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Abstract: The Kingdom of Saudi Arabia has suffered from COVID-19 disease as part of the global
pandemic due to severe acute respiratory syndrome coronavirus 2. The economy of Saudi Arabia
also suffered a heavy impact. Several measures were taken to help mitigate its impact and stimulate
the economy. In this context, we present a safe and secure WiFi-sensing-based COVID-19 monitoring
system exploiting commercially available low-cost wireless devices that can be deployed in different
indoor settings within Saudi Arabia. We extracted different activities of daily living and respiratory
rates from ubiquitous WiFi signals in terms of channel state information (CSI) and secured them
from unauthorized access through permutation and diffusion with multiple substitution boxes using
chaos theory. The experiments were performed on healthy participants. We used the variances of the
amplitude information of the CSI data and evaluated their security using several security parameters
such as the correlation coefficient, mean-squared error (MSE), peak-signal-to-noise ratio (PSNR),
entropy, number of pixel change rate (NPCR), and unified average change intensity (UACI). These
security metrics, for example, lower correlation and higher entropy, indicate stronger security of the
proposed encryption method. Moreover, the NPCR and UACI values were higher than 99% and 30,
respectively, which also confirmed the security strength of the encrypted information.

Keywords: COVID-19 patient monitoring; WiFi sensing for respiratory monitoring; privacy preservation;
activities of daily living

1. Introduction

The COVID-19 pandemic has spread significantly in the past year and has infected
more than 118 million people globally since its inception. These numbers are rising
exponentially around the world [1,2]. COVID-19 has caused more damage, while having a
lower fatality rate when compared to previous diseases, namely “severe acute respiratory
syndrome (SARS) and Middle East respiratory syndrome (MERS)” [3]. COVID-19 disease
is essentially transmitted through respiratory and contact routes when someone is in
proximity [4]. Airborne transmissions are also one of the largest sources, occurring in
healthcare sectors, where support treatments or procedures are conducted in close contact.
This can also occur when numerous people share the same room for long periods of time.

The Kingdom of Saudi Arabia’s government has taken massive precautionary mea-
sures, such as timely interventions, travel restrictions, and closing cinemas, indoor enter-
tainment centers, indoor restaurants and cafes, gyms, and sports centers. These measures
have seen preliminary effects in reducing the spread of this pandemic. As of 3 March 2021,
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the COVID-19 pandemic has caused more than 381,700 cases and 6550 deaths. According
to [5], a survey was conducted on a total of 844 healthcare workers. Three-fourths of the
respondents revealed that they are at risk of contracting COVID-19 at work. Of the re-
spondents, 69.1% revealed they would feel threatened if a colleague contracted COVID-19,
69.9% of them that they would have to care for patients infected with COVID-19, while
27.7% that they feel unsafe at work using the standard precautions available.

In hospital and laboratory settings, reverse-transcription polymerase chain reaction
(RT-PCR) is the gold standard technique to detect COVID-19 infection [6]. However, this
method presents a high false detection rate, and its unavailability on a large scale might
slow down the tracking of potential COVID-19 patients. Another method called thoracic
computed tomography (CT) is comparatively easy to operate to deliver the diagnosis
of potential patients. For instance, the majority of COVID-19 patients have a traditional
radiographic imprint on their lungs when a CT scan is performed. Thus, the lung CT is a
widely used method to clinically diagnose the disease [7]. We must consider the demand
for high-throughput screening for examining the chest using computed tomography and
the amount of work that has been done by radiologists, especially the COVID-19 patients
in a hospital environment.

In order to avoid contact with potential COVID-19 patients, noncontact and non-
invasive monitoring of vital signs such as the respiratory rate is of utmost importance.
Noncontact offers seamless monitoring of patients by altering daily routine activities [8].
Recently, noncontact techniques such as radio frequency (RF) that exploit ubiquitous WiFi
have shown the ability to monitor the daily routine activities of COVID-19 patients and
their respiratory rate [9]. In addition, the existing WiFi network system accesses control
methods, essentially using a static password, and the media access control address is prone
to attacks by malicious users. Such attackers can gain access to WiFi signals and monitor
the respiratory rate of a particular COVID-19 patient and raise a false alarm [10]. The pri-
mary reason the proposed noncontact wireless sensing system exploits low-cost ubiquitous
wireless devices is that it leverages the existing WiFi signals available almost everywhere,
for instance in homes, care-homes, hospitals, hotels, and so on. The system does not need
any contact with the person and monitors various COVID-19 symptoms, specifically the
breathing rate, by exploiting the change in the wireless medium using the variances of the
amplitude information. This system can also exploit the small receiving antenna present
in a mobile phone. When the mobile phone is connected to a WiFi router, the system
would be able to collect breathing information using the mobile phone as well. Hence, the
proposed method can help mitigate the ongoing spread of COVID–19 and can continuously
and seamlessly monitor the specific patients. In the literature [11–16], COVID-19 monitor-
ing/prediction methods are available; however, these methods [11–17] are mainly focused
on classification without any encryption. The method outlined in [11–16] mainly uses AI-
and ML-based techniques. A number of ML techniques are used for other applications,
and details can be found in [18,19]. Our proposed method uses a noninvasive detection of
COVID-19 along with the patients’ privacy using the CSI. Moreover, in this work, images
were secured through a lightweight chaos-based encryption method.

