expand and contract using servo-driven
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actuation. This overly complicated system design prohibits fluidity proximal to the human
pupil due to the mechanised nature of the shutter mechanism. This reduces the stability of
the system, as pupil dilation in humans is continually adapting to various external stimuli.

Secondly, the eyes pivot on a series of large mechanisms that require significant
operational space, which may cause compatibility issues during installation with existing
components. Thirdly, the Pupiloid prosthetic cannot respond to light, and visual-emotional
stimulus as pupil dynamics outside of the emotive voice recognition function is restricted,
resulting in unnatural pupil dynamics during non-verbal communication. Finally, 3D
printing intricate components such as the pupil shutter arms are susceptible to fracturing
under continual stress, which may be a considerable durability issue when attached to
a robotic skin. A similar prototype dilating robotic eye [27] named ‘Animatronic Pupil’,
uses a motor-driven camera shutter to simulate human pupil dynamics. However, as in
previous models [24], the eyes require substantial space for the eye components to function,
thus restricting natural eye movement. The humanoid paediatric robot Heuristically
programmed ALgorithmic computer (HAL) utilises a comparable shutter lens system to
simulate natural pupil reflex to light [28]. HAL’s pupil mechanism is designed to replicate
human eye dilation to light for medical training procedures. Therefore, mechanical stress
on the camera shutter mechanism is negotiable as the RHR runs for short periods with
the eyes moving left and right. A prototype artificial eye [29] developed for use in RHRs
utilises a triangular foam point compressed back and forth against a transparent plastic
eye shell to create the effect of pupil dilation.

Although the pupil transition is more fluid than mechanical shutter mechanisms,
the system suffers a significant design flaw as the system offsets the central pivot of the
eye. This issue causes the eyes to move unnaturally backwards and forwards during
operation. Furthermore, the foam membrane prohibits the installation of internal light
sensors and camera devices, which reduces the autonomous capabilities of the artificial
eye to light and emotion. A dilating medical prosthetic eye [30] with light reactive liquid
crystal polymer materials can expand and contract autonomously under variable light con-
ditions. The photosensitive membrane permits light to pass through a series of crystalline
layers, making them appear semi-translucent under intensive luminescence, revealing a
pupil-like aperture.

Although the system is capable of running for long periods, the synthetic iris mem-
brane is still in the early stages of development. Furthermore, the crystal polymer structure
prohibits internal sensors and camera systems, making the eye incompatible with RHRs.
Other robotic eyes [31–33] for use in medical eye prosthesis utilise a type of artificial muscle
membrane known as dielectric elastomer actuators (DEAs). The robotic eyes regulate
photosensitivity using a photo-resistor embedded inside the artificial eye module. This
method allows light to pass through the synthetic iris much like the translucent membrane
fibres of the human eye. The DEA is activated by positive and negative electrodes to create
static electricity actuation which compresses the membrane surfaces together, creating a
dynamic ellipse. However, the prototypes are aesthetically unrealistic in comparison to
previous examples. Moreover, the photo-resistor set up in these examples prohibit pupil
responses to emotional stimulus, and the DEA scatter pattern prohibits sensor insertion.
Therefore, these configurations are unsuitable for RHRs, but the actuation method and
light sensory capability is consistent with human pupil dynamics. Similar DEA systems
developed for precision camera lens imaging created by [34–36] invert the standard DEA to
create a transparent central ellipse. This approach permits the fluid transitioning between
camera focal lengths in comparison to the standard shutter focusing mechanism.

Furthermore, a selection of artificial eyes [37–39] with liquid crystal display (LCD)
screens are incompatible with this study. The LCD prohibit the implementation of sensors
to regulate pupil dynamics, and the light of the LCD screen would make the eyes appear
to glow in low light environments. The critical analysis of artificial eye prototypes with
pupil dynamics highlights a gap in prosthetic eye design, as no system can simultaneously
replicate natural pupil responses to alternating light and emotive stimulus. Comparable
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robotic eyes with organic light-emitting diode (OLED) screens [40–43] are susceptible
to the same compatibility issues as the LCD screen. However, although OLED screens
are transparent, they still emit light. Thus, as light emissions from the OLED display
may disrupt light input into the photo-resistor and FEA when functioning in low-light
conditions, OLED screens are not suitable for this study.

