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Abstract Internet of Things (IoT) has been rapidly developed in recent years,
being well applied in the fields of Environmental Surveillance, Smart Grid,
Intelligent Transportation, and so on. As one of the typical earth-based me-
teorological observation methods, networked Doppler weather radars, i.e. the
Internet of weather Radars (IoR) can detect the signals of large-area water par-
ticles in the atmosphere with high resolution, but suffer from beam blockage
due to surrounded mountains, buildings, as well as other obstacles. In addition,
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how to establish a distributed platform for large-scale radar data analytics be-
comes critical and challenging, especially considering optimised strategies on
the storage, processing and exchange of radar raw data, beam/echo signal,
and final products etc. In this paper, an edge-assisted cloud framework is
proposed to facilitate effective and proficient communication and progression,
where echo signal from a single site radar can be analysed and pre-processed at
the edge, and then trained in the cloud with elastic resources and distributed
learning ability. A Residual Concatenate Fully Convolutional Network (RC-
FCN) is presented for beam blockage correction, which is integrated into the
framework to be compared with other deep learning models, including FCN,
ResNet, VGG, etc. According to experiment results, better performance and
efficiency have been achieved using the proposed framework and its fitted RC-
FCN model.

Keywords Edge Computing · Internet of Radars · Residual Concatenate ·
Beam Blockage Correction · Weather Radar

Mathematics Subject Classification (2020) MSC code1 · MSC code2 ·
more

1 Introduction

Weather radar is an important equipment of weather observation in meteoro-
logical department. In order to make the observation more accurate and timely,
the deployment of weather radar is very intensive, especially in coastal areas.
The weather radar outputs data every six minutes generally. The amount of
data generated by weather radar network is very huge. Therefore, it is an
important and difficult problem to save massive radar data orderly. At the
same time, the data detected by different radar stations are copyrighted. In
the process of transmission and storage, it is necessary to ensure the security
and privacy of radar data.

On the other hand, there are many quality problems in the direct output
data of weather radar. When directly applied to the quantitative analysis
method of meteorological operation, it is easy to cause obvious errors. Common
quality problems include non precipitation target blocking, ground clutter and
signal attenuation. Therefore, before the data are put into use, the quality
control operations such as blocking correction, clutter removal and attenuation
correction are needed.

In this paper, an edge-assisted cloud framework based Residual Concate-
nate Fully Convolutional Neural Network (RC-FCN) is proposed, which can
achieve the correction of beam blockage independent of terrain data and en-
sure the access performance of radar data. Blocking correction is regarded
as an image in-painting problem in this study. The system adopts the com-
bination of edge and cloud computing. The edge part is each radar station
which is mainly responsible for detection, data storage and preprocessing. The
cloud computing part is high performance server hardware system optimized
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for artificial intelligence and remote access software system. In this way, the
whole system can harmonize the contradiction of weather radar AI system in
data storage, data transmission, and efficient invoking of AI algorithms. In
this study, the problem of weather radar beam blockages is mainly solved.

The blocking part of radar image is just similar to the missing data of
image. RC-FCN is a multilayer neural network with image restoration function.
It consists of an convolutional encoder and a deconvolutional decoder network.
During training, the input of network is the blockages contained weather radar
images. The output of the network is the repaired image corresponding to the
blocking positions. The label is the real image corresponding to the blocking
positions. After training with large amount data finished, the network can
automatically fill in the missing data of the blocking part according to the
context information of the radar image. In fact, the training process of the
network is to find the relationship of data distributions between the blocked
and normal part in weather radar images.

Experiment shows that the method in this paper is superior to the tradi-
tions in critical success index (CSI), false alarm rate (FAR) and probability
of detection (POD)[26]. Due to the different models and principles of radar
equipment, the traditional methods need to adjust the algorithm parameters
according to the actual situation to adapt different types of radar-based data.
The method proposed in this paper is based on radar image. Radar image is
the advanced product of radar system, which has strong generality. The train-
ing of this method is based on radar image. Therefore, this can be applied
to almost all weather radar systems without parameter adjustment of specific
equipment. This method is universal and convenient.

2 Related Work

2.1 Edge and Cloud Combined Computing

Compared with cloud computing, edge computing has its unique advantages.
For example, it can achieve faster network service response to meet the ba-
sic needs of the industry in real-time business[12,46,1], application intelli-
gence[38], security and privacy protection[42]. Edge computing technologies
have been widely used in the field of Internet of Things (IoTs)[23,8,30,35],
Internet of Vehicles (IoVs)[41,40,19], smart city[31] and so on. Atmospheric
detection and weather monitoring are special IoTs application scenarios[18].
The network of Radars (IoRs) is also a special type of IoTs. Because the scan-
ning range of a weather radar is limited, usually covering a radius of about one
hundred to four hundred kilometres. A network composed of multiple radars is
needed to completely cover a certain area. Each radar generates several GB of
data every day. How to process so much data become a challenging problem.
The radar node for lightweight data processing and the comprehensive anal-
ysis processed by cloud high-performance computer will be a better solution.
At present, there are many computing systems that combine the advantages
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of edge computing and cloud computing. Zamora-Izquierdo[45] proposed an
exchangeable low-cost hardware based and multi software platform supported
edge computing platform for Precision Agriculture management. The local
cyber-physical systems can gather information and execute control actions.
The cloud platform can collect information for analysis. Wu[36] proposed a
distributed deep learning-driven task offloading algorithm for mobile devices,
edge cloud server, and central cloud server. The algorithm can give the opti-
mised decisions in the mixture edge and cloud computing environments. Edge
computing and cloud computing are not opposite, but more often to make up
for their shortcomings. Duc[5] surveys problems in joint edge-cloud environ-
ments. The research shows that machine learning technologies can solve the
scheduling and allocation of computing resources in the environment. Miao[21]
also uses LSTM model to predict the task offloading and migration in mobile-
edge cloud computing and reduce the task delay. Network security and effi-
ciency are also important features of cloud computing and edge computing.
Wang[34] proposed a trust evaluation mechanism and a service parameter
template combined architecture that improve the security and efficiency of
IoT-Cloud systems.