In this paper, we present a noncontact safe and secure WiFi sensing-based COVID-
19 patient monitoring technique using low-cost ubiquitous small wireless devices such
as commercially available WiFi routers, network interface cards, and traditional dipole
antennas. We monitored the activities of daily living along with the respiratory rate. This
system exploits RF signals by examining the variances in the amplitude information of
the channel state information (CSI). Specifically, to preserve privacy, we present a novel
algorithm. We used one transmitter antenna and one receiving antenna to continuously
record the CSI data from a WiFi router for monitoring purposes. The main contributions of
this paper are as follows:

1. We present a novel noncontact safe and secure channel state information-based WiFi
sensing system for monitoring the activities of daily living (ADLs) and the respiratory
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rate of COVID-19 patients. This system does not need a dedicated device and exploits
radio frequency signals available almost everywhere;

2. This system can efficiently monitor large-scale body movements along with tiny
chest movements. It primarily exploits various parameters extracted from WiFi
signals, such as the variances of the amplitude and phase information, time–frequency
spectrograms, and 3D signatures containing time–frequency–amplitude information;

3. WiFi technology is highly susceptible to being accessed by unwanted users; therefore,
we propose a novel privacy-preserving algorithm for securing the CSI data containing
vital signatures such as ADLs and respiratory rates to counter the false alarms gen-
erated. Every now and then, unauthorized users can gain access to the WiFi signal,
generating a false alert to the caregiver or nurse;

4. In this work, we encrypted spectrograms with lightweight chaos-based maps. The
security of the proposed scheme was tested and proven against a number of security
parameters.

One of the natural questions that arises is why researchers are deploying chaos
in image encryption schemes. The behavior of chaotic signals is highly unpredictable
and random-like, which can be used in the design of cryptographic algorithms [20–22].
Inherently, chaos exhibits complex properties in a very simple mathematical formula. That
is one of major reasons why many cryptographic designers prefer chaos instead of complex
formulae with complex properties [23].

2. Related Works

Several studies have used sensor systems for identifying and detecting respiratory
disorders. Noncontact sensing of body movements has attracted great attention from
researchers, especially noninvasive techniques for measuring vital signatures such as
the respiratory and heart rates. Wireless techniques constitute an efficient technique for
detecting physiological signs and movements [24–28]. For instance, Dou and Huan [29]
suggested a breathing sensing system based on the Doppler spectral energy extracted
from the CSI to monitor the chest displacement induced by respiration. The authors
proposed two phases: fitting to obtain the CSI with the Doppler shift and decomposition
to obtain the channel impulse response. Moreover, they conducted a time–frequency
analysis to accumulate the Doppler spectral energy. Khan et al. [30] conducted a systematic
review of noncontact sensing related to COVID-19. The main idea was to suggest a
solution for the early diagnosis of this disease based on common early symptoms such as
coughing and shortness of breath. The authors identified existing methods for noncontact
health monitoring and presented several steps discussed in noncontact sensing platforms
such as data collection, data processing, feature extraction, and classification algorithms.
Costanzo [31] developed a software-defined radar based on Doppler elaboration features
to measure the noncontact monitoring of human respiration signals. The author proposed
to monitor low-frequency oscillations typical of human breath using compact, low-cost,
and flexible radar solutions. Van et al. [32] developed a continuous wave radar sensor
system for self-identifying of respiratory disorders. Their proposed system was developed
based on neural networks that can identify if a patient has a low, normal, or high breathing
rate. Besides, the model has been improved to detect the patients who are suffering from
breathing disorders. Sharma et al. [33] used a wearable radio frequency (RF) sensor as
a noninvasive method for monitoring respiration dynamics. The method was used to
estimate the breathing rate and lung volume. The obtained respiratory parameters were
compared with the traditional chest belts’ data for different simulated respiratory cases,
which included fast and slow, shallow breathing. Kristiani et al. [34] designed a monitor
for respiration and heart rates. The proposed device used a flex sensor to detect the
respiration rate. The findings of these sensors were published to the Internet using the
IoT based on the ThingSpeak application. Khan et al. [35] provided a solution to remotely
monitoring vital signs such as breathing related to COVID-19 patients. The authors used
software-defined radio (SDR) technology and artificial intelligence. The fine-grained
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wireless channel state information was extracted using the channel frequency response
and multicarrier orthogonal frequency division multiplexing technique. The validation
was conducted using a simulation of the channels to provide a better understanding of
the channel frequency response. The technique used in Khan et al.’s paper allows sensing
human body movements to diagnose breathing abnormalities in a noncontact manner.