5. Building on the State-of-the-Art in Robotic Eyes Design

Unlike the previous prototypes, the robotic eye system developed in this study incor-
porates a camera and a photo-resistor to control the pupil reflex to light and emotion. Thus,
the DEA scatter configuration is inverted to leave a central non-conductive and transparent
ellipse to insert a camera and photo-resistor, as demonstrated in Figure 2. A DEA is an
artificial muscle [44] that comprises a transparent silicone foam membrane stretched over a
rigid polymer frame coated on each side in conductive graphite or carbon powder. Positive
and negative electrodes supply high voltage current to the conductive layers on either side
of the silicone foam membrane. The applied electrical force propagates static electricity
between the conductive particles on each side of the membrane, forcing the layers together
by electrostatic impulse [45].
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EAPs are flexible and precise, and in some instances can generate higher torque for a
longer duration than the standard electro-mechanical servo [46]. Moreover, EAPs have no
integral moving parts and are less susceptible to mechanical failure or stalling than standard
robotic servo motors [47]. However, configuring and applying the DEA membrane to the
acrylic frame is essential as DEAs are prone to tearing under high electrostatic stress
if incorrectly installed [48]. EAPs require high levels of electrostatic energy to operate;
employing protective and preventive design is essential to avoid skin contact with the EAP,
which may cause electric shock and damage to the EAP membrane [49]. In consideration,
DEA systems similar to [31–33] are suitable for application in this study. However, one
issue with the carbon grease compound (hydrogel) is the high voltage of the central ellipse
to emulate natural pupil dynamics. The robotic eye developed in this study considers
graphene, which is an allotrope of carbon that is up to three times more conductive than
graphite or carbon powder, due to its single layered nanotube atomic structure.

According to recent research [50–52], graphene EAPs require less electrical input
for sizable actuation compared to carbon or graphite paste at a similar scatter rate. The
single-layer atomic composition of graphene makes the substance almost transparent,
permitting light absorption of merely 2–3% of the total light intensity compared to graphite
at 20–35% and a standard glass windowpane at 10–20% [53]. This is significant [54] as the
spectral light transference reduction rate of the average human iris is approximately 2–2.5%
absorbance of the natural light spectrum. Therefore, unlike the graphite and carbon DEAs
in the previous section, a graphene DEA membrane allows light to pass through it with
minimal loss of light intensity, which is proximal to the light transference of the human
iris membrane.

Furthermore, the application of graphene tactile sensors in future robotic skins may be
capable of replicating the natural sensory and regenerative capabilities of human skin and
muscles [55]. A further consideration is the aesthetic quality of the synthetic iris and the
materials used for replicating the sclera tissue. The robotic eyes examined in the previous
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section fail to reproduce the detailed pigmentation and translucency of the human iris
using hand-painted techniques. Therefore, 3D printing and CAD sculpting techniques are
used to produce a casting mould to create a colourised gel iris print from an image of a
human iris. It is vital in this research to evaluate the use of soft 3D printing materials in
replicating the human sclera, as previous prototypes employ hardened materials unlike
the soft tissue of the human eye.

6. Robotic Eye Design

This section will detail the tools, materials and software used to create a colour printed,
semi-transparent and flexible gelatin iris membrane to cover the DEA actuator. The gelatin
iris starts with a blank eye model created in Autodesk Maya using the average dimensions
of the living human eye: 24.2 mm (transverse) × 23.7 mm (sagittal) × 22.0–24.8 mm (axial).
A high-resolution digital image compressed at 24 megapixels (4800 × 2400 dpi) of a human
iris is transformed into an imprint using the stencil tool in Autodesk Mudbox. The iris
stencil is inverted and overlaid onto the digital image to precisely map the image and
stencil to create a highly detailed 3D duplicate of the human eye. Autodesk Maya exports
stereolithography (.STL) files which are printed using a FormLabs 2, stereolithography
(SLA) 3D printer (10 microns = 0.01 mm) and Ultimaker Cura. SLA printers use a liquid
polymer with Ultra Violet (UV) light to induce photo-polymerisation of resin monomers,
as opposed to the thermal compression of polymer layers in standard 3D printing. This
printing approach allows for the smooth and detailed casting of the 3D printed model
without the significant disfiguration caused by extruder layering.

A transparent gelatin cast of the 3D printed iris extracted from the surface of the 3D
model with a depth of approximately 0.2 mm provides a flexible and detailed replication
of the iris surface. The gelatin brand used in this study is ‘Swallow Sun, Tepung Agar-
Ager Crystal Clear Gelatin’, which is a composition of clear powder and de-ionised water
(1:4 ratio at 90◦). This lowers the electro-conductivity of the material and acts as an
insulating barrier between the highly electronically charged EAP membrane and the
outer shell of the eye module. The advantage of implementing gelatin over silicone-based
materials is that it creates less strain on the EAP foam membrane as gelatin is higher
in elasticity than synthetic materials such as silicone and thermoplastic urethane (TPU).
The gelatin membrane is coloured using the same high-resolution digital image used in
the 3D modelling process (4800 × 2400 dpi) and is screen-printed on gelatin film. This
approach ensures the correct scaling and orientation of the gelatin print to match the
contours of the gelatin iris membrane. The positional data of the iris layer is extracted from
Mudbox and imported as an image map in Adobe Photoshop for printing. The gelatin
paper amalgamates with the thin gelatin membrane by applying it to the base of the gelatin
compound when curing. It is essential to ensure the DEA membrane functions properly
before and after adding the gelatin overlay by running voltage through the DEA, as shown
in Figure 3.
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6.1. Integrating Gelatin Iris with Graphene Dielectric Elastomer Actuator