2.2 Typical Beam Blockage Correction Methods

Due to the obstruction of tall buildings, trees and other obstacles near the
radar, the missing or deviation of echo data detected by the radar is common.
Even the slightly block, the electromagnetic wave emitted by the radar can not
propagate forward completely, which make the echo be weak (partial block)
or disappears (complete block).

In order to reduce the influence of beam blocking on radar data, most
research methods are based on digital elevation model (DEM). Wang [9]takes
Quzhou radar in Zhejiang, China as an example to study the reliability of
using ASTER GDEM V2 and SRTM3 V4 data, to simulate the radar beam
blockages.

However, DEM data is not enough to completely determine the areas which
are blocked for its low update frequency. It is difficult to get the latest DEM
data in time. Therefore, many researchers proposed other methods to detect
the blockages. McRoberts [20] proposed a new spatial analysis technique to ob-
jectively identify the area of precipitation estimation affected by beam block-
age. Li [14] proposed a method based on spatial distribution statistics and
fuzzy logic, which can detect clutter and beam blocking on the ground inde-
pendent of DEM data. However, this method only deleted the target object,
and did not correct the beam blockages and clutter.

2.3 Relevant Image Inpainting Methods

The block correction problem can be considered as an image inpainting prob-
lem. The parts of blocked can be regarded as the missing part of images. In
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recent years, deep learning has achieved very obvious step forward in the field
of image in-painting[33,13,4]. Cai[2] proposes a GAN based model, which can
generate multiple possibilities for image in-painting task. Liu [16] proposed
to use partial convolution to solve the problem of color difference and blurri-
ness in image restoration. Yu [44] proposed a method which can compose the
new image structure, and use the surrounding image features to help the pro-
cess of network training. Song [28] proposes a method, which divides the image
restoration task into inference and translation, and uses deep learning network
to model each step. In order to make the repaired region image smoother and
clearer, Nazeri [22] proposed a new image restoration algorithm, which can
repair the missing region more precisely.

In recent years, due to the excellent performance of deep learning and
the AI computing capacity increase[24], the field of meteorological research
gradually began to use this technology and other related methods to solve
related problems, such as precipitation prediction[32], analysis and prediction
of ENSO phenomenon[6], landslide early warning[15]. They all achieved good
results. Shi [39,25] proposed a new method of combining convolution with
LSTM network and a Trajectory GRU model to achieve the prediction of
time series data of weather radar images which has achieved good results.
Because this kind of thinking is the first in the field of meteorology, many
researchers have carried out many follow-up studies based on this [11,37,43].
Besides the precipitation forecast, deep learning has also achieved good results
in the field of ENSO analysis and prediction. The study of Ham [6] which
utilized the convolution method not only improves the prediction skills of
ENSO, but also fully proves the feasibility of the application of deep learning
and other methods in the big data of Geoscience.

In general, deep learning technology is developing rapidly in the field of
image in-painting, and has made great progress in recent years. Therefore, by
applying similar technologies to block correction, it has great potential and is
expected to be a better correction results. However, due to the occlusion of
objects, atmospheric refraction, equipment failure and other reasons, some of
the radar data are missing or abnormal. In order to solve the problems, this
study focuses on the correction of radar data missing due to various reasons.

3 An Edge-Assisted Cloud Framework for Internet of Weather
Radars

Fig.1 shows the structure of the Edge-Assisted Cloud Framework for Inter-
net of Weather Radars proposed in this study. Due to the limited detection
range of weather radar, it needs hundreds of weather radars to achieve the
meteorological detection within the territory for a vast country or region. The
detection network composed of hundreds weather radars is called radar net-
work. If each radar is regarded as an Internet of Things device, such a network
can also be regarded as an Internet of Radars, which is a special type Internet
of Things that characterized by huge amount of big data. At the same time,
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Fig. 1 An edge-assisted cloud-assisted framework for Internet of Weather Radars

because of the copyright of radar data, it needs a way to manage such a large
amount of radar data in a centralized way and ensure that the data of each
radar can not be stolen and can only be accessed by the authorized users.

The cloud platform is mainly responsible for the training of network model.
At the same time, it also manages the computing resources and provide secure
remote call services. For example, encrypted interfaces, distributed mainte-
nance of deep learning models, software runtime environment, etc. For privacy
reasons, the cloud does not accept the original radar data from the edges. Only
the preprocessed radar image data sets need to be uploaded to the cloud plat-
form for AI model training. After the training, the models will be downloaded
to each edge end for other services.

3.1 Distributed Edge Computing for Radar Data Preprocessing and Storage

In this study, all the data detected by the radars are stored in their own station.
The computing system fo each edge radar station is mainly responsible for data
preprocessing, for example, data unification, data normalization, coordinate
transform and sample expansion, etc. Besides, after the training of artificial
intelligence model. In addition, the edge side can download the models from the
cloud and run the model locally. In general, the edge side is mainly responsible
for lightweight computing tasks.

The framework mainly includes the following modules:

Authority Management : This module is mainly used to verify whether the
request sent by each user is legal, so as to prevent users or malicious attackers
from abusing resources. Through authority management, the security of the
server can be guaranteed to a certain extent. At the same time, the permis-
sion management can distinguish the use space of each user and prevent the
training/testing tasks on the server from being too chaotic.

Feature Extraction: This module provides various feature extraction meth-
ods for feature extraction. The interface needs to select the specified training
data set and parameters for training. After feature learning, the interface gen-
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Fig. 2 Cloud platform structure for Internet of Weather Radars

erates the corresponding network model and stores it for the next calculation
call.

Training and Testing : This module contains training and testing processes.
In the training process, users need to specify the feature extraction network
and training data set, and different models can be trained to obtain different
parameters. The test process needs to specify the detailed model and test data.
All prediction results of the model will be stored in the system database. Users
can query the detailed analysis results through task ID.