In this paper, the core idea is to detect the lung functionality of patients with COVID-
19 based on detecting abnormal breathing rates due to lung disorders. As mentioned above,
numerous noninvasive applications of sensors and WiFi-signal-based human activity
recognition systems have been proposed, as this provides a low-cost and device-free
solution. The main feature of these systems is to analyze the change in received signal
characteristics by the nearby WiFi systems, which can provide information about human
activity. However, the received signal is greatly affected by multipath propagation and
is highly susceptible to noise. Furthermore, the security protocol used to protect the
vast majority of WiFi networks can be easily broken, potentially exposing the wireless
connection to malicious eavesdroppers and attacks. Patients’ data are an attractive target
for cybercrime for two fundamental reasons: they are a rich source of valuable data, and
their defenses are weak.

To summarize, there is a need for noncontact, safe, and secure WiFi sensing to monitor
the ADLs and respiratory rate of COVID-19 patients using low-cost small wireless devices.

3. WiFi Sensing System Model

The noncontact wireless sensing techniques can be divided into two large categories,
the received signal strength indicator (RSII) and channel state information. These two meth-
ods can be applied to a large number of applications including cardiac activity monitoring,
breathing rate detection, fall detection, and so on. The RSSI measurements only deliver
the averaged-out radio frequency signal power level and are extremely inconsistent and
inadequate for monitoring the activities of daily living and respiratory rate of COVID-19
patients [36]. The research work in [37] demonstrated the activities of daily living of an
individual leveraging RSSI measurements using a smartphone sensor and evaluated the
performance in terms of percentage accuracy. On the contrary, the channel state information
obtained using small wireless devices, such as a WiFi router and network interface card,
presented a granular resolution using 30 subcarriers.

The single subcarrier was used to extract breathing information. All of the 30 subcar-
riers presented nearly similar information, and that is why one subcarrier was used for
analysis purposes.

WiFi sensing essentially exploits the received signal strength (amplitude information)
indicators and channel state information (amplitude and phase information), which can
be used in a large number of applications, specifically for detecting the activities of daily
living and tiny chest and cardiac movements with varying frequencies. The RSSI data are
the averaged-out signal received by a commercial network interface card, while the CSI
data describe the overarching physical wireless medium in terms of various frequency
channels [8,38]. The RSSI data are highly susceptible to random noise and unstable each
time the data are received. The WiFi sensing-based CSI data are highly stable in the
presence of external noise.

Assume that any RF signal transmitted by a WiFi router can be mathematically ex-
pressed as: x(t) = ej2π f̄ t. The signal received by a network interface card at the received
side can be written as follows:

y(t) =
L

∑
i=1

αi( f̄ , t)ej2π f̄ (t−τi( f̄ ,t)) (1)

Here, L is the total number of paths, including line-of-sight (LOS) propagation and non-
line-of-sight (NLOS) propagation. Here, αi( f̄ , t) and τi( f̄ , t) indicate the attenuation caused
due to multipath propagation and delay caused at time internal t as the RF signal travels
from the WiFi router to the receiving antenna through path i, respectively. Considering
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αi( f̄ , t) and τi( f̄ , t) do not rely on operating frequency f̄ , by applying the superposition
theorem on the RF signal received through the LOS and NLOS, any input RF signal will
induce the following output signal:

y(t) =
L

∑
i=1

αi(t)x(t− τi(t)) (2)

The above superposition assumption is adequate as the WiFi frequency bandwidth
is narrow when compared to its operating frequency (i.e., 2.45 GHz). To simplify the
notation, eliminate the term t found in αi and τi. The channel impulse response (time
domain representation) of the physical wireless medium can be extracted from Equation (2)
as follows:

h(t) =
L

∑
i=1

αiδ(t− τi) (3)

While its frequency response or channel state information can be mathematically
expressed as:

H( f̄ ) =
L

∑
i=1

αie−j2π f̄ τi (4)

The Intel 5300 network interface card used for data collection embedded within a
computer collects a group of 30 frequency subcarriers that essentially measure the channel
state information [39], which can be extracted from Equation (3) as:

H f ,k =
L

∑
i=1

αie−j2π( f+ fc)τi (5)

Here, H indicates the matrix comprising raw CSI data (amplitude and phase informa-
tion), f is the baseband frequency of different frequency subcarriers, k is the total number of
subcarriers (30 in this case), and fc is the central frequency (2.45 GHz). When we record CSI
data using the commercial Intel 5300 network interface card, there are numerous challenges
presented by the device. First and foremost are the latency and time taken when a single
CSI packet is received [40]. The CSI can be measured through received RF signal energy or
increasing the sliding window by setting the receiving data. Irrespective of the method
adopted, each time the WiFi router is connected to the network interface card, a random
packet delay is experienced, which is induced due to the baseband frequency channels that
bring random noise into the CSI data. The second reason is the phase difference between
the transmitted and received signal. This particular phase difference is produced when the
WiFi router is switched on and an initial random noise is transmitted along with an actual
data signal. The noise is then picked up into the CSI data at the receiving side. The CSI
data obtained by the network interface card can be mathematically expressed as:

H f ,k = e−j2π[ f τpdd+τpll+ fc f otk]
L

∑
i=1

αie−j2π( f+ fc)τi + N (6)

Here, τpdd represents the offset or error generated, the volume of which is higher
than the actual value of τi, τpll is caused by the random noise in a wireless medium, fc f o
indicates the value of residual CFO, tk, expressing the time taken from transmission to
reception, and N is the (AWGN). We used Equation (6) to extract the CSI data for different
activities’ recognition and the breathing rate of COVID-19 patients.