The width of the gelatin iris membrane after the application is 0.1–0.2 mm. However,
the graphene-infused DEA diaphragm does not permit direct adhesion with the gelatin
membrane due to its powdered surface. Therefore, adherence is between the rim of the
polymer frame and the outer perimeter of the transparent ellipse. As the foam membrane
is adhesive, it bonds with the surface of the gelatin membrane, as shown in Figure 4.
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6.2. CAD-Designed 3D Printed Thermoplastic Polyurethane Sclera

The synthetic sclera is composed of flexible TPU filament and is printed on a Creality
CR10-S 3D printer. Figure 6 shows the design pipeline of the synthetic sclera, starting with
a 3D model constructed in Autodesk 3DS Max from the eye blank. The model is adapted
to include internal hexagonal tubes in the central body and a 1.5 mm rigid surface layer,
allowing the sclera shell to be flexible under pressure and maintain a durable outer shell
to prevent permanent deformation of the eye. The .STL file is exported from Autodesk
3DS Max into Ultimaker Cura 3D and printed at 270◦ nozzle and a 100◦ bed with 0.1 mm
layer depth using Ridgid Ink 0.75 TPU filament. This approach mimics the thickness of the
human sclera muscle tissue, unlike hardened acrylic, glass artificial and hardened synthetic
materials such as polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS), as shown
in Figure 5. The flexibility of the TPU polymer ensures the seamless integration of the
two eye elements. The sclera shell is detailed using a combination of fine strands of red
silk adhered to the TPU using spray adhesive and is colourised using silicone-based paint.
Silicone paint is flexible and deforms without cracking, unlike other paint materials such as
acrylic, oil and enamel. The sclera shell is attached using flex-gloss polymer spray that acts
as a protective barrier to the underlying silicone paint detailing. Finally, the wires for the
DEA are sealed inside the TPU shell and kept in place with epoxy putty as an insulating
non-conductive barrier between the camera and light sensor and the highly charged cables
of the step-up/down voltage converter to minimise electrical interference.
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6.3. Camera and Photo-Resistor Integration into Robotic Eye

The robotic eyes respond to light using a (GL5528) photo-resistor and detect facial
expressions (FE) using a full HD (GT2005) universal serial bus (USB) camera. Numerous
USB camera systems, including the 600TVL, 550TVL, SE0004 and U11 1080Pv3 resulted in
poor FEA mapping as interference from the DEA affected image quality, unlike the GT2005,
as the camera and control board are protected against static interference and encased in
separate housing units. The camera and light sensor are positioned underneath the DEA
membrane using the central ellipse as a portal for taking light measurements and FEA data.
These are encased in a 3D printed ABS ring with rubber mounts to ensure a precision fit
within the TPU eye casing to protect the delicate internal components and sensor alignment
with the iris portal, as indicated in Figure 6.
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6.4. Control System Hardware and Software Design

The robotic eye DEA membrane operates using a custom-built mains powered (HV-
GEN_NEG_30KV) DC step-up/down negative Ion generator with an operational voltage
range of 12 v–30,000 v, supporting both left and right EAP actuators. An Arduino com-
patible (XL6019) power shield with a manual command knob controls the voltage input
into the step-up/down converter by regulating the input voltage from the power supply
unit (PSU) between 0.3 v–12 v. A Spektrum (A3030) brush-less Sub Micro digital servo
attached to the manual control knob of the XL6019 shield provides autonomous control
of DC voltage into the EAP membrane. An Arduino Uno microprocessor controls the
triangulation of the servo using data from the photo-resistor.

To accurately and automatically transpose positional data to the servo using the photo-
resistor, the following map constraints were applied in the Arduino scripture (0,1023,0,180)
as a mathematical integer. This formula provides a higher (current range) and lower (target
range) boundary for the raw incoming light data from the photo-resistor. The higher limit
(0–1023) is the luminous flux (LUX) capacity of the photo-resistor, and the lower boundary
(0–180) is the range of the servo. The system has a delay of 30 ms to reduce feedback caused
by rapid light changes. This approach permits fluid control of the EAP membrane and
calibration of the photo-resistor to accurately emulate the natural human pupil responses
to alternating light levels, as represented in Figure 7.