Assisting Utilities: The module is used to manage training and test data,
as well as test and training results. It mainly includes the following eight
functions: upload and download of training and test data sets, download of
test data results, query of existing data sets, query of network model training
progress, query of training progress, query of trained network model, query of
trained classifier knowledge and query of classifier test progress.

3.2 Deep Learning Models and High Performance Computing for Remote
Invocation

Fig.2 shows the cloud platform framework of this study. This framework uses
restful style Java EE API and ICE (Internet Communications Engine) to
achieve the process of remote sending and defining parameters to the deep
learning model, invoking the specified Python deep learning program modules,
obtaining the response results and other necessary functions. The framework
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is running on a high performance computing and storage system for the needs
of giant GPU accelerated computing and big data storing ability. On this ba-
sis, the framework needs various software running environment, such as Java
EE for network services, Python and various deep learning frameworks for
deep learning algorithm, Hadoop and MySQL database system for distributed
storage. The built-in weather data processing algorithms are running on the
environment. The details of the algorithms are introduced in Section 4. In
order to achieve the orderly access and privacy control of radar data, these
algorithms are wrapped by the interfaces. Users can access these built-in al-
gorithms through them with the help of SSL encrypted Internet of Weather
Radars transmission network to manage and process radar data.

The cloud platform mainly includes model training and testing process. In
the training process, the user needs to specify the feature extraction network
and training data set. Different network training results in different radar cor-
rection models. In the test process, the correction knowledge of the correction
algorithm and the preprocessed data set are required to complete the correc-
tion of radar data. The detailed results will be stored in the system database,
and users can query the detailed correction results through the IDs of results.
The reason why the cloud can also invoke models going testing stage is that
some edge equipment have no ability to run the models.

3.3 ICE-based Distributed Interfaces between Edge and Cloud

ICE is similar to socket communication technology. It deals with all the un-
derlying network interface programming, so that developers do not have to
consider the details such as opening network connection, serialization and de-
serialization of network data transmission, number of attempts of connection
failure, etc. ICE describes the interface of a service through neutral language,
which is independent of the specific programming language, SLICE (Specifi-
cation Language for ICE), so as to separate object interface and its implemen-
tation. The client and server can use different programming languages and
the communication is efficient and safe. This method can cross platform and
ensure the security of user data. With the help of ICE, the results of ICE pro-
gram can be better called directly by the programming language used on the
client side, so that the programming style is consistent. In the AI computing
environment, the security of the system is also very important[3]. All com-
munication channels can be configured with various industrial level security
protocols,such as AES and RSA, to ensure the communication security in this
process.

In this study, ICE framework technology is used to access restful style APIs,
provide interfaces for users to access services, and ensure the security of user
data while cross platform. Using ice framework, the results of ice program can
be better called directly by the programming language used on the client side,
so as to keep the programming style consistent. The communication process
between the server and the client under the ice framework is shown in Fig.4.
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Fig. 4 Communication process between server and client in ICE framework

4 Detailed System Design of Edge-Assisted Computing in Radar
Stations

4.1 Weather Radar Data Preprocessing

Deep learning relies heavily on big data and requires enough samples to train
the network. However, there are various problems in the radar data observed
naturally. For example, the sample distribution is uneven, and the image qual-
ity is poor. Before training the model, it is necessary to preprocess the original
radar data which can help make the training successfully.

Radar has a large amount of data because of its wide range, large quantity
and high degree of automation. However, the radar data with blocking is rela-
tively small, which is not enough to support the deep learning model network
for training. Therefore, it is necessary to expand the radar data with blocking
properly by some means so as to train the model. Before expanding the data,
we need to find out the causes and characteristics of blocking.
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Fig. 5 Beam blockage samples of NUIST weather radar station. The red line circles the
beam blockage caused by ground clutter and the blue line circled is ground blocking.

Fig. 6 Beam blockage samples of Guangzhou weather radar station. The red line circled
the beam blockages are caused by ground clutter.

For the reflectivity image of Doppler weather radar, the radar is located in
the centre of the image. As the radar rotates, it emits electromagnetic waves.
Radar draws reflectivity image by receiving echo signal in a period. Fig.5
and Fig.6 shows two class weather radar reflectivity images which are from
NUIST and Guangzhou weather radar stations. Different colours represent the
reflected radar echo intensity of water vapour particles in the air. However, it
can be observed that there are some significant lack of area which are circled
with red and purple lines. These areas can be called beam blockages. The red
line circle area has a small blocking range, which usually presents as a small
range of echo data missing. The common causes for this phenomenon is that
there are small objects in this direction, such as trees and buildings, which
block the propagation of electromagnetic wave. The area circled by purple
lines is a large area of signal loss. Most of the reason for this phenomenon
is that there is a huge object block in the direction of electromagnetic wave
emission, such as mountains, huge buildings.

Besides the blockages of radial data, sometimes the radar signal will also
appear some abnormalities caused by noise from ground. This will lead to
redundant radial data in radar image. Fig. 6 mainly shows a typical case
of data redundancy.The areas circled by red lines are the abnormal parts of
the data.This kind of signal is not necessary for weather radar, which is not
necessary for the field of weather research. Therefore, for this kind of signal,
it is also regarded as the lack of radar data, which is considered as a kind of
beam blocking situation in this paper.

To solve the above problems, the following Algorithm 1 is adopted in this
paper. It shows the main steps of data preprocessing. The input of the algo-
rithm is origin weather radar observation images series, and the output is the
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transformed dataset, including manually masked inputs and ground truth la-
bels. The θ in the algorithm means the rotation angle of radar scanning which
is 360 as usual. The D means the distance of scanning distance.