4. WiFi Sensing-Based CSI Data for ADLs and Respiratory Rate

This section focuses on the CSI data obtained for various human activities such
as walking at a normal pace, walking while carrying an object, sitting down in a chair,
standing up from a chair, lying on a bed, and measuring the respiratory rate. We collected
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the data using WiFi sensing at Xidian University China, involving healthy participants.
The data were previously collected for a range of applications; however, due to the ongoing
pandemic, we argue that this system is applicable for monitoring COVID-19 patients since
no device needs to interact with the sensing system. The data acquisition was performed in
an indoor environment, generating time–frequency signatures [41,42] against each activity
and respiratory rate and data analysis, and securing it using the chaos-based method, as
given in Figure 1.

Figure 1. Data collection and data analysis using WiFi sensing.

The raw variations of the amplitude information of the CSI data for different activities
of daily living are presented in Figure 2.
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Figure 2. CSI-time history of each activity.

Figure 3 shows the time history of all activities for 30 subcarriers when amplitude
CSI is considered in terms of the power level (dB). The 3D waveform in Figure 3 indicates
the variances of amplitude information against the total number of subcarriers and time
history. It can be seen that each body movement produced a unique CSI signature, which
distinguishes each activity. We can further analyze single or multiple subcarriers against
time to examine individual activity and transition from one ADL to another. The respiratory
rate obtained using WiFi sensing is shown in Figure 4. A wearable breathing sensor was
put on the subject’s body, and data were recorded when the person was within WiFi range.
Simultaneously, data were also recorded using a network interface card. A sample of
data collected using WiFi sensing is shown in Figure 4a,c,d, and it was compared with
the one obtained using the wearable sensor, as in Figure 4b. The data in Figure 4a are the
raw variance of the amplitude CSI extracted directly from commodity devices with an
applied filter or removing random noise. Figure 4c is the phase information of the CSI
data for a person’s respiratory rate, while Figure 4d is the final respiratory rate obtained
after applying a filtering process using the parameters discussed above. There was a
close synergy between the respiratory rate obtained using a wearable sensor with that of
the WiFi.
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(a) Walking at a normal pace (b) Sitting down in a chair

(c) Person lying on a bed (d) Standing up from a chair

(e) Walking while carrying an object

Figure 3. WiFi sensing data for different activities including lying on a bed for respiratory rate measurement.
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Figure 4. Respiratory-rate measured using WiFi sensing and compared with a wearable sensor.

5. Extracting the Time–Frequency Spectrogram from WiFi Signals

In order to reliably and accurately extract the human activities and respiratory rates of
COVID-19 patients, we applied time–frequency spectrograms using the short-time Fourier
transform (STFT) [43] to images to encrypt the important data of particular patients. We
used CWT to extract the scalograms, as it presents granular information as compared
to the STFT. This method brings together advanced signal processing algorithms and
spectrograms to obtain signal components for activity recognition and respiratory rate
monitoring. Figure 5 shows the system architecture of using the channel state information
for monitoring COVID-19 patients.

The WiFi sensing-based channel state information comprises four main steps: (a) ex-
tracting raw variances of amplitude information, (b) eliminating the outliers using the
Hampel algorithm, applying a bandpass filter having a cutoff frequency from 0.2 GHz to
0.4 GHz to remove random noises recorded through a commodity device, (c) applying
principal component analysis (PCA) to obtain different activities of daily living and the
corresponding respiratory rate, (d) estimating the abnormal respiratory rate both in the
time domain and the frequency domain as experienced by the COVID-19 patients. The 3D
waveform in Figure 3 indicates the variances of the amplitude information against the total
number of subcarriers and time history.

Figure 5. Work low of WiFi sensing for extracting ADLs and respiratory rate.

CSI signal processing consists of the following steps: (1) obtaining the CSI signal
magnitude; (2) removing outliers by the Hampel identifier (Liu, Cao, Tang, Wen, and
Wi-sleep, 2014) and using a bandpass filter with cutoff frequencies of 0.2 Hz and 0.4 Hz to
suppress the noises; (3) exploiting PCA to obtain the breathing rate frequency contribution,
then using a short-time Fourier transform to obtain the time–frequency spectrogram to
extract the instantaneous frequency of the respiration rate (RR); (4) estimating the abnormal
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respiratory rate contributions in both the time and frequency domains to monitor the
COVID-19 patients.