Light frequency is measured continuously using the photo-resistor sensor in the
Arduino C++ framework. However, an IF statement in Arduino initiates the incoming
serial data from the FEA system.

The open-source FEA to Arduino code [56] using the Affectiva FEA software devel-
opment kit (SDK) installed on a Mac (OSX) and run on the Xcode application to control a
servo motor using FEA is adapted and incorporated into this study. The Affectiva, FEA
application detects if an individual is smiling, angry or surprised, and also measures eye
contact engagement level. The Arduino micro-controller detects the data stream from
the Affectiva processing output of the camera system over a USB serial to control the
triangulation of the servo motors to operate within similar pupil parameters to the human
eye, depending on the user’s FE. The emulative dilation process in response to positive
and negative emotion operates between two common values, relating to the maximum and
minimum pupil diameter range. A sequence generator populates values in-between the
two ellipse parameters for simulating positive and negative FE for a greater naturalistic
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dilation response. This process emits a high naturalistic variance of the synthetic pupil
to emotion by generating fluctuations of the iris membrane similar to those of the human
eye. When the user moves out of the range of the emotion detection camera, a further IF
statement is triggered in the Arduino code to revert the system to light-responsive mode.
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7. Robotic Eye Testing and Calibration

The pupil reflex of the human eye to light stimulus is measured using a custom-built
biometric headset depicted in Figure 8, founded on a previous study in pupil detection
technology and light inference [57]. The custom head-mounted device developed for this
study incorporates a real-time pupil detection camera and an open-source application called
PupilLabs (pupil-labs.com, accessed on 6 April 2021), which calculates the circumference,
diameter and acceleration of the pupil during contraction and dilation, and a LUX meter to
measure environmental luminescence.
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The LUX meter and the infrared LEDs on the pupil tracking camera are changeable
to calibrate the equipment. The pupil tracking headset monitors the DEA pupils from the
dark and light pixels of the eye. The same evaluation methodology is used to measure the

pupil-labs.com
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robotic eyes, which is cross analysed by comparatively evaluating the data output from
the PupilLabs application. The test for examining pupil responses to light frequencies is
modelled on a previous study [58] using a 300 w, 0–4000 Lumens LED studio light with
a dimmer switch to increase brightness under manual control and is employed in this
study to induce measurable a natural photopic pupil reflex of the eye. The participant
sits exactly 1 m away from the light source to maintain relative distance to reduce spatial
inconsistency between the user and the stimulus. The luminescent frequency from the LED
light source is registered by the head-mounted LUX meter at 0–20,000 Lumens. The test
starts in zero luminescence, and light intensity is increased in increments of 500 Lumens up
to 5000 lumens using the manual dimmer switch, measuring the output of the LUX meter
with the pupil size data from the Pupil Lab application.

The experiment examines the actuation range of the DEA with natural pupil dilation
to light. The LED light source is reset to zero and then increased by 500 lumens up to
5000 lumens. The robotic eyes were implanted into an RHR named Baudi, shown in
Figure 9, and placed within range of the pupil tracking camera to read the diameter of the
synthetic pupils (manual configuration) and 1 m away from the light source. Adjustments
were made in the Arduino code to configure the servo to voltage input to match the DEA
pupil diameter of the robotic eye with that of the human eye at the same luminosity.
The objective of this approach is to determine if the robotic eyes can function within the
same pupil range as the human eyes during light processing. The evaluation method for
examining emotional pupil responses is modelled on a previous study [59] using negative
and positive video-based stimulus to evoke a pupil response. In the test procedure, the
subject is seated one meter away from a screen and observes the video stimulus for 60 s;
the pupil tracking headset monitors pupil rate and frequency in real-time.
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Light measurements are taken regularly to ensure pupil responses are emotional and
not a result of light interference. The emotive pupil test implements the pupil tracking
camera and light sensor headset from the previous experiment to ensure ambient light and
screen brightness do not significantly impact pupil movement. The data is exported from
Pupilabs as .txt files for analysis. The robot eyes pulsate using the frequency, rate and range
data extracted from the living pupil and scripted into the Arduino control system. Finally,
the PupilLabs biometric analysis software monitors the dilation of the robotic eyes, and
the data is comparatively examined against the data of the human eye test to determine
accuracy. The experiment employs six videos divided into two categories of positive and
negative stimulus. The objective of this method is to determine which algorithm has the
most accurate pupil pulsation sequence to positive and negative emotion. This is then
employed in the robotic eyes to configure the pupil dilation algorithm to positive and
negative FE.
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8. Robotic Eye Test Results