Algorithm 1 Main steps of data preprocessing
Input: The original weather radar observation image series, Xn.
Output: The updated transformed dataset with masked inputs and ground truth labels,

(T ′360×D, T360×D).
1: for each x ∈ Xn do
2: Cut the radar image, get the main echo area from x
3: De-colour the x to gray in one channel
4: De-textures and normalize the pixels in x:
5: for each pixel value pi in x do
6: Normalize pixel value pi with the standards
7: end for
8: Transform x to Angle-Distance Coordinate System:
9: for θ = 0; θ < 360; θ + + do

10: for d = 0; d < D; d+ + do
11: t(θ, d) = x(d · cosθ, d · sinθ)
12: Store t(θ, d) to T360×D as LABEL
13: Add random mask to t(θ, d) as t′(θ, d)
14: Store t′(θ, d) to T ′360×D as INPUT
15: end for
16: end for
17: end for
18: return (T ′360×D, T360×D)

4.2 Data Normalization

Different colours and textures are usually used to represent the echo reflectiv-
ity with different intensities. This helps the human’s eyes to observe different
intensity detail information. But for the deep learning model, the complex and
unnecessary texture features will increase the training difficulty and conver-
gence speed of the network, and eventually lead to the reduction of model
output accuracy.

On the other hand, different types of radars or different radar signal image
processing programs use different colour codes when generating radar signal
images. As we can see in the Fig. 5 and Fig. 6, the white background radar
images and the black background radar images are from the different radar.
They used different standards to visualize radar signals. Signal intensities are
represented by different colours according to its value. But what kind of colour
represents what kind of intensity, these two radars adopt different schemes.

In order to improve the generality of this research model, it is necessary to
unify the radar intensity and colour representation under the same standard
before the model training. On the other hand, radar echo reflectivity value
is float data usually. When the radar image is generated, these floating-point
numbers will approximate to the closest colour threshold range according to
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Fig. 7 Data normalization of NUIST weather radar station

Fig. 8 Data normalization of Guangzhou weather radar station

the colour standard, and use the colour value to represent the intensity value
of this range in the image. The number of colour standard is about 15-20 in
weather radar field. In this paper, the colours of echo intensities value from
different radar will be transport into the same colour space. It means that all
the pixels value of the radar images will be represent with the same standard.
Pixel values will be evenly distributed between 0-255 according to the same
standard in the form of gray images. In this way, the model can be used in
the radar data of one station after being trained by the radar data of another
one.

Fig. 7 and Fig. 8 show the normalization progresses fo Guangzhou station
and NUIST station. The general processing steps are similar. The first step is
decoloring. In this step, colour images are transformed into gray scale images.
The second step is normalization. In this step, the pixel values of gray scale
images are redistributed according to one-to-one correspondence, evenly dis-
tributed between 0-16. In this study, echo data from two radar stations just
have 16 intensity segments. So they can be represent by the values as (255,
239, 223, 207, 191, 175, 159, 143, 127, 111, 95, 79, 63, 47, 31, 15). A large
value indicates a high intensity of radar reflected signal. Finally, we use 1-16
to index these regularized values as their classification numbers. Besides, the
number 0 is used to represent the null area where the area with no radar echo.

The specific regularization rules of pixel colour values are shown in Table
1 and Table 2. It should be noted that the intensity colour of radar image in
Guangzhou station is represented by a kind of texture. Each intensity segment
contains multiple colour values that do not repeat each other.
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Table 1 Colour Transform Rules of NUIST Station Radar Images

Colour Intensity Gray Value Normalization Index

>70 0 255 16

65-70 111 239 15

60-55 107 223 14

55-50 67 207 13

50-55 62 191 12

45-50 72 175 11

40-45 127 159 10

35-40 172 143 9

30-35 202 127 8

25-30 170 111 7

20-25 96 95 6

15-20 126 79 5

10-15 125 63 4

5-10 40 47 3

0-5 125 31 2

<0 146 15 1

Table 2 Colour Transform Rules of Guangzhou Station Radar Images

Colour Intensity Gray Value Normalization Index

>70 114,115 255 16

65-70 87 239 15

60-65 84 223 14

55-60 39,40,52,53,249 207 13

50-55 26,37,38,50 191 12

45-50 35 175 11

40-45 3,223 159 10

35-40 221,222 143 9

30-35 13,217,218 127 8

25-30 2,175,187,199 111 7

20-25 184,185 95 6

15-20 168,179,192,191,113 79 5

10-15
101,102,103,111,

125,126,245
63 4

5-10
97,109,234,247,

246,229,121,127,230
47 3

0-5 95,106,107,108,119 31 2

-20-0 150,151,162 15 1
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4.3 The Transform from Polar to Cartesian Coordinate System

Deep neural network usually contains a large number of parameters, which
will occupy a very large memory capacity. The more parameters, the slower
the training speed of the network. Therefore, in the design of the network,
it is important to save memory as much as possible. The input scale of the
network has a great influence on the network parameters. The more dimension
of input parameters, the more layers and parameters of network are needed to
get good training effect. However, the valid data of the original radar image
exists in the rectangular image as a circle. Effective information only takes up
the part of the radar scanning circle in the images centre. So, it is necessary
to drop the invalid data of the images.

The drop method of the radar image redundant data is opposite to that
of radar image construction. Generally, the weather radar takes the radar
station as the centre, fixes a certain elevation angle, rotates while transmitting
electromagnetic wave. In fact, the original radar data is the echo reflectivity
intensity data obtained according to each rotation angle. The round visual
radar image is processed based on the echo intensity data from different angles.
Therefore, in this paper, the images are expanded from the centres which is
opposite of the construction progress. The interval angle of expanding is 1
degree and the expanded radius is 250 pixels. Therefore, the final 500 × 500
radar image will be expanded into a 360 × 250 rectangular image. The x-axis
of the original image is the east-west direction, and the y-axis is the north-
south direction. The data in transformed image are only valid radar scanning
data. The x-axis of the transformed image is the distance between the reflected
object and the radar transmitting point, and the y-axis is the rotation angle of
the radar. This process is equivalent to transforming radar image from polar
coordinate system to Cartesian rectangular coordinate.

The amount of data after redundancy removal is 36% of the original data.
From this method, the valid data is retained, and the amount of data is greatly
reduced. The Fig. 9 and Fig. 10 shows the changes before and after data pro-
cessing. On the other hand, it can be seen that the ground clutter and ground
blocking areas have changed from fan-shaped areas to rectangular areas. This
change will also help to blockage corrections in next steps.