The proposed system works as follows, as indicated in Figure 5: The first step is to
collect data using WiFi sensing; the raw data are then processed using advanced signal pro-
cessing algorithm, and random noise is remove, such as external noise and outliers. Using
principle component analysis, initially, large-scale body movements such as the activities
of daily living are extracted to examine the physical activities of a monitored COVID-19
patient. Then using the STFT, the respiratory rate is extracted for detection purposes.

The initial stage of channel state information raw data processing is to eliminate
the interference that occurs due to noise. Different activities and a sudden change in
respiratory rate can be experienced by COVID-19 patients due to an external movement
such as an operational ceiling fan. We applied the Hampel filtering algorithm to mitigate
the impact of a sudden change in amplitude information. The outlier noise is then replaced
by the average value of neighboring values, before and after the eliminated value. The
Hampel filter algorithm also has the potential to eliminate the invalid or empty channel
state information packets retrieved by the network interface card. After completing the
elimination of noisy signals from raw CSI data, the bandpass filter is also used to only
pass on the values of signals that are required to extract a particular respiratory rate. The
COVID-19 patient respiratory rate is essentially the subtle chest movement from which the
application of a bandpass filter can efficiently and reliably remove high-frequency noise
from CSI data. We used a bandpass filter in the frequency range of 0.2 Hz to 0.4 Hz, which
is the traditional frequency range of the human breathing rate.

As mentioned earlier, the raw channel state information carries multiple frequency
subcarriers (30 in this case), and human activities can be found at a lower frequency range
since these are large-scale body movements. However, due to the high-low wavelength of
higher frequencies, the range resolution also increases; hence, the high dimensions of CSI
matrices carry the breathing rate of COVID-19 patients. To extract the breathing rate, we
used PCA methods, which are essentially the space projection of the data. In this context,
the expression used for human activities’ recognition and the respiratory rate of subjects
can be written as f (t), which is defined as summing up all values of RF signal oscillations.

f (t) =
K

∑
k=1

αk(t)sk(2πNk ϕk(t)) + σ(t)r(t) (7)

Here, the value of αk(t) indicates the variation in amplitude CSI in terms of power level
in dB, Nk ϕk(t) is the random phase offset of the CSI data derived from the intermediate
frequency value (IF), which is mathematically expressed as {sk(t)}1≤k≤K and shows 2π as
the periodic RF signal having a zero mean function along unity function as in L2([0, 2π]), σ
shows the slow moving average value of the smooth function, while r(t) is the external
noise picked up by the low-cost network interface card.

In order to remove the intermediate frequency values from COVID-19 patients using
time–frequency analysis, we used the STFT on raw amplitude information of the CSI
data against time history. The STFT along with its parameters used in this work can be
mathematically expressed as follows [44,45]:

V(h)
f (t, ξ) =

∫
f (τ)h(τ − t)e−i2πξ(τ−t)dτ (8)

In Equation (8), the value of h is the time window function of the CSI data obtained
using WiFi sensing and t denotes the total time taken to record the data over a period of time.
The value ξ describes the operating frequency (i.e., 2.45 GHz). This equation expresses
that the moving time window and STFT, when applied on the CSI data considering the
amplitude information, give us the spectrograms that are expressed in terms of time vs.
frequency, as shown in Figures 6–10. These figures indicate when a person was walking
back and forth within WiFi range in an indoor environment.
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Figure 6. Time–frequency spectrogram for a person walking.

Figure 7. Time–frequency spectrogram for a person sitting down and standing up.
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Figure 8. Time–frequency spectrogram for a person lying on a bed.

Figure 9. Time–frequency spectrogram for a person walking while carrying an object.
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Figure 10. Time–frequency spectrogram for the respiratory rate.

6. Encrypted-WiFi-Based Time–Frequency Spectrograms

The spectrogram shown in Figures 6–9 contains sensitive personal information, and
an attacker could possibly hack this information and send false alarms. In this section, an
encryption scheme is presented to a secure spectrogram obtained from WiFi data. The
proposed encryption scheme contains both confusion and diffusion steps. A general
mathematical notation is written as:

C = αψ(βω(I, Kτ), Kσ), (9)

where C and I are ciphertext and plaintext images, α and β are functions of the confusion
and diffusion processes, Kτ and Kσ are the confusion and diffusion secret keys, and ψ and
ω show the number of rounds for confusion and diffusion in total encryption, respectively.
In the literature, one-dimensional maps such as logistic, tent, and sine maps have been
applied in confusion and diffusion processes to obtain a ciphertext image. Mathematically,
a logistic map is written as [46]:

xn+1 = f1(xn, r) = µxn(1− xn), (10)

where x0 ∈ (0, 1) and µ ∈ (0, 4) are the initial conditions. A tent map is written as:

yn+1 = f2(yn, λ) =


λyn

2 , if yn < 0.5

λ(1−yn)
2 , if yn ≥ 0.5

(11)

where y0 ∈ (0, 1) and λ ∈ (0, 4) are the initial conditions. Mathematically, a sine map is:

zn+1 = f3(zn, ξ) =
ξsin(πzn)

4
, (12)
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where z0 ∈ (0, 1) and ξ ∈ (0, 4) are the initial conditions.
However, due to a lower chaotic range and several other disadvantages, one-dimensional

maps such as logistic, tent, and sine maps have serious security flaws. For example, the
bifurcation diagram of a logistic map shown in Figure 11 highlights that the logistic map
has a lower chaotic range of (3.57, 4). Therefore, instead of using a traditional logistic
map, hybrid maps were proposed in [47]. In this research, we also used hybrid maps
(logistic-tent, logistic-sine, and tent-sine maps) due to the larger key space and initial
condition sensitivity. The detailed encryption steps are given below.