The results of the robotic eye light test indicate that the DEAs functioned between
7.3 mm and 4.1 mm with a 42.4% overall decrease, with an average (optimal) range of
7.3 mm to 4.6 mm (0–2853v@2a). However, the DEAs were unable to operate past 4.1 mm
due to the limitations of the gelatin iris overlay. These results do not coincide with pre-
vious [60] DEA test results that suggest the maximum strain for silicone-based EAPs is
63%. However, the additional stress of the gelatin iris overlays and running two EAPs on
one circuit accounts for the 20.6% reduction in strain. The robotic eyes were incapable of
precisely mapping the size of the human pupils due to the incremental steps of the servos.
This issue resulted in a fractional difference in pupil size between the human pupil and the
synthetic DEA pupil.

Although the robotic eyes were unable to function within the maximum and minimum
ranges of the human eye to an alternating light stimulus (7 mm–2.8 mm), they operated
within the scope of previous studies [18] and [61] with average pupil dilation to light
(1000–3000 lumens) = (5–3 mm)/(5.1–4.2 mm) − 1.1 mm diff, with a 75.8% accuracy rating
between the robotic and human eye. Per the results of a recent study, the maximum and
minimum human pupil range to emotion is 3.7 mm–7.6 mm. This radius is outside of the
EAP range of 4.2 mm–7.3 mm, (0.8 mm diff, 79.4% acc.), as shown in Figure 10. However,
the robotic eyes operate within the average pupil range to emotion (4.6 mm–6.4 mm) [22],
operating between 7.3 mm–4.2 mm, (0–6460 v). The voltage range is lower than previous
studies by [31,32], achieved by replacing graphite with graphene (0–7000/8000 v). There-
fore, although the robotic eyes operate slightly outside of the maximum and minimum
range of the human pupil reflex to an emotional stimulus, they operate within the scope of
the average pupil response range to emotion.

The results of the robot pupil calibration to emotional stimulus suggest that the human
pupil responded to a positive stimulus in fluctuations of higher frequencies, rates and
ranges compared to the negative stimulus. The following results highlight the accuracy of
the robotic eyes’ DEA pulsation algorithm when analysed against the natural pupil reflex
of the human eye during the observation of negative and positive video stimuli.

8.1. Results of Positive Video Stimulus Experiment

Video A: human eye, Range 3.3–5.9 mm. Freq 17, Avg Accel 12.4 mm/s. Configures
robotic eye algorithm: Range (pos = 35; pos< = 45; pos) Freq: *10) delay (10). Robot eye:
Range 7.1–4.3 mm. Freq 24, Avg Accel 16.65 mm/s. The findings indicate Acc: 26.3%
(Err: 73.7%) and low consistency in readings: 0.0274. These results suggest the algorithm
functioned with a low level of precision over 60 s.

Video B: human eye, Range 4.3–7.1 mm. Freq 19, Avg Accel 13.5 mm/s. Configures
robotic eye: Range (pos = 56; pos< = 72; pos) Freq: *19), delay (11) Robot eye: Range
7.4–4.3 mm. Freq 31, Avg Accel 5.69 mm/s. The findings indicate a 65.9% Acc: (Err: 34.1%),
variance between the data fields: 0.5158. The results indicate the algorithm functioned with
a moderate accuracy over 60 s.

Video C: human eye, Range 3.7–5.9 mm. Freq 15, Avg Accel 12.9 mm/s. Configures
robotic eye algorithm: Range (pos = 37; pos< = 45; pos) Freq: *11). Robot eye: Range
7.2–4.3 mm. Freq 26, Avg Accel 6.32 mm/s. The findings of the comparative analysis
indicate Acc: 28.1% (Err: 71.9%) variance between the data sets: 0.3301. The results indicate
the pupil dilation and contraction algorithm functioned with a low level of accuracy over
60 s.

Therefore, the algorithm used in the Video B analysis achieved the highest levels
of accuracy and consistency to control the pupil pulsation responses of the DEA in the
Arduino scripture for responding to positive FEA during HRI. However, in Figure 11
it is notable in the results of Videos A, B and C that the robotic eyes spent significant
periods in the 4.1–4.4 mm state due to the limited range of the DEA. This issue restricted
pupil sequencing below 4.1 mm when mapping the human pupil responses. Thus, this
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irregularity is most likely a result of surface oscillation interference from high levels of
electrical current applied to the DEA during the upper limits of radial actuation.
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8.2. Results of Negative Video Stimulus Experiment

Video D: human eye, Range 5.1–6.9 mm. Freq 9, Avg Accel 4.1 mm/s. Configures
robotic eye algorithm: Range (pos = 45; pos< = 57; pos) Freq: *9), delay (10). Robot eye:
Range 7.3–5.1 mm. Freq 11, Avg Accel 7.65 mm/s. The findings of the comparative analysis
indicate Acc 20.9% (Err: 79.1%) and variance between the data fields: 0.1145. These results
indicate the pupil algorithm functioned with low accuracy over 60 s.