4.4 Sample Expansion Method

In the case of natural observation, the possibility of weather radar beam block-
ages is relatively small. The data of beam blockages is not enough to support
the deep learning training for large amount of data demanding. Therefore,
in this study, large-scale training data will be generated manually according
to the block data of natural observation. There is a difference between the
handcrafted data generated by program and the data observed by nature.
However, the manual blockage areas are much larger and positions are more
random than that of natural observation.
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Fig. 9 Coordinate system transform of NUIST weather radar station

Fig. 10 Coordinate system transform of Guangzhou weather radar station

As shown in the figures on the left of Fig. 9 and Fig. 10, most of the ob-
structions are fan-shaped on the radar image in natural observation. After the
above transformation, these fan-shaped blockages are almost perfectly trans-
formed into rectangles in the Angle-Distance coordinate system. According to
this phenomenon, the rectangle is used to cover the original data to simulate
the beam blockage in natural observation. The positions and widths are gener-
ated randomly with uniform distribution. The starting indexes of block areas
in y-axis direction are between [0, 360] and the heights are between [1, 18].
The two cases of manual blockages and original images are shown in Fig. 11.
The black rectangular areas circled in red are the artificial blocking areas.

5 The Model Design in Cloud Computing Platform

5.1 Residual Concatenate Fully Convolutional Neural Network

In this study, weather radar beam blockage correction is regarded as a classi-
fication problem. The model can classify all the unknown pixels at the same
time in the condition of known areas. The classification rules of the model are
obtained by big data training progress. A detailed description of the model is
given below.
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Fig. 11 Two manual block samples of Guangzhou Station

5.1.1 Network Structure

Fully Convolutional Network (FCN)[17] is a widely used model in the field
of image semantic segmentation. It can classify each pixel in the image and
determine the category of each point. Its segmentation effect has been re-
markably improved compared with traditional methods. However, if the FCN
model is directly applied to radar image correction, the correction effect is
not fine enough and the accuracy is low. Based on the idea of FCN model,
an improved model which names Residual Concatenate Fully Convolutional
Neural Network (RC-FCN) is proposed for radar image correction.

Fig. 12 shows the basic structure of RC-FCN. It consists of an encoder
and a decoder. The encoder part is composed of continuous residual convolu-
tion modules and the decoder part is composed of continuous de-convolution
modules. The structure of each residual convolution module are same. As the
feature map passes through each residual convolution module, its size will
change to half of its original size. Detail introduction of residual convolution
module will be introduced in next part.

Starting from the input layer, the feature map will be reduced to 1/32 of
the original size after five times of residual convolution module. After several
convolutions, the feature map will be de-convoluted five times again.In con-
trast to convolution, each de-convolution module will enlarge the size of the
input feature map by twice. After five consecutive de-convolution, the feature
map of the last convolution output is enlarged 32 times. The output will be
restored to the original size. It should be noted that in order to improve the
reconstruction performance of the feature map in the de-convolution process,
the input feature map of each de-convolution operation contains not only the
feature map output from the previous stage, but also the convolution feature
map with the same size in symmetrical position. These two kinds of feature
maps connect the two tensors together by means of concatenate. This struc-
ture is similar to FCN, but FCN only connects x32, x16 and x8. In this paper,
through experiments, it is found that concatenating each set of symmetric
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convolution and de-convolution feature maps can improve the image recon-
struction accuracy. In this paper, this kind of network is called CFCN. The
letter, C, indicates that the concatenation between the encoder network and
the decoder network is complete. In this way, it can effectively improve the
network image reconstruction ability. After encoder network coding, the de-
coded output image of decoder is much more close to the original image. The
detailed comparison can be seen in Table 3, and the specific analysis will be
described in the next section.

Since the length and width of the original image are not necessarily 32
times, the image may not be able to be restored to the same size as the
original image after five consecutive downsizing and five successive upsizing.
Therefore, when the image is input the first convolution module, the length
and width of the image should be adjusted by adjusted convolution module
to the nearest size of which can be divided by 32 with no remainder. In this
paper, the input image is 250 pixels wide and 360 pixels high. After adaptive
convolution, the output image size is 256×384.

In this model, the image correction problem is regarded as a segmentation
problem, and the essence is to classify each pixel one by one. Therefore, cross
entropy loss is used as the loss function in this model. In order to achieve this
conversion, each pixel of the image needs to be one-hot coded. As this is a 17
classification problem, each pixel is transformed into a one-hot vector with 17
dimensions. The loss function formula is shown in Formula 1.

Loss(x,y) =

i=0∑
N

loss(xi, yi) (1)

Where x represents all predicted pixels and y represents the index of
real pixel class. N represents the number of pixels to be predicted. Detail
of loss(xi, yi) is shown as Formula 2.

loss(x, class) = − log

(
exp(x[class])∑

j exp(x[j])

)
(2)

Where class means the index of pixel class which is from 0-17. The x[class]
is negative log likelihood loss, which is calculated as Formula 3. It can be
understood as next. For example, suppose x = [1, 2, 3], class = 2, then
f(x, class) = −x[2] = −3.

f(x, class) = −x[class] (3)

5.1.2 Residual Convolutional Module Structure

A large number of experiments show that the residual convolution can effec-
tively predict the blocking areas in the radar images. Detailed results can be
seen in Table 4. Experiments show that, compared with VGG[27], GoogLeNet[29],
DenseNet[10], the ResNet[7] has the best performance in image in-painting. In
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Fig. 12 Residual concatenate fully convolutional neural network

this study, the convolution module in the encoder is designed in the form of
residual network. The structure of the residual module is shown in Figure 13.