Figure 11. Bifurcation diagram of a logistic map: chaotic nature for µ ∈ (3.57, 4).

6.1. Encryption Steps

This section presents the proposed encryption scheme for a spectrogram. Without
loss of generality, consider the size of the spectrogram as M× N. Split the correspond-
ing plaintext spectrogram into red, green, and blue channels. The encryption steps are
as follows:
Step 1: Apply the Secure Hash Algorithm (SHA 3) on the plaintext channel to obtain hash
H.

H = h1, h2, . . . h128; (13)

Step 2: Convert hash values H into binary bit representation form B;

B = b1, b2, . . . b512; (14)

Step 3: Generate initial conditions for a logistic-tent map, logistic-sine map, and tent-sine
map, respectively. Mathematically, a logistic-tent map is written as:

qn+1 = g1(qn, µ) =


(µqn(1− qn) + (4− µ) qn

2 )mod(1), if qn < 0.5

(µqn(1− qn) + (4− µ) (1−qn)
2 )mod(1), if qn ≥ 0.5

(15)
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where mod is the modulus operation and q0 ∈ (0, 1) and µ ∈ (0, 4) are the initial conditions.
Now, calculate q0 and µ using the binary bits obtained from Step 2.

q0 =
b1 × 20 + b2 × 21 + . . . + b48 × 247

248 . (16)

µ =
b49 × 20 + b50 × 21 + . . . + b96 × 247

248 . (17)

The logistic-sine map is written as:

rn+1 = g2(rn, µ) = (µrn(1− rn) + (4− µ)
sin(πrn)

4
)mod(1), (18)

where r0 ∈ (0, 1) and µ ∈ (0, 4) are the initial conditions. Calculate initial condition r0:

r0 =
b97 × 20 + b98 × 21 + . . . + b144 × 247

248 . (19)

The tent-sine map is written as:

sn+1 = g3(sn, µ) =


(µ sn

2 + (4− µ) sin(πsn)
4 )mod(1), if sn < 0.5

(µ (1−sn)
2 + (4− µ) sin(πsn)

4 )mod(1), if sn ≥ 0.5
(20)

where s0 ∈ (0, 1) and µ ∈ (0, 4) are the initial conditions. Calculate s0 as:

s0 =
b145 × 20 + b146 × 21 + . . . + b192 × 247

248 ; (21)

Step 4: Iterate a logistic-tent map and logistic-sine map σ + M and σ + N times, respec-
tively, where σ is 30, so that the transient effect is avoided. Save the last M values in
Q = [q1, , q2, . . . , qM] and the last N values in R = [r1, , r2, . . . , rN]. Iterate a tent-sine
map using σ + N times, and save the last N values in S. Apply a rowwise permutation,
columnwise permutation, rowwise circular-shift downward using the P, Q, R, and S row
matrices to obtain a permuted image Pφ. The detailed permutation steps are explained
below in the Algorithm 1.
Step 5: For diffusion, Pφ is passed through one of the substitution boxes (S-Boxes) shown in
Tables 1–3. Pφ is replaced with a single S-box using an intertwining map. The intertwining
map is written as:

un+1 = (λ× α× vn × (1− xn) + wn)mod(1),

vn+1 = (λ× β× vn + wn × 1
1+(un+1)2 )mod(1),

wn+1 = (λ× (un+1 + vn+1 + γ)× sin(wn)mod(1).

(22)

where u0, v0, and w0 are the initial conditions calculated as:

u0 =
b193 × 20 + b2 × 21 + . . . + b240 × 247

248 . (23)

v0 =
b241 × 20 + b2 × 21 + . . . + b288 × 247

248 . (24)
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w0 =
b241 × 20 + b2 × 21 + . . . + b288 × 247

248 . (25)

0 ≤ λ ≤ 3.999, |α| > 33.5, |β| > 37.9, and |γ| > 35.7. Iterate the intertwining map M× N
times. Retain the last three values of W for the S-Box selection. Apply the step below:
Ω = mod(floor(1015 × wn, 2).

For Ω = 0, Ω = 1, and Ω = 2, S-Box1, S-Box2, and S-Box3 are selected, respectively.
The selected S-Box is applied on Pφ to obtain Pθ ;
Step 6: Finally, perform an XOR operation on Pθ using the values obtained from V.
ζ = mod(floor(1015 × vn, 256)
ζ = Pθ ⊕ ζ;
Step 7: Repeat Steps 1 to 6 for each, and then, combine all three channels to obtain the
resultant ciphertext C.