Video E: human eye, Range 3.6–5.9 mm. Freq 7, Avg Accel 3.5 mm/s. Configures
robotic eye algorithm: Range (pos = 35; pos< = 45; pos) Freq: *7), delay (12); Robot eye:
Range 7.3–5.4 mm. Freq 12 Avg Accel 8.52 mm/s. The findings of the comparative analysis
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indicate Acc 32.6% (Err: 67.4%) and variance between the data sets: 0.2317. These results
suggest the algorithm functioned with low precision over 60 s.

Video F: human eye, Range 3.9–6.9 mm. Freq 6, Avg Accel 2.9 mm/s. Configures
robotic eye algorithm: Range (pos = 37; pos< = 57; pos) Freq: *6). delay (14). Robot eye:
Range 7.3–5.7 mm. Freq 5, Avg Accel 3.21 mm/s. The findings of the comparative analysis
indicate Acc 60.4% (Err: 39.6%,) and variance between the data sets: 0.122. The results
submit that the pupil algorithm functioned with moderate-low accuracy over 60 s.

Thus, the pupil dilation algorithm from Video F achieved the highest level of accuracy
and consistency out of the data set. This data configures the robotic eyes to negative FEA
to enhance pupil interfacing during HRI. The pupil frequency, range and acceleration
rates were marginally randomised to give the robotic eyes greater organic movements in
advance of the 60-s time limit. For example, as indicated by double brackets, Video B:
positive emotive robotic eye algorithm: Range ((pos = random (54,58); pos2< = random
(70,74)); Freq: *10) + ((random (1, 4)). delay ((3,7); +/− 4 ms)) and in Video F: negative
emotive robotic eye algorithm: Range (pos = random (35,39); pos2< = random (55;59);
Freq: *3) + random (1,3). delay ((12,16); +/− 4 ms)).

Pupil analysis of the DEA pulsations during negative stimulus was more fluid with
less interference than during positive stimulus as the range of actuation was within the
range of the DEA. Secondly, the robotic eyes were tested with blink functions enabled.
Findings suggest that blinking registered as an anomaly in the Arduino serial monitor.
However, the acceleration (0.1 s–0.4 s) and frequency (10–15 per min) of the blinking did
not affect the light or emotional responses of the robot eyes due to the 0.3 s system delay.

9. Analysis of the Light and Emotion Test Results

Unlike the pupil and DEA range examinations, issues arose when analysing, calibrat-
ing and testing the robotic eyes to pulsate within the radial frequencies of the human pupil
reflex during the observation of positive and negative stimuli.

1. Blinking affected the mapping of the human pupil in the Pupil-Labs application,
which resulted in missing data entries. Thus, to make the data more coherent for review,
missing data fields were reconstructed by averaging the previous and proceeding registered
pupil measurements. Similar data loss occurred in the robotic eye test as the application
frequently stopped and restarted when tracking the DEA pupil, as shown in Figure 11. A
potential cause of these issues may consider the irregular elliptical movement of the DEA,
poor edge detection in machine learning (ML) and external light interference as a result of
DEA dynamics.

2. Although the head-mounted LUX meter indicated that ambient lighting was stable
and proximal during the positive and negative video-based stimulus (304–342 lux), the
onscreen images were brighter and more rapid during the playback of the positive stimulus
compared to the negative. Therefore, image brightness and rapid imagery may have
influenced pupil dynamics. However, this issue is difficult to scientifically verify due to
the subjective nature of the emotive pupil dilation response.

3. Before the randomisation of pupil pulsation, the rhythmic patterns of servomotor
noise replayed over 60-s loops became distracting over time. Although this issue did not
affect the functionality of the robotic eyes, randomising variables minimised noticeable
sound patterns in servo noise interference. However, random pulsation reduced robotic
eye accuracy by approx. −10–15% when re-analysed against the human pupil data.

The test results provided data for calibrating the robotic eyes to respond to emotional
FE with a moderate-low level of accuracy. These outcomes are indicative of the reliability
and consistency issues in the data due to mapping and aligning problems with the pupil
analysis software. Furthermore, the relationship between the human mind (interpreta-
tion of data), visual cortex and stimulus is too complex and variable to emulate with
high precision.