In this progress, input is represented by x, and supposing that the target
mapping which want to learn is f(x). The part in the dotted line box in
the Figure 13 needs to fit the residual mapping f(x)−x of identical mapping.
Residual mapping is often easier to optimize in practice because of its skipping
connections. When the target mapping f(x) is very close to identical mapping,
the residual mapping is also easy to capture the subtle fluctuations of identical
mapping. With residual module, inputs can forward propagate faster through
the residual connections across layers.

6 Experiment

In this study, a lot of experiments have been done in early stage, and the
performance of different models in image reconstruction and local blocking
area prediction are studied.

6.1 Training and Test Detail

During the training stages, continuous weather radar image data are used.
The data is from Guangzhou weather radar station detecting from 2011 to
2014 and NUIST weather radar station in the form of image. The data set
mixes the images from two radar stations. The purpose of this is to improve
the universality of the model after training, so that the model can correct the
data from the two radar stations. Because the data to be processed by the
model come from different radars in practical application, multi-source data
need to be used for training, so that the model can have higher practical value.
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Fig. 13 Residual module structure

The images have been preprocessed in the way of section 3, and the blocking
areas are generated randomly by the program. A total of 10000 weather radar
images were used in the experiments, including 8000 for training and 2000
for testing. The size of the image used in the experiment is 360 height and
250 width. The position and width of the blocking areas are random. The
minimum width is 3 pixels and the maximum is 16 pixels. The same data set
was used for training and testing in all experiments. However, the number of
training epochs of each model is different. General training until the loss value
is no longer significantly reduced.

The left right of Fig. 14 shows the change of accuracy of training data set
and test data set with the number of training epochs. The right side of Fig. 14
shows the change of loss during training. It can be seen from the figure that af-
ter about 800 epochs, the changes of accuracy and loss are significantly slowed
down, but the overall change is still going better. However, in this process,
sometimes the accuracy suddenly drops or the loss increases suddenly. With
the continuous training, the frequency of this sudden change has a decreasing
trend. In order to avoid this kind of accidental deterioration during testing,
the model parameters are saved when the test accuracies of the test set reach
the best value during the 1000 training epochs.

In the stage of network training, many groups of hyperparameters are tried
in order to find the best parameters. For RC-FCN model, many attempts show
that when the learning rate is 0.001, the mini-batch is 8, and the stochastic
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Fig. 14 Training and test accuracy and training loss changes

gradient descent algorithm is used for optimization, the prediction result of
the model is the best. However, these hyperparameters are limited by the
computational power of this study. The GPU video card memory used in the
experiment is only 11GB, which can not accommodate a larger mini-batch.
Maybe a larger mini-batch can get better training results.

6.2 RC-FCN Experiment Comparison

The RC-FCN method proposed in this study is a deep improvement of FCN.
Therefore, in the process of research, comparative experiments for each im-
provement have been carried out. At the same time, the results of other
classical convolution neural networks in this study are also compared. The
experiments mainly focus on two aspects, one is the ability of radar image
restoration, the other is the ability of radar image beam blockage correction.

6.2.1 Evaluation Criterion

Beam blockage correction of weather radar is implemented from the perspec-
tive of image restoration and image segmentation methods. The accuracy,
structural similarity (SSIM) and correlation are used to evaluate the effects
of different models. On the other hand, because the network proposed in this
study is mainly to solve the weather radar beam blockage correction prob-
lem, the standards in meteorological industry, which are CSI, FAR and POD,
are used to evaluate the correction effects of each intensity segment. Detailed
formulation can be found in [26,25].
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Fig. 15 A sample of beam blockage correction. The left first image is the ground truth. The
second is the input image, which can be seen a rectangle black area in the top, that is the
area to be corrected. The third is the output from RC-FCN. The corrected area can refer to
the position corresponding to the white area of the forth. The horizontal axis is the radial
distance. The coverage radius of radar data used in this study is 250km. The longitudinal
axis is the radar deflection angle, a total of 360 integers.
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6.2.2 Overall Radar Image Restoration

Fig 15 shows a set of radar images corrected by RC-FCN. Visual observa-
tion shows that the network model can reconstruct the original image well.
Without careful observation, it is difficult to find the difference between input
and output in the unblocked area. In order to show the image reconstruction
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ability of the RC-FCN more quantitatively, the results of evaluation criterion
and the comparison with other networks are given in detail in Table. 3. This
table also gives the reasons why FCN can be used as the basis for weather
radar image correction. It can be seen from the table that FCN has excellent
effect in image reconstruction. No matter CSI, FAR, POD, Accuracy, Corre-
lation or SSIM, FCN ranked first or second. Therefore, based on FCN, this
study attempts to propose a new deep learning network with excellent image
reconstruction ability and good correction effect. However, the original FCN
image reconstruction effect is not ideal, and the restored image appears mosaic
like. Therefore, all the feature maps of the symmetric positions of FCN are
concatenated, which is called CFCN in this study. The experimental results
show that although CFCN does not achieve the best results in CSI, FAR and
POD, it has achieved better results in overall accuracy, correlation and SSIM
than FCN. But most importantly, CFCN has excellent performance in image
reconstruction. It can reconstruct the original radar image completely without
mosaic after encoding and decoding the input.

6.2.3 Radar Beam Blockage Correction

The ability of image reconstruction is not enough. The focus of this study is
to achieve the data correction of blocking areas, that is, prediction. On the
basis of CFCN, we try to add various convolution modules in the process of
this study, such as dense module, residual module, inception module and VGG
structure. Experiments show that the coding and decoding network based on
ResNet is the best in image correction task. Therefore, this study combines
DenseNet and ResNet to improve the network structure of CFCN. It should be
noted that DenseNet’s concatenation idea has been achieve in CFCN. CFCN
has concatenated the feature maps of symmetric part of coder and decoder.

Table 4 shows the accuracy comparison of RC-FCN and other networks in
radar beam blockage correction task. Experiments show that the coding and
decoding network based on ResNet has achieved remarkable results in image
correction task. After adding residual module to CFCN, some of the RC-
FCN’s evaluation criterion indexes achieve the best results, and some achieve
the second best results. Most importantly, the improved RC-FCN has achieved
the best or second best results in the accuracy, correlation and SSIM.