Algorithm 1 Permutation steps
Input: Plaintext image P, Q, R, S
Output: Shuffled image Pφ

% Firstly, sort Q values from low to high
SortedQ = Sort(Q)
for i = 1 : M do

for j = 1 : M do
if SortedQ(i)==Q(j) then

Randrow(i) = j
end if

end for
end for
%Shuffle corresponding rows using random values obtained in Randrow.
P1 = Sortrows(Randrow, P)
% Next, sort R values from low to high
SortedR = Sort(R)
for i=1:N do

for j=1:N do
if SortedR(i)==R(j) then

Randcolumn(i) = j
end if

end for
end for
% Shuffle corresponding columns using random values obtained in Randcolumn.
P2 = Sortrows(Randrow, P1)
% Finally, use S, floor, multiplication, and the modulo operation to perform circular-shift
downward.
P3 = Floor(Q ∗ 1014)
P4 = Modulus(P3, N)
% The columns of P2 are circular-shifted downward P4(i) times, where i = 1, 2, . . . N.
Pφ= circshiftdown(P(i), P4(i))
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Table 1. Nasir’s S-Box2 [48].

145 1 48 211 120 62 102 195 122 171 71 114 164 204 170 191
156 247 254 99 30 238 94 212 216 110 107 50 155 142 74 2
131 96 13 190 139 113 84 202 210 194 196 230 118 17 175 40
159 4 116 177 235 147 198 222 220 176 12 72 124 127 219 100
26 75 15 248 68 83 79 160 97 6 188 60 182 178 9 193
103 93 186 101 80 66 91 10 200 232 148 208 29 39 228 140
217 58 27 161 249 37 112 136 144 20 166 158 0 245 225 207
135 125 233 8 215 76 19 92 81 22 138 197 77 105 51 49
16 54 90 133 201 53 151 252 129 154 237 87 117 31 169 243
141 5 36 59 85 24 246 55 236 184 45 35 234 123 163 70
206 179 69 203 143 47 137 214 23 128 157 192 173 187 152 165
221 38 242 250 213 223 119 240 61 82 224 3 167 132 33 41
104 78 231 181 14 89 150 209 146 25 226 189 121 7 218 229
18 57 239 64 88 106 63 149 183 52 73 251 42 130 67 227
65 21 168 111 241 32 44 126 109 56 172 162 253 199 11 185
98 34 134 108 153 244 43 205 174 255 95 86 115 46 180 28

Table 2. Badr’s S-Box [49].

49 51 88 16 211 184 115 80 30 58 12 4 45 55 5 228
223 160 233 57 11 65 21 128 71 101 192 188 200 213 154 64
119 2 151 229 3 178 74 112 53 120 13 199 54 15 251 27
103 1 190 194 129 235 133 175 60 145 249 150 169 220 18 79
157 124 31 208 95 20 197 135 236 238 158 187 14 202 144 189
216 227 193 248 212 143 179 107 59 99 63 186 83 210 130 123
182 132 250 139 104 81 162 177 152 136 73 37 219 96 207 215
17 221 19 67 35 38 34 24 153 25 176 84 204 76 32 217
148 254 140 214 94 138 142 7 181 146 242 70 239 252 6 174
50 105 167 240 97 39 108 48 86 225 173 206 44 89 222 33
226 113 52 170 253 0 23 98 247 40 116 201 117 46 156 155
224 68 161 185 205 195 164 8 102 111 149 203 243 36 241 237
22 82 72 78 218 91 198 110 47 166 131 77 43 172 121 246
171 106 125 87 41 93 168 26 29 255 147 180 42 232 126 127
109 90 244 230 159 92 134 69 114 165 137 191 209 56 118 9
245 62 75 28 234 61 163 85 100 122 10 66 196 183 231 141

Table 3. Hussam’s S-Box [50].

124 85 103 92 90 73 25 121 35 148 80 131 187 206 143 154
55 116 112 89 219 194 58 165 59 152 104 138 215 70 147 119
176 95 97 7 114 84 139 253 136 60 150 34 50 52 134 62
64 100 32 81 201 18 199 101 20 144 45 174 126 30 173 38
9 87 98 93 106 166 115 179 78 153 224 141 72 56 228 96

162 182 164 190 210 110 193 67 156 83 149 222 8 254 167 26
69 186 57 249 29 204 214 123 177 227 14 175 79 178 239 238
3 125 108 118 24 94 212 128 137 1 233 5 11 169 250 241
10 66 207 236 15 16 237 23 181 197 221 135 75 217 145 82
200 28 183 127 198 231 17 54 21 232 202 61 155 142 159 163
158 230 36 220 195 39 133 102 196 226 68 44 161 71 160 184
209 2 43 109 22 132 216 37 140 122 51 205 76 74 225 91
46 203 246 255 0 188 47 192 208 120 111 223 218 107 185 146
172 42 130 40 113 33 213 243 211 117 189 48 235 41 13 129
105 244 88 99 229 252 27 170 234 245 86 6 240 157 191 53
12 4 49 151 77 251 248 242 31 63 65 168 247 171 19 180