Informatics 2021, 8, 64 14 of 19

Informatics 2021, 8, x  14 of 20 
 

 

9. Analysis of The Light and Emotion Test Results 
Unlike the pupil and DEA range examinations, issues arose when analysing, calibrat-

ing and testing the robotic eyes to pulsate within the radial frequencies of the human pupil 
reflex during the observation of positive and negative stimuli. 

1. Blinking affected the mapping of the human pupil in the Pupil-Labs application, 
which resulted in missing data entries. Thus, to make the data more coherent for review, 
missing data fields were reconstructed by averaging the previous and proceeding regis-
tered pupil measurements. Similar data loss occurred in the robotic eye test as the appli-
cation frequently stopped and restarted when tracking the DEA pupil, as shown in Figure 
11. A potential cause of these issues may consider the irregular elliptical movement of the 
DEA, poor edge detection in machine learning (ML) and external light interference as a 
result of DEA dynamics. 

 
Figure 11. Human and Robot Pupil Dilation to Positive and Negative Emotional Video Stimulus for 
60 s. The black lines indicate reconstructed data fields. Hyperlinks to the videos are available in the 
GitHub repository github.com/carlstrath/Robotic_Eye_System (accessed 22 September 21) 

2. Although the head-mounted LUX meter indicated that ambient lighting was stable 
and proximal during the positive and negative video-based stimulus (304–342 lux), the 

Figure 11. Human and Robot Pupil Dilation to Positive and Negative Emotional Video Stimulus for
60 s. The black lines indicate reconstructed data fields. Hyperlinks to the videos are available in the
GitHub repository github.com/carlstrath/Robotic_Eye_System (accessed on 24 August 2021).

10. Human-Robot Interaction Experiment

The robotic eye system installed in the RHR ‘Baudi’, pictured in Figure 9, was im-
plemented in a comparative experiment against a similar robot named ‘Euclid’ with non-
dilating acrylic eyes, as shown in Figure 12. This experiment is part of a broader study into
modelling user preference for embodied artificial intelligence and appearance in realistic
humanoid robots [62]. To minimise aesthetic differences, both the robotic and acrylic eyes
employed the same iris image, and test subjects were not informed about the dilating
robotic eye system before the experiment to minimise influential factors.

github.com/carlstrath/Robotic_Eye_System
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The HRI experiment consisted of 20 participants and was based on similar HRI
studies [63,64]. Test subjects were recruited from the university with core modules in fields
relating to computing and AI, including computer programming, application design and
AI games programming. The gaze attention of test subjects was measured throughout
the experiment with a pupil tracking camera. The HRI test was divided into two 10 min
evaluations for each robot, followed by a questionnaire on the appearance and functionality
of the robotic eyes.

HRI Test Results and Analysis

Functionality: Twelve out of twenty (60%) cited Euclid’s eyes as moving the most
human-like. Of that dataset, 5/12 explained that the movement and direction and eye
contact interaction made the RHR appear lifelike, and 2/12 suggested that Euclid made
eye contact with them more frequently, which made for a greater authentic HRI [65]. Four
out of fourteen argued that Euclid’s eyes moved left/right and up/down with greater
synchronicity and 1/14 advocated that Euclid’s eyes appeared to blink less randomly
than Baudi’s eyes. Eight out of twenty (40%) of the test subjects stipulated that Baudi’s
eyes moved more realistically than Euclid’s. Of this subset, 4/8 explained that Baudi’s
eyes moved more realistically and made eye contact more frequently, and 2/8 argued
that Baudi’s eyes blinked more humanistically than Euclid’s. Two out of eight mentioned
Baudi’s dilating pupils as a significant factor in their decision making. However, out of
the total data set, 18/20 of the test subjects did not notice Baudi’s pupil dilation reflex
during HRI. These results suggest Euclid’s eyes moved more realistically than Baudi’s
eyes. However, as the test subjects were not informed of the pupil dilation reflex of Baudi
until the end of the experiment to minimise influential factors, this component appears
to have gone mostly unnoticed. A potential reason for this outcome may be the limited
range of the pupil dilation reflex due to the gelatine overlay, and distraction from more
predominant facial features [66–68]. Furthermore, 18/20 (90%) of the test subjects stated
that eye movement and contact was a more significant factor than pupil dilation when
determining the authenticity of the robotic eyes, as per the UV [69].

Appearance: Fifteen out of twenty (75%) of participants explained that Euclid’s eyes
appeared more realistic than Baudi’s. Of those results, 9/15 suggested that the colour and
shiny surface of Euclid’s eyes made them look more genuine and 5/15 defined the pupils
as being darker, which made the eyes look human; 1/15 gave no clear explanation for
their decision.