Fig.16 shows the comparison of the corrected results of blocking area. Each
graph shows the radial data of radar echo reflectivity at one angle. The horizon-
tal axis is the radial distance, and the vertical axis is the normalized reflectivity
intensity. The blue line is the true value, and the red line is the predicted value
of the network. Through observation, it can be found that the fit of predicted
value and real value is high. Network can accurately predict the trend of data
changes. There are some errors, but overall, the error is small.

Although RC-FCN failed to achieve the best or second best performance
in every index, it achieved good fusion of radar image reconstruction task and
radar image beam blockage correction task. The skipping connection added in
the network also helps to improve the accuracy of the correction task.
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Table 3 Overall accuracies of radar image reconstruction. Bold represents the best result
and the underline represents the second best. It should be noted that some too high intensity
signal,such 60-65,65-70, are very little in the data. They cannot import evaluation index
calculation formulas for calculation. So, there is only 14 different dbzs in the result table.
Table 4 is the same.

Index dbz Eval Dense Res GoogLeVGG FCN CFCN RC-FCN*

13 55-60

CSI

0.2227 0.1345 0.1072 0.1235 0.5575 0.3951 0.6228
12 50-55 0.3927 0.2512 0.2178 0.2328 0.8327 0.6893 0.7864
11 45-50 0.4671 0.2842 0.2606 0.2761 0.8505 0.7768 0.8376
10 40-45 0.4591 0.2535 0.2256 0.2376 0.8420 0.7912 0.8562
9 35-40 0.4579 0.2539 0.2314 0.2400 0.8398 0.8132 0.8735
8 30-35 0.5116 0.3043 0.2859 0.2891 0.8440 0.8274 0.8944
7 25-30 0.5046 0.2780 0.2579 0.2619 0.8371 0.8235 0.8912
6 20-25 0.5338 0.3049 0.2847 0.2905 0.8535 0.8429 0.9013
5 15-20 0.5484 0.3137 0.2924 0.2972 0.8687 0.8609 0.9206
4 10-15 0.5896 0.3630 0.3422 0.3589 0.8913 0.8968 0.9558
3 5-10 0.6420 0.4322 0.4011 0.4286 0.9103 0.9266 0.9641
2 0-5 0.6175 0.3876 0.3599 0.3911 0.9020 0.9226 0.9538
1 -20-0 0.6770 0.4504 0.4243 0.4423 0.9073 0.9278 0.9613
0 NULL 0.9401 0.8823 0.8691 0.8822 0.9908 0.9935 0.9952

13 55-60

FAR

0.3087 0.5287 0.4925 0.5378 0.1681 0.2831 0.1868
12 50-55 0.3034 0.5014 0.4961 0.5217 0.0996 0.1871 0.1215
11 45-50 0.3218 0.5383 0.5556 0.5585 0.0851 0.1367 0.0935
10 40-45 0.3427 0.5799 0.5933 0.5948 0.0878 0.1200 0.0765
9 35-40 0.3402 0.5672 0.5878 0.5918 0.0828 0.1099 0.0681
8 30-35 0.3365 0.5521 0.5801 0.5726 0.0867 0.1024 0.0567
7 25-30 0.3340 0.5399 0.5670 0.5607 0.0833 0.0969 0.0556
6 20-25 0.3183 0.5394 0.5670 0.5586 0.0797 0.0822 0.0509
5 15-20 0.2970 0.5030 0.5435 0.5241 0.0681 0.0695 0.0375
4 10-15 0.2549 0.4440 0.4796 0.4680 0.0579 0.0488 0.0206
3 5-10 0.2204 0.3977 0.4153 0.4072 0.0456 0.0394 0.0202
2 0-5 0.2278 0.4133 0.4301 0.4209 0.0460 0.0373 0.0200
1 -20-0 0.1646 0.3601 0.3437 0.3235 0.0414 0.0302 0.0191
0 NULL 0.0342 0.0864 0.1013 0.0756 0.0065 0.0042 0.0027

13 55-60

POD

0.3284 0.2201 0.1650 0.2030 0.8094 0.4872 0.7353
12 50-55 0.4737 0.3402 0.2817 0.3172 0.9164 0.8181 0.8805
11 45-50 0.5999 0.4265 0.3894 0.4251 0.9227 0.8858 0.9152
10 40-45 0.6023 0.3893 0.3381 0.3644 0.9152 0.8860 0.9204
9 35-40 0.5957 0.3764 0.3432 0.3632 0.9071 0.9028 0.9323
8 30-35 0.6867 0.4821 0.4687 0.4669 0.9159 0.9127 0.9448
7 25-30 0.6711 0.4086 0.3869 0.3892 0.9044 0.9024 0.9402
6 20-25 0.7062 0.4692 0.4495 0.4542 0.9201 0.9111 0.9467
5 15-20 0.7069 0.4502 0.4382 0.4326 0.9262 0.9196 0.9545
4 10-15 0.7304 0.4929 0.4788 0.5041 0.9420 0.9398 0.9751
3 5-10 0.7775 0.5841 0.5373 0.5842 0.9511 0.9625 0.9835
2 0-5 0.7513 0.5266 0.4861 0.5377 0.9424 0.9563 0.9724
1 -20-0 0.7709 0.5972 0.5401 0.5588 0.9429 0.9552 0.9793
0 NULL 0.9724 0.9623 0.9630 0.9502 0.9974 0.9701 0.9980

Accuracy 0.8431 0.7202 0.7039 0.7151 0.9657 0.9831 0.9831
Correlation 0.9819 0.9584 0.9522 0.9577 0.9965 0.9966 0.9977

SSIM 0.8118 0.6775 0.6638 0.6735 0.9739 0.9770 0.9848
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Fig. 16 Detail comparison of beam blockage correction