6.2. Security Analyses

Figure 12 shows the encrypted person walking spectrum using the proposed encryp-
tion scheme. Through visual inspection, it is evident that the contents are encrypted and an



Electronics 2021, 10, 2701 18 of 24

intruder cannot get any ideas about the original spectrogram. However, a visual inspection
alone is not sufficient, and security should be proven through statistical analyses [51].
Figures 13–15 show the histograms of the red, green, and blue channels, respectively. It can
be seen that these histogram are almost flat, and hence, the encrypted color spectrogram is
secure. Furthermore, Tables 4–6 show the security of the encrypted spectrogram using a
number of security parameters [20,21,52–54] for the red, green, and blue channels, respec-
tively. From the security parameters, it is evident that the spectrogram encryption is secure
and resistant against many attacks.

Figure 12. Ciphertext of the person walking spectrogram.
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Figure 13. Histogram of the ciphertext: red channel.

Figure 14. Histogram of the ciphertext: green channel.
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Figure 15. Histogram of the ciphertext: blue channel.

Table 4. Security analyses of the encrypted spectrogram: red channel.

Security Evaluation Parameter Plaintext Spectrogram Encrypted Spectrogram

Corr Co f f (H) 0.5842 0.0020
Corr Co f f (V) −0.0812 −0.0027
Corr Co f f (D) 0.6295 0.0012

MSE NA 9.7076× 103

PSNR (db) NA 30.7917
NAE NA 1.2484
MAE NA 254
NCC NA 1
SC NA 0.2049
AD NA 8.8120
MD NA 255

Entropy 4.1975 7.9995
NPCR NA 99.60%
UACI NA 31.58

Contrast 0.3094 10.4793
Energy 0.3938 0.0156

Homogeneity 0.9170 0.3899
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Table 5. Security analyses of the encrypted spectrogram: green channel.

Security Evaluation Parameter Plaintext Spectrogram Encrypted Spectrogram

Corr Co f f (H) 0.7168 −0.0043
Corr Co f f (V) 0.3492 −0.0013
Corr Co f f (D) 0.7568 0.0002

MSE NA 1.2631× 104

PSNR (db) NA 32.6558
NAE NA 2.0190
MAE NA 254
NCC NA 1
SC NA 0.1153
AD NA 4.9859
MD NA 255

Entropy 4.5881 7.9993
NPCR NA 99.60%
UACI NA 36.08

Contrast 0.1739 10.5599
Energy 0.8582 0.0156

Homogeneity 0.9842 0.3885

Table 6. Security analyses of the encrypted spectrogram: blue channel.

Security Evaluation Parameter Plaintext Spectrogram Encrypted Spectrogram

Corr Co f f (H) 0.8595 −0.0011
Corr Co f f (V) 0.7318 −0.0012
Corr Co f f (D) 0.8727 −0.0022

MSE NA 8.9247× 103

PSNR (db) NA 25.7665
NAE NA 0.4231
MAE NA 255
NCC NA 1
SC NA 1.5625
AD NA 66.5487
MD NA 255

Entropy 5.7442 7.9994
NPCR NA 99.59%
UACI NA 30.38

Contrast 0.1327 10.4901
Energy 0.5608 0.0156

Homogeneity 0.9645 0.3893

7. Conclusions

This paper presented a novel privacy-preserving COVID-19 patient monitoring tech-
nique in the context of Saudi Arabia. The use of low-cost wireless devices in conjunction
with a novel encryption algorithm, namely chaos-based substitution boxes, made it an end-
to-end secure system for continuously monitoring patients. The variances of the amplitude
and phase information were used to monitor daily routine activities and detect normal
and abnormal breathing rates. A wearable sensor was used as a reference sensor, which
indicated strong synergy between wearable and noncontact WiFi sensing. This system
can be deployed in any indoor setting where WiFi signals are available, such as in homes,
hospitals, care centers, and airports. The proposed encryption scheme can be further
strengthened with multichaos maps. In the future, we will change the proposed algorithm
with higher-dimensional mapping for a higher key space and higher security. Moreover,
the proposed scheme will be tested against ciphertext attack and plaintext attack. The
proposed multichaos-based encryption scheme will be compared with other chaos-based
algorithms. In addition, we will also deploy this system in actual quarantine, hotel, of
hospital environment where actual COVID-19 patients are monitored while in quarantine
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or being observed. The idea will be to monitor their activities of daily living and examine
their respiratory rate to see whether the patients needs a timely intervention. We will also
monitor multiple participants in the future, in comparison to a single patient, as in this
study. Additionally, in future work, we plan to monitor real COVID-19 patients instead of
healthy participants and ask them to mimic different breathing patterns.
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