Four out of twenty (20%) advocated that Baudi’s eyes appeared more realistic, as
they looked alive; 2/4 of this subset explained that, although Euclid’s eyes looked human-
like, they were cold and dead and Baudi’s eyes appeared alive, this result coincides with
previous studies in the UV [70]. One out of twenty (5%) of the test subjects explained that
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they could not decide, as both eyes looked equally realistic; 75% cited the acrylic eyes
as looking more realistic than the gelatin DEA eyes. This suggests that the robotic eyes
developed in this study lack the visual quality of the standard acrylic eyes implemented in
RHR ocular design. Interestingly, gaze attention was marginally higher in Baudi’s results
(78%) compared to Euclid (75%), although, as the difference is marginal, it is difficult to
draw a definitive conclusion from the results of the eye-tracking camera, as in similar group
research in the UV examining gaze interaction [71]. However, a lack of authentic human
presence may be a factor as in previous research in humanoid avatars [72].

11. Conclusions

Unlike previous prototypes, the robotic eyes developed and tested in this study can
respond to both light and emotion. However, much like previous dilating artificial eyes,
they lack the aesthetic quality of the human eye. The novel gelatin print and 3D iris
moulding method study effectively captured the intricate details of the human iris, which
is difficult to achieve using the traditional hand painted methods explored in previous
robotic eye systems. The robotic eyes are formed from many different components that fit
together to form the internal and external structure of the system. Thus, the robotic eyes
are not as seamless as glass or acrylic artificial eyes, which affects their appearance.

As the pupils of the robotic eyes are see-through, they do not reflect light in the same
way as human eyes, or the black painted pupils of the acrylic artificial eyes.

However, light reflection is only notable in direct sunlight conditions compared to
ambient room lighting. The robotic eyes achieved a high level of functional accuracy
by implementing a FEA camera system in the left eye and a photo-resistor in the right,
allowing the robotic eyes to actuate proximal to the human eye dilation reflex during
average light conditions and emotional stimulus. The novel robotic eye configuration
accurately emulates the average human pupil dilation to light (0.1–0.4 mm diff.), and the
graphene EAP permitted light permeation up to 3500 lumens, which is in the range of
the average light permeation of the human iris (1000–3000 lumens). Although the robotic
eyes can operate within the average pupil range of the human eyes in response to light
and emotion, the application of the gelatin iris membrane on top of the graphene DEA
increased voltage input and reduced the operational range. This configuration made pupil
sequences difficult to observe with the robotic eyes and head in motion.

In consideration, the pupil analysis software approach was insufficient for gain-
ing accurate positional data, which resulted in the significant reconstruction of the data
fields to maintain consistency and permit equitable comparative analysis. Therefore, non-
computational methods of pupil tracking may prove more accurate and fruitful than
ML approaches due to the mapping issues of the DEA and interference from blinking
during real-time analysis. Although the robotic eyes were unable to precisely map the
pupil diameter of the human eye (0.0 mm) due to the incremental steps of the servos, the
synthetic pupils achieved a proximal dilation within 0.4 mm, indicating a high level of
functional accuracy. The synthetic pupils operate within the average range of the human
pupil dilation during an emotional stimulus, configured using the results of the literature
review and the maximum and minimum EAP ranges from the pupil reflex to light input
test. The results of the eye calibration test provide further grounding for the theory that
irregular aesthetics supersede quality functionality, and vice versa [73] and [74]. Further-
more, inconsistency and consistency in eye contact behaviour in the HRI experiment had a
more significant impact on RHR authenticity than actuated/non-actuated robotic pupils
and aesthetic accuracy.

These findings suggest that effective eye contact interaction in HRI is more significant
to the authenticity of robotic eye pupil dilation. The literature review uncovered a flaw
in the aesthetic detailing of the artificial irises of the robotic eyes, as these components
were hand-painted onto the DEA, which resulted in an inaccurate visual representation of
the iris. Finally, unlike previous research, this study measured the range, frequency and
acceleration of the pupil as well as the effect of pupil dilation and aesthetics during HRI.
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12. Future Work

The robotic eyes demonstrated in this research indicate a high potential for accurately
in replicating the functionality of the human eye. However, future research should consider
methods towards improving the aesthetics of the artificial eyes to promote greater natural-
istic HRI. Although eye contact behaviour proved more significant than pupil dynamics
in the HRI experiment, this may change with improvements in the realism of RHRs. Per
the UV, minor irregularities (such as static pupils) become more noticeable with greater
levels of human likeness. Thus, future research using greater authentic RHRs may provide
grounds for the significance of emulating natural pupil interfacing in HRI.

Supplementary Materials: The following are available online at https://github.com/carlstrath/
Robotic_Eye_System.
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