However, the prediction results of the model still have some disadvantages.
As can be seen from Fig. 15, there is a sense of smearing in the target area of
image prediction. This phenomenon shows that the general trend of the data
is predicted correctly, but the precision is not high enough. This conclusion
can be verified from Fig.16. In this figure, the red curve is the predicted value
and the blue curve is the real value. It can be seen that the two curves overlap
in general, but the complete overlap is relatively small. In addition, there are
a few pixels that can not be effectively predicted. For example, in row 39 to
row 42 of Fig.16, the data at about the 180th position do not be accurately
predicted, and the predicted value is greatly different from the real value.
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Table 4 Accuracies of corrected areas from generated images

Index dbz Eval Dense Res GoogLeVGG FCN CFCN RC-FCN*

13 55-60

CSI

0.0150 0.0258 0.0167 0.0140 0.0066 0.0127 0.0114
12 50-55 0.0637 0.0947 0.0801 0.0737 0.0410 0.0149 0.0701
11 45-50 0.1320 0.2189 0.2084 0.1937 0.1109 0.0773 0.1079
10 40-45 0.1484 0.2124 0.2031 0.1919 0.1264 0.0915 0.1120
9 35-40 0.1351 0.2030 0.1891 0.1788 0.1253 0.1037 0.1253
8 30-35 0.1828 0.2407 0.2470 0.2292 0.1512 0.1381 0.1567
7 25-30 0.1628 0.2200 0.2179 0.2005 0.1513 0.1057 0.1222
6 20-25 0.1947 0.2363 0.2338 0.2180 0.1636 0.1229 0.1365
5 15-20 0.1903 0.2180 0.2214 0.2016 0.1641 0.0896 0.1044
4 10-15 0.2237 0.2463 0.2452 0.2351 0.2084 0.1214 0.2678
3 5-10 0.3007 0.3070 0.2989 0.2979 0.2579 0.3004 0.4103
2 0-5 0.2687 0.2741 0.2667 0.2650 0.2035 0.2603 0.2662
1 -20-0 0.3603 0.3682 0.3589 0.3545 0.2835 0.3343 0.4385
0 NULL 0.7668 0.7766 0.7659 0.7668 0.7662 0.8350 0.8481

13 55-60

FAR

0.0645 0.0428 0.0363 0.0447 0.0842 0.0262 0.1959
12 50-55 0.2544 0.2094 0.1712 0.1923 0.3807 0.2822 0.3383
11 45-50 0.5916 0.4913 0.4679 0.4966 0.6306 0.5698 0.6507
10 40-45 0.6850 0.5847 0.5685 0.6051 0.6841 0.6382 0.6996
9 35-40 0.6967 0.5951 0.6028 0.6335 0.7299 0.7737 0.7347
8 30-35 0.6956 0.6050 0.6118 0.6322 0.7318 0.7862 0.7170
7 25-30 0.6691 0.5994 0.6060 0.6268 0.7127 0.7805 0.7493
6 20-25 0.6769 0.6121 0.6172 0.6356 0.7016 0.7631 0.7502
5 15-20 0.6601 0.6031 0.6140 0.6200 0.6874 0.7448 0.7462
4 10-15 0.6055 0.5582 0.5723 0.5857 0.6616 0.6959 0.5656
3 5-10 0.5328 0.5029 0.5061 0.5204 0.5665 0.5829 0.4628
2 0-5 0.4831 0.4655 0.4699 0.4857 0.5117 0.5583 0.4910
1 -20-0 0.3415 0.3248 0.2900 0.2809 0.3254 0.4042 0.3707
0 NULL 0.1761 0.1751 0.1842 0.1684 0.1758 0.1159 0.0983

13 55-60

POD

0.0162 0.0300 0.0191 0.0170 0.0082 0.0162 0.0149
12 50-55 0.0829 0.1278 0.1032 0.0995 0.0631 0.0208 0.0885
11 45-50 0.2028 0.3248 0.3059 0.2933 0.1947 0.1162 0.1972
10 40-45 0.2387 0.3285 0.2999 0.2968 0.2191 0.1609 0.1868
9 35-40 0.2059 0.3067 0.2820 0.2769 0.2121 0.1898 0.2201
8 30-35 0.3238 0.3943 0.4129 0.3875 0.2709 0.3055 0.2823
7 25-30 0.2440 0.3326 0.3335 0.3054 0.2496 0.1758 0.2020
6 20-25 0.3288 0.3793 0.3800 0.3564 0.2732 0.2190 0.2437
5 15-20 0.2966 0.3260 0.3417 0.3012 0.2586 0.1311 0.1628
4 10-15 0.3282 0.3494 0.3574 0.3439 0.3400 0.1688 0.3634
3 5-10 0.4422 0.4366 0.4185 0.4277 0.3831 0.4637 0.6027
2 0-5 0.3756 0.3877 0.3736 0.3814 0.2835 0.3879 0.3672
1 -20-0 0.4671 0.4901 0.4553 0.4482 0.3600 0.4382 0.5938
0 NULL 0.9051 0.9171 0.9147 0.8967 0.9036 0.9361 0.9355

Accuracy 0.6460 0.6617 0.6551 0.6502 0.6277 0.6765 0.7091
Correlation 0.9111 0.9206 0.9186 0.9191 0.9129 0.9044 0.9311

SSIM 0.5883 0.6335 0.6290 0.6224 0.5826 0.6026 0.6324

7 Conclusion

In this study, a new edge-assisted cloud computing framework using RC-FCN
is proposed. Its main task is to correct the beam blocking areas of radar
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images in the environment of Internet of Weather Radars. The framework is
based on an edge-assisted cloud computing architecture, which can achieve
large-scale weather radar beam blocking correction under the premise of high
performance and elastic. A large number of comparative experiments show
that the RC-FCN proposed in this paper can effectively correct the radar
beam blockage areas and reconstruct the radar image. In addition, the most
innovative part of the network is the use of semantic segmentation idea to
achieve the correction of radar images. In order to meet the needs of semantic
segmentation, a lot of preprocessing work has been done in this study, such
as pixel value normalization and coordinate transformation. All processes are
integrated into the edge-assisted cloud system which can be invoked remotely
in a flexible and efficient way.